Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

转型ai产品经理怎么学习

Answer

以下是关于转型为 AI 产品经理的学习建议:

  1. 入门学习:
    • 可以通过 WaytoAGI 等开源网站或相关课程了解 AI 的概念。
    • 多使用 AI 产品并尝试动手实践应用搭建。
  2. 研究阶段:
    • 技术研究路径:对某一领域有认知,能根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。
    • 商业化研究路径:熟悉产品运营不分家的理念,关注场景、痛点、价值。
  3. 落地应用:
    • 积累成功落地应用的案例,产生商业化价值。
    • 了解传统互联网产品经理的三个层级:负责功能模块与执行细节、负责整体系统与产品架构、熟悉行业竞争格局与商业运营策略。
    • 对技术框架有一定了解,不一定要了解技术细节,但要对技术边界有认知,最好能知道一些优化手段和新技术的发展。

您还可以参考以下案例和学习资源:

  • 《雪梅 May 的 AI 学习日记》:其中提到用 ComfyUI 的工作流加上 Cursor 的前端网页,完整制作个人 AI 产品的方向。
  • 《放下傲慢!停止自欺欺人!与其做 AI 的主人,不如做它的搭档》:讲述了在与 AI 合作过程中,放下执念让 AI 主导以及全程让 AI 参与的经验。
Content generated by AI large model, please carefully verify (powered by aily)

References

《雪梅 May 的 AI 学习日记》挑战 100 天和 AI 做朋友

May:用AI写代码https://www.bilibili.com/video/BV1yCy7YkEmX/?vd_source=4635a9015e41611a3328c0bf4258ebf5[11-ComfyUI&Cursor做应用](https://waytoagi.feishu.cn/wiki/Pw5YwlCv8iTBQXklBWlcmPCqnld)感受:comfyUI的工作流加上cursor的前端网页,就可以完整的制作一个个人的AI产品了。对于个人来说,这是一个可以学习的方向。学会这些,就可以成为一人产品公司了。[heading2]DAY68 2024.11.17理念:赤脚程序员[content]May:看看新视角Maggie Appleton:家酿软件与赤脚程序员https://www.bilibili.com/video/BV1en4y1f7EK/?vd_source=3a1e1cc9982960388e0cd9502d415c93感受:看看新的理念,程序员也可以是社区里解决小问题的人。不需要所有程序员都在工厂里做流水线工人。

放下傲慢!停止自欺欺人!与其做 AI 的主人,不如做它的搭档

最近尝试将一个PPT转化为网站时,遇到了一些困惑。PPT中关于线下沙龙的内容有两页,如何组织好这两页并进行切换,当时并没有好的思路。心里想了一些方案,但老实说并不知道如何实现,因为真的不懂。于是我决定放手让AI给些建议看看。这是我当时向AI咨询的记录。从这里可以感受到,当我们放下自己的执念时,AI可以带来惊喜。在这个过程中,我想了三种方案:菜单中增加二级菜单。右侧放置卡片,每页对应一个卡片。使用箭头进行切换,有就切换,没有就不显示。当时差点就去谷歌搜关键字找代码示例了,突然想到,为什么不直接问AI呢?于是,我告诉AI这些需求,并询问如何维护管理对应关系。AI提出了第四种方案,还给出了代码。[heading2]2.4你说我听—从需求到设计,AI的全程参与[content]一个小伙伴想要一个AI视频一站式工作台,将过去使用的ChatGPT、MJ、Runway等工具整合在一起。这次我学乖了,虽然心里有想法,但没有直接告诉AI,而是全程由它来引导。一开始还有些担心AI不理解图片的内容,但事实证明这种担心是多余的。作为产品经理,放下自己的想法并不容易,但这次的效果却出乎意料的好。

AI 市场与 AI 产品经理分析——2024 是否是 AI 应用创业的好机会

个人做了一下划分,仅供娱乐和参考。1)入门级能通过WaytoAGI等开源网站或一些课程了解AI的概念,使用AI产品并尝试动手实践应用搭建(对应的画像可能是喜欢听小宇宙APP的播客或浏览AI相关的文章哈哈);以前互联网刚兴起的时候,部分用谷歌的人会比用百度的有优越感,现在可能用AI搜索的更有优越感(当然我感觉都没啥好优越的,都是工具,关键还是看能用工具产出什么)。2)研究级我理解这里有两个路径,一个是技术研究路径,一个是商业化研究路径;对应传统互联网偏功能实现的产品经理和偏商业运营的产品经理,当然最好是同一个人,我一直的理念是产品运营不分家(产品即运营)。这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用Hugging face等工具手搓出一些AI应用来验证想法;3)落地应用这一阶段我理解的画像就是有一些成功落地应用的案例,如产生商业化价值。对应传统互联网PM也有三个层级:1)负责功能模块与执行细节;2)负责整体系统与产品架构;3)熟悉行业竞争格局与商业运营策略;总结来说,对AI产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI说白了也是工具和手段,我认为产品经理要关注的还是场景、痛点、价值。举一些我们之前做的落地案例(我个人也是在2017年开始关注机器学习,还报了风变的Python课程,不过当时没有深入研究)。

