Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我是AI小白如何接触AI领域

Answer

对于 AI 小白接触 AI 领域,您可以参考以下步骤:

  1. 了解 AI 基本概念:
    • 建议阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。
    • 知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后进行分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
  6. 持续学习和跟进:
    • AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。
    • 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。

此外,您还可以参考《雪梅 May 的 AI 学习日记》,这适合纯 AI 小白。其学习模式是输入→模仿→自发创造。学习内容可根据您的兴趣在 waytoAGI 社区寻找最新的内容。学习时间较为灵活,日记中的学习资源免费开源。如果您学习状态未达最佳,不必有压力,能学多少算多少。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:新手如何学习 AI?

持续学习和跟进:AI是一个快速发展的领域,新的研究成果和技术不断涌现。关注AI领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入AI相关的社群和组织,参加研讨会、工作坊和会议,与其他AI爱好者和专业人士交流。

《雪梅 May 的 AI 学习日记》挑战 100 天和 AI 做朋友

说明:1.适合纯AI小白:如果你还在观望AI,不知道从何入手,可以参考我这个日记。你可以先看左边的目录,会发现我现在已经快到100天了,在这个时间跨度里,我从一开始的到处看看到现在觉得自己已经走在了一条学习AI的轨道上。2.学习模式是什么:我平时有记录笔记的习惯,所以积累了这份AI学习日记。我最近整理复盘了这将近100天记录的日记后,我发现我学习AI的模式是输入→模仿→自发创造。如果你没有自信一开始就用费曼学习法来接触AI,那你可以试试我这个实践出来的学习模式。3.学习内容:我日记里的学习内容你可以不用直接复用,因为AI的节奏太快了,很多学习的材料在半年后的现在可能已经不适用了。比如coze之前共学的那些课程,你会发现coze已经改版了,如果你按照老课程来模仿,产品功能不一样了,对你来说会有转换的门槛。你可以去waytoAGI社区发现你自己感兴趣的AI领域,去学习你自己想学的最新的内容。4.有时间学吗:在半