Others are asking
ai写毕业论文
使用 AI 写毕业论文需要注意以下几点: 1. 虽然可以向 LLM 寻求写作建议甚至直接要求其帮忙写论文,但这并非道德的使用方式。 2. 论文写作领域中,AI 技术提供了多方面的辅助,包括文献搜索、内容生成、语言润色和数据分析等。常用的工具和平台有: 文献管理和搜索:Zotero 可自动提取文献信息,Semantic Scholar 是 AI 驱动的学术搜索引擎。 内容生成和辅助写作:Grammarly 提供文本校对等,Quillbot 可重写和摘要。 研究和数据分析:Google Colab 支持 AI 和机器学习研究,Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 结合自动化和模板处理格式,Overleaf 是在线 LaTeX 编辑器。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭。 3. AI 文章排版工具方面,有以下选择: Grammarly 不仅检查语法拼写,还能改进排版风格。 QuillBot 可改进文本清晰度和流畅性。 Latex 常用于学术论文排版,有 AI 辅助的编辑器和插件。 PandaDoc 是文档自动化平台。 Wordtune 是 AI 写作助手。 Overleaf 是在线 Latex 编辑器,适合学术写作。 选择工具时应根据文档类型、出版标准和个人偏好来决定。对于学术论文,Latex 和 Overleaf 受欢迎;一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。但使用时要结合自身写作风格和需求,并仔细甄别内容。
2025-02-26
如何生成稳定的AI视频
以下是关于生成稳定的 AI 视频的相关信息: 工具推荐: Runway: 网址:https://app.runwayml.com/videotools/ 官方使用教程:https://academy.runwayml.com/ 知识库详细教程: 特点:支持文生视频、图生视频、视频生视频;文生视频支持正向提示词、风格选择、运镜控制、运动强度控制、运动笔刷,支持多种尺寸,可设置种子值;生成好的视频可以延长时间,默认生成 4s 的视频;使用英文提示词。 Stable video: 网址:https://www.stablevideo.com/generate 知识库详细教程: 特点:支持文生视频、图生视频,仅英文;图生视频不可写 prompt,提供多种镜头控制;文生视频先生成 4 张图片,选择其中一张图片以后再继续生成视频。 技术差异: 代表产品如 Runway,在端到端视频生成中,涉及的技术包括 GAN 生成对抗网络、VAE 变分自编码器和 Transformer 自注意力机制。 GAN 生成对抗网络:是一种无监督的生成模型框架,能生成视觉逼真度高的视频,但控制难度大、时序建模较弱。 VAE 变分自编码器:可以学习数据分布,像压缩和解压文件一样重建视频数据,能根据条件输入控制生成过程,但质量较 GAN 略低。 GAN、VAE 生成视频速度快,但存在生成质量和分辨率较低、长度短、控制能力弱的缺点。 Transformer 自注意力机制:通过学习视频帧之间的关系,理解视频的长期时间变化和动作过程,对长视频建模更好,时序建模能力强,可实现细粒度语义控制,但计算量大。 当前面临的问题及解决方案: 当前仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。解决方案包括使用渐进生成、增强时序一致性的模型等方法,上述的补帧算法、视频完善策略也可在一定程度上缓解问题。 制作技巧: 在镜头衔接上要写运镜提示词,描述多种运镜方式,否则画面会乱变。在做视频时要不断尝试参数。
2025-02-26
AI陪伴有什么好的产品
以下是一些 AI 陪伴的好产品: 1. Character.ai:这是一个 AI 虚拟陪伴平台,用户能与数百个 AI 驱动的角色交流,还可创建自己的角色并赋予其各种特性。 2. Replika:一款 AI 虚拟陪伴应用,用户可设计理想伴侣,其会存储记忆并在未来对话中参考,甚至能发送照片。 3. Talkie:主打情感路线的 AI 虚拟陪伴应用,设计有大量 npc,游戏和休闲娱乐体验感强,每个 npc 都有自己的剧情体系,交流中会触发抽取卡牌机会。 AI 陪伴已进入成长爆发期,可能看起来是小众市场,但实际上已成为生成式 AI 主流应用场景之一。网页端和移动端数据表明其正变得越来越普及。例如,在网页端榜单上,Character.ai 领跑 AI 陪伴榜单。 陪伴应用的范畴也在迅速扩大,不仅限于“男友”“女友”概念,还涵盖友谊、指导、娱乐、医疗保健等方面。一些早期研究显示,AI 在诊断准确性和患者沟通技巧上能超越真人医生,如 Replika 聊天机器人帮助部分用户减轻了自杀念头。 移动端和网页端应用在 AI 使用类型上有明显不同。网页端产品更倾向支持内容创作和编辑的复杂工作流程,如 ElevenLabs、Leonardo、Gamma 等。移动端应用更倾向通用型助手,不少模仿了 ChatGPT。
2025-02-26
AI基础
以下是关于 AI 基础的全面介绍: 一、AI 背景知识 1. 基础理论:人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:简介强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习资源和方法 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。特别推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 七、书籍推荐 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让你系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。
2025-02-26
普通人怎么学习AI
普通人学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 此外,还可以参考以下方法: 1. 万能公式法:问 AI【一个(xxx 职业)需要具备哪些知识?】,AI 就可给出知识框架,然后根据知识框架每一个小点去问,就能让 AI 工具帮你指数级深度思考。 2. 寻找优质信息源:像没有技术背景的普通人,学习或了解 AI 最好的信息源在「即刻」App 的“”等免费圈子里。 3. 信息爆炸之做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 对于纯 AI 小白,如果还在观望 AI 不知从何入手,可以参考《雪梅 May 的 AI 学习日记》。其学习模式是输入→模仿→自发创造。学习资源免费开源,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。
2025-02-26
AI基础
以下是关于 AI 基础的知识: 一、背景知识 了解人工智能、机器学习、深度学习的定义及其之间的关系,简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:了解强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习建议 1. 了解 AI 基本概念:阅读相关部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 2. 开始学习之旅:在入门课程中学习生成式 AI 等基础知识,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 3. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,使用各种产品创作作品,并分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等互动,了解工作原理和交互方式。 此外,为您推荐三本神经科学相关的基础学科书籍: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,系统了解认知神经科学的多方面内容。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让您系统了解神经元的相关知识。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的名著,涵盖神经科学的方方面面。
2025-02-26
对于中小企业而言,ai转型的落地过程中有什么风险和挑战?请分别回答风险和挑战是什么
对于中小企业而言,AI 转型的落地过程中存在以下风险和挑战: 风险: 1. 管理风险:使用 AI 工具评估和管理企业面临的各种风险时,可能存在对风险评估不准确、应对策略不恰当等问题,导致企业无法有效应对潜在挑战,造成不必要的损失。 2. 网络安全风险:引入 AI 驱动的网络安全解决方案时,若安全系统配置不当、软件和 AI 模型未及时更新、员工网络安全意识不足等,可能导致企业网络系统遭受网络威胁和攻击,造成数据泄露、业务中断等严重后果。 挑战: 1. 任务自动化挑战:在评估和识别日常重复性高的任务时,可能存在对任务分析不准确、目标设定不清晰的情况,影响后续自动化工具的引入和效果。同时,选择合适的自动化工具并进行有效配置和测试也具有一定难度。 2. 网络安全挑战:选择适合企业网络环境和安全需求的 AI 驱动的网络安全解决方案并非易事,需要充分了解各种方案的特点和适用性。此外,定期更新和维护安全系统、进行网络安全演练以及对员工进行培训等工作也需要投入大量的时间和精力。
2025-02-19
35岁java后端开发如何转型AI开发
对于 35 岁的 Java 后端开发人员转型 AI 开发,以下是一些建议: 1. 利用固定格式文档结合 AI 进行代码开发时,要强调组员的主观能动性,让他们自主设计,组长负责引导和经验分享。文档并非唯一最佳方式,可尝试用简短描述或 Prompt 辅助代码生成。在 AI 编程中,设计非常重要,模块化低耦合设计和清晰的上下文对代码生成效果尤为关键。参考链接: 2. 借助 AI 编程工具(如 Cursor),熟悉 LLM 原理,探索复杂 Prompt 和定制化规则。开展 LLM 相关的 Side Project(如翻译工具、AI 对话应用等),通过实践快速掌握技能。将 AI 当老师,边做边学,获取即时反馈,持续提升。核心建议是行动起来,找到正反馈,坚持使用 AI 辅助编程。参考链接:
2025-01-29
负责动力制造公司智能制造数字化转型的整体策划,请帮我完善一下
对于动力制造公司智能制造数字化转型的整体策划,以下是一些完善的建议: 首先,进行全面的现状评估。包括对现有生产流程、设备设施、信息化系统等方面的详细调研,明确当前存在的问题和瓶颈。 其次,制定明确的转型目标。例如,提高生产效率、降低成本、提升产品质量、增强供应链的灵活性等,并且将这些目标进行量化和细化。 然后,规划技术架构。确定所需的数字化技术,如工业物联网、大数据分析、人工智能、云计算等,并设计它们之间的集成方案。 接着,优化生产流程。通过数字化手段对生产流程进行重新设计和优化,消除不必要的环节,提高生产的流畅性和效率。 再者,加强人才培养。培养具备数字化思维和技能的员工队伍,包括技术人员和管理人员。 最后,建立有效的评估和持续改进机制。定期对转型效果进行评估,根据评估结果调整策略和措施,以确保转型的持续推进和目标的实现。 希望以上建议能对您有所帮助。
2025-01-17
元宇宙推动教育的全面数字化转型
元宇宙对教育的全面数字化转型具有重要推动作用。 在当前的数字化时代,数字化正在重塑我们的生活,从依赖物理资源的稀缺经济转向以数字资源为基础的富足经济。AI 的发展进一步加强了这一趋势,而元宇宙代表着物理世界的数字化。 在教育领域,存在多种与元宇宙和数字化转型相关的情况和探索。例如: 1. 智慧课程培育建设和人工智能赋能教学创新工作坊,涉及多种工具推荐,如 Bot.360.com 多模型竞技选取最佳答案、用 heyGen 定制“数字分身”等。 2. 教育工作坊涵盖了 AI 助力教学设计、生成式 AI 对课件制作和微课生成的变革、学情分析与作业测评等多个方面。 3. 对于教师而言,面临着如 AI 教师是否会代替人类教师等问题,同时也有诸如 AI 导师一对一、人机协同教育生态等新的模式和理念。 总之,元宇宙和相关技术为教育的数字化转型带来了众多可能性,包括大规模自适应学习、工作场景模拟等,也促使教育不断探索新的模式和方法,以适应时代的发展。
2025-01-11
我作为一名OA软件的行业的售前,我的工作中会涉及到AI与OA结合落地的智能化场景,所以我对AI知识有简单的了解,我现在想转型AI行业的售前,我该如何系统的学习AI的相关知识,请帮我制定一个计划
以下是为您制定的从 OA 软件售前转型到 AI 行业售前的系统学习计划: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、掌握相关技能和知识 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,作为转型者,您可以从以上多个方面入手,全面系统地学习 AI 知识和技能,为未来在 AI 行业的售前工作做好准备。
2025-01-07
传统产品经理如何转型AI产品经理
传统产品经理转型为 AI 产品经理需要具备以下方面的能力和知识: 1. 掌握算法知识: 理解产品核心技术,有助于做出更合理的产品决策。 与技术团队有效沟通,减少信息不对称带来的误解。 评估技术可行性,在产品规划阶段做出更准确的判断。 把握产品发展方向,更好地应对 AI 技术的迅速发展。 提升产品竞争力,发现产品的独特优势并提出创新特性。 增强数据分析能力,处理和分析 AI 算法涉及的数据。 2. 了解 AI 市场: 入门级:通过开源网站或课程了解 AI 概念,使用并实践应用搭建。 研究级:包括技术研究和商业化研究路径,能根据需求场景选择解决方案,或利用工具验证想法。 落地应用级:有成功落地应用的案例并产生商业化价值。 3. 转变产品设计思路和视角: 抛开当前业务体系和框架,从最本质入手,从人的底层心智和需求着手,重新思考产品逻辑,重新设计商业逻辑体系和流程。 实际动手操作,在相关平台上亲手做几个 agent 来感受和收获更多。 总之,传统产品经理转型为 AI 产品经理要关注场景、痛点、价值,对技术框架有认知,不断提升自身能力以适应新的角色要求。
2025-01-07
ai产品经理
以下是为您整合的关于 AI 产品经理的相关信息: 北京分队中有一位叫 Kelton 的成员,是一位 AI 产品经理,深耕 NLP 方向 2 年,作为 Owner 从 0 1 打造过两款 AIGC 产品,也完成过 LLM 评测体系的从零搭建。技术出身,还曾在云计算、元宇宙领域工作过 2 年,坐标在海淀(北四环)。 银海是一位 AI 产品经理,是通往 AGI 之路社区共建者,5 + 大模型厂商资深讲师,全网粉丝量 3W + ,在 AI Agent、多模态大模型、企业级 AI 应用等多领域具备丰富实战经验。 特看科技正在招聘 AI 产品经理,岗位要求:负责 AI 视频工具方向产品工作,对生成式 AI 产品有一定研究,熟悉 Transformer 和 Diffusion 模型的优先;英文好,有海外产品经验优先,有内容工具或 SaaS 产品经验优先;2 年以上产品岗位经验,职级根据经验能力制定,对标阿里 P6 P8 区间。该公司专注于 AI 视频和直播应用,在国内和海外市场服务众多头部品牌。能提供确定性的商业化应用场景、初创公司充沛的早期期权池、强大的工程师团队等。有电子商务、企业服务、人工智能、海外产品等行业经验为加分项。欢迎推荐或自荐简历至 qingshen@tabcut.com,或飞书与清慎联系。
2025-02-26
ai产品经理
以下是为您整合的关于 AI 产品经理的相关信息: 北京分队中有一位叫 Kelton 的成员,是一位 AI 产品经理,深耕 NLP 方向 2 年,作为 Owner 从 0 1 打造过两款 AIGC 产品,也完成过 LLM 评测体系的从零搭建。技术出身,还曾在云计算、元宇宙领域工作过 2 年,坐标在海淀(北四环)。 银海是一位 AI 产品经理,是通往 AGI 之路社区共建者,5 + 大模型厂商资深讲师,全网粉丝量 3W + ,在 AI Agent、多模态大模型、企业级 AI 应用等多领域具备丰富实战经验。 特看科技正在招聘 AI 产品经理,岗位要求:负责 AI 视频工具方向产品工作,对生成式 AI 产品有一定研究,熟悉 Transformer 和 Diffusion 模型的优先;英文好,有海外产品经验优先,有内容工具或 SaaS 产品经验优先;2 年以上产品岗位经验,职级根据经验能力制定,对标阿里 P6 P8 区间。该公司专注于 AI 视频和直播应用,在国内和海外市场服务众多头部品牌。能提供确定性的商业化应用场景、初创公司充沛的早期期权池、强大的工程师团队等。有电子商务、企业服务、人工智能、海外产品等行业经验为加分项。欢迎推荐或自荐简历至 qingshen@tabcut.com,或飞书与清慎联系。
2025-02-26
如何成为AI产品经理
要成为 AI 产品经理,可以从以下几个方面努力: 1. 入门级: 通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 技术研究路径:深入研究某一技术领域。 商业化研究路径:根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用: 拥有成功落地应用的案例,产生商业化价值。 同时,AI 产品经理需要具备的能力和素质包括: 懂得技术框架,不一定要了解技术细节,但要对技术边界有认知,最好能知道一些优化手段和新技术的发展。 关注场景、痛点、价值。 从招聘信息来看,AI 产品经理的职责描述通常包括: 负责基于通用人工智能技术(AGI)的智慧医疗诊断产品的规划、研发、发布上市的全过程管理。 通过市场调研和分析,开发满足客户需求的产品或服务,为公司制定产品战略。 制定并执行产品开发计划和目标,协调项目相关人员,推动产品开发工作的顺利进行。 提出产品优化建议,推动产品快速迭代,并协调增长部门实现产品的持续增长。 任职要求一般有: 本科及以上学历,计算机、信息技术、工程、检验、生物科学、细胞生物学等相关专业优先考虑。 具备 3 年以上产品管理经验,有医疗领域产品管理经验者、有极致产品案例者优先。 在产品创新、研发、迭代改进及商业化方面有丰富的项目管理经验。 对客户需求具有高度敏感度,熟悉竞品分析、定价策略。 此外,具备以下条件也有助于成为 AI 产品经理: 技术背景丰富,包括编程、算法工程、AI 应用开发、后端开发等。 有产品开发与管理经验,尤其是在互联网和 AI 产品开发方面,具备项目管理与执行能力。 熟悉多元化的应用场景,如 AIGC 内容创作、自动驾驶、金融数据分析、教育、医疗健康、影视创作、营销等。 作为 AI 爱好者与学习者,处于 AI 技术的初学阶段,渴望通过学习提升技能,并将 AI 技术应用到实际工作和生活中,广泛使用生成式 AI 工具。 具备内容创作经验,如自媒体运营、视频博主、内容创作者所具有的文案策划、视频剪辑、图文制作等创意能力。 拥有营销策划与品牌运营能力,能够将 AI 技术与商业化需求结合,提供完整的解决方案,以及丰富的活动策划和运营经验。
2025-02-25
产品经理想进入AI行业,成为AI产品经理,应该怎么准备,能够快速应付面试拿到offer?我的背景是过去3年集中在用户功能产品,有过1份AI多轮对话解决用户求职问题的AI项目经历
如果产品经理想进入 AI 行业成为 AI 产品经理并快速应付面试拿到 offer,可以从以下几个方面准备: 1. 了解 AI 市场: 鱼龙混杂,求职者要做好信息甄别。即使面试通过拿到 offer,除了看 boss 直聘的招聘评价,一定要提前收集其他信息,如在脉脉上搜一下这家公司靠不靠谱。 一些公司实际上没搞懂用 AI 能为自己企业带来什么价值,只是处于焦虑或跟风心态要做 AI,这部分企业可以聊,但要求求职者要有咨询和商业化的思维,能帮公司厘清业务增长机会。 不同公司对 AI 产品经理的定位不同,所以招聘市场上对 AI 产品经理的岗位职责和任职要求也不同,慢慢会统一标准,这也是产品经理转型的机会。 有行业沉淀和认知的产品经理转型会更有机会,类似之前的“互联网+”,目前应用层的机会在“AI+行业”,只懂 AI 或只懂行业是不够的。还有就是业务创新,找到细分的场景痛点并完成 PMF 验证,海外有很多优秀案例。 2. 掌握岗位技能: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 需要注意的是,观察上面的岗位需求,其实公司并不是需要一个 prompt 工程师,而是一个 AI 互联网产品经理。
2025-02-25
AI产品经理实战学习
以下是为您提供的关于 AI 产品经理实战学习的相关内容: 北京分队中从事相关工作或有相关经验的人员包括: 枫 share:产品经理,熟悉 ChatGPT,写过 prompt,使用过 SD、MJ 但有待深入学习,用 PR、剪映剪辑过多个视频和播客音频,正在找 AI 方向的产品岗位,坐标海淀(北五环)。 行远:产品经理,熟悉 prompt,部署过大模型、绘图项目,使用 Midjourney、sd、pika、suno 等 AI 创作工具,期待学习和实战案例应用,坐标朝阳。 管子:数据科学家,熟悉 prompt 创作,midjourney,runway,正在学习 stable diffusion,期待学习、打磨作品,坐标朝阳(望京和国贸)。 猫先生:算法技术出身,2022 年开始持续关注并学习 AIGC 方向,部署过大模型、绘图、视频生成等项目,熟悉 pika、runway、svd、sd、gpt4、comfyui 等工具,坐标海淀。 Andy:技术出身,刚开始学习 AIGC,部署过大模型、SD 等,写过代码调用 API,熟悉使用 ChatGPT、Kimi、coze 等,关注 AI 在教育领域的应用,坐标通州。 AI 产品经理的个人划分(仅供娱乐和参考): 1. 入门级:能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念,使用 AI 产品并尝试动手实践应用搭建。 2. 研究级:有两个路径,一个是技术研究路径,一个是商业化研究路径。这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用:有一些成功落地应用的案例,如产生商业化价值。 对 AI 产品经理的要求:懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI 产品经理要关注的还是场景、痛点、价值。 此外,阿里云 AI 实训营携手 WaytoAGI 讲师走进 GDC 全球开发者先锋大会,活动包括: 学练议程:2 月 21 日 09:30 12:30 通义灵码 0 基础应用开发,人人都是软件创作者;2 月 21 日 13:30 16:30 为你的 AI 应用装上眼睛;2 月 22 日 08:30 12:00 人工智能平台 PAI:DeepSeek 部署和应用实战。 分享嘉宾:张梦飞(词元映射 CEO,WaytoAGI Agent 核心创作者)、银海(AI 产品经理,WaytoAGI 社区共建者)、瑞雪(通义实验室科学家)、许键(AI 产品经理,WaytoAGI Agent 版主)。 实训福利:打卡有礼(现场分享打卡,领 AI 实训营定制周边)、学练有礼(现场提交作业,领阿里云精美好礼)。 活动地点:上海徐汇西岸艺术中心 B 馆(BW01)。感兴趣的学员可扫码参会。
2025-02-25
AI产品经理
以下是为您整合的关于 AI 产品经理的相关信息: 北京分队中有一位叫 Kelton 的成员,是一位 AI 产品经理,深耕 NLP 方向 2 年,作为 Owner 从 0 1 打造过两款 AIGC 产品,也完成过 LLM 评测体系的从零搭建。技术出身,还曾在云计算、元宇宙领域工作过 2 年,坐标在海淀(北四环)。 银海是一位 AI 产品经理,也是通往 AGI 之路社区共建者,5 + 大模型厂商资深讲师,全网粉丝量 3W + ,在 AI Agent、多模态大模型、企业级 AI 应用等多领域具备丰富实战经验。 特看科技正在招聘 AI 产品经理,岗位要求包括负责 AI 视频工具方向产品工作,对生成式 AI 产品有一定研究,熟悉 Transformer 和 Diffusion 模型的优先;英文好,有海外产品经验优先,有内容工具或 SaaS 产品经验优先;2 年以上产品岗位经验,职级根据经验能力制定,对标阿里 P6 P8 区间。特看科技专注于 AI 视频和直播应用,在国内和海外市场服务众多头部品牌。公司能提供确定性的商业化应用场景、初创公司充沛的早期期权池、强大的工程师团队等,有电子商务、企业服务、人工智能、海外产品等行业经验为加分项。欢迎推荐或自荐简历至 qingshen@tabcut.com,或飞书与清慎联系。
2025-02-25
python程序员 学习AI
对于 Python 程序员学习 AI,以下是一些建议和基础内容: AI 背景知识: 基础理论:理解人工智能、机器学习、深度学习的定义及相互关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:掌握向量、矩阵等基本概念。 概率论:了解基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:熟悉常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:了解聚类、降维等算法。 强化学习:知晓其基本概念。 评估和调优: 性能评估:掌握如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,还有相关的课程内容,如“和 Cursor AI 一起学 Python 编程”: 第一节:Python 是什么、Cursor 使用、notebook 远程编程。包括熟悉 Cursor 界面,安装和设置,指导下载安装 Cursor 编辑器,了解界面布局和基本功能,编写第一个程序,体验 AI 辅助功能,如代码自动补全和错误提示,使用 Bohrium 进行远程编程,注册和登录,在线编写和运行代码等。课程时间为 45 分钟,教学内容涵盖 Python 简介、发展历史和特点、在数据分析和人工智能领域的优势、在人文学科的应用、在语言教学和研究中的实际案例,以及对 Cursor 编程环境和 Bohrium 在线编程平台的介绍。
2025-02-26
如何利用ai提高学习能力
利用 AI 提高学习能力可以从以下方面入手: 英语学习: 1. 智能辅助工具:如 Grammarly 可进行英语写作和语法纠错,改进表达和写作能力。 2. 语音识别和发音练习:使用 Call Annie 进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台:Duolingo 能利用 AI 技术量身定制学习计划,提供个性化内容和练习。 4. 智能导师和对话机器人:ChatGPT 可用于英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 自适应学习系统:Khan Academy 结合 AI 技术提供个性化学习路径和练习题,精准推荐。 2. 智能题库和作业辅助:Photomath 通过图像识别和数学推理技术提供问题解答和解题步骤。 3. 虚拟教学助手:Socratic 利用 AI 技术解答数学问题、提供教学视频和答疑服务。 4. 交互式学习平台:参与 Wolfram Alpha 的学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 学习一门外语的通用方法: 1. 设定目标:明确学习目标和时间表,分阶段完成任务。 2. 多样化练习:结合听、说、读、写多种方式全面提升语言技能。 3. 模拟真实环境:多与母语者交流,或用 AI 对话助手模拟真实对话场景。 4. 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容巩固记忆。 在医疗保健领域,鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习更快地获得知识,并带着人类一同进步。AI 的特性使我们能将其一部分一部分地拆解研究,构建系统深入探索其内部工作机制,创造学习的飞轮,最终可能成为下一代专家(无论是人类还是 AI)的教师。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-26
我是一名AI工具使用小白,渴望快速掌握AI工具,在电子表格制作、ppt制作、公文写作、文案写作等方面提升应用能力,请问应该学习哪些入门课程。
以下是一些适合您入门学习的 AI 课程: 1. 工具入门篇(AI Tools): 数据工具多维表格小白之旅:适合 Excel 重度使用者、手动数据处理使用者、文件工作者。通过表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求。 文章链接: 视频链接: 2. 工具入门篇(AI Code): 编程工具Cursor 的小白试用反馈:适合 0 编程经验、觉得编程离我们很遥远的小白。通过 AI 工具对编程祛魅,降低技术壁垒。 文章链接: 3. 工具入门篇(AI Music): 音乐工具Suno 的小白探索笔记:适合 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。AI 赋能音乐创作,无需乐理知识即可参与音乐制作。 文章链接: 此外,还有以下相关内容供您参考: 1. 关于 AI 视频制作的交流与答疑: 视频流表格制作:在知识库的 AI 视频专栏中有相关教程和模板。 Copy UI 社区:微推有专门研究 Copy UI 的社区,相关内容有趣但本次未展开讲。 SD 类图片作用:国内大厂很卷,一般需求吉梦等产品可完成,特殊精细要求才用 SD,不了解可在微推加 AI 会话中找。 图片视角转移:使用 P 模型,上传图片并告知镜头移动方向和相关内容。 PNG 与背景融合:Recraft 产品目前不太擅长 PNG 与背景的特别好的融合,可通过合并方式处理。 保证文字不崩:使用吉梦的 2.1 模型效果较好。 新手 AI 视频制作:纯小白参与项目时,项目组会做好部分准备工作,上手难度不高,专注出图和出视频,用好相关技术。 关于利用 AI 工具创作北京宣传片相关问题的探讨。 AI 工具使用思路:对于如何利用 AI 工具创作,建议直接上手尝试,通过试错和与 AI 交流获取反馈,遇到具体问题再向社区请教。 素材处理方法:若有故宫相关照片素材,可采用导入参考图生图、让实拍素材动起来等方式,还可通过抠图、融图等操作将素材与虚拟背景融合。 创作需先构思:创作时不能仅考虑如何连接已有素材,而应先构思剧本和想要表达的内容,再合理运用素材。 2. 入门工具推荐: Kimi 智能助手:Chatgpt 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。不用科学🕸️、不用付费、支持实时联网。是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品。能一次搜索几十个数据来源,无广告,能定向指定搜索源。 PC 端: 移动端 Android/ios: 您还可以通过「飞书」这款工具,浏览其社区的精选课程、先进客户实践。下载飞书:
2025-02-26
小白如何用ai开始学习图片设计
对于小白如何用 AI 开始学习图片设计,以下是一些建议: 1. 图像流搭建 创建第一个图像流:由于文本类型大语言模型无法直接生成图片,需要通过【技能】部分的图像流为文本大模型提供图像生成能力。为 bot 加入图像流时,要设定图像流名称以及描述(名称只能是英文)。 了解图像流节点的意义:图像流编辑界面左侧的工具栏集合了所有可能用到的功能,大致可分为智能处理工具(如“智能生成”“智能抠图”“画质提升”等)、基础编辑工具(如画板、裁剪、调整、添加文字等)和风格处理类工具(如风格迁移、背景替换等)。从基础编辑工具开始尝试,熟悉后再探索其他功能。右侧类似画布,可拖拽左侧工具或点击“+”拖放各种工具模块,工具之间可连接形成工作流程。 根据需求进行图像流设计:例如生成海报功能,在总结故事后,将完整的故事作为输入,对输入的故事进行一轮提示词优化,从自然语言转变为更符合文生图大模型的提示词,将优化后的提示词输入生图大模型,调整生图的基础风格和信息,输出最终的配图海报。 测试图像流。 2. 利用即梦 AI 生成海报 提示词:皮克斯风格,三宫格漫画:一只小狗,坐在办公桌前,文字“KPI 达标了吗?”。一只小狗,拿着一个写满计划的大本子,微微皱着眉头,文字“OKR 写好了吗?”。一只小狗坐在电脑前,文字“PPT 做好了吗?”。 实操教程: 打开即梦 AI:https://jimeng.jianying.com/aitool/home 。 点击 AI 作图中的图片生成。 填写绘图提示词,选择生图模型 2.1,点击立刻生成。 3. 进阶技巧和关键词 图片内容一般分为二维插画以及三维立体两种主要表现形式。 主题描述:可以描述场景、故事、元素、物体或人物细节、搭配等。描述场景中的人物时,最好独立描述,不要用一长串文字,否则 AI 可能识别不到。 设计风格:可找风格类关键词参考或垫图/喂图,让 AI 根据给出的图片风格结合主题描述生成图片。对于某些材质的描述,关键词的运用有很多门道,需要针对某一种风格单独进行“咒语测试”。
2025-02-26
我想学习制作机器人 机器狗等的原理及方法,给我一份理论指导和操作指南吧。
以下是关于制作机器人和机器狗的理论指导和操作指南: 具身智能是将机器学习算法适配至物理实体,与物理世界交互的人工智能范式。以 ChatGPT 为代表的“软件智能体”通过网页端、手机 APP 与用户交互,能接受多种模态指令实现复杂任务。具身智能体则将大模型嵌入物理实体,通过传感器与人类交流,强调与物理环境交互。人形机器人是具身智能的代表产品。 具身智能有三要素: 1. 本体:即硬件载体,不同环境有不同形态的硬件本体适应,如室内平地适用轮式机器人,崎岖地面适用四足机器人(机器狗)。 2. 智能:包括大模型、语音、图像、控制、导航等算法。 3. 环境:本体所交互的物理世界,本体、智能、环境高度耦合是高级智能基础。 具身智能还有四个模块:感知决策行动反馈。一个具身智能体的行动分为这四个步骤,分别由四个模块完成并形成闭环。在具身智能体与环境的交互中,智能算法通过本体传感器感知环境,做出决策操控本体执行动作任务影响环境,还可通过“交互学习”和拟人化思维学习适应环境实现智能增长。
2025-02-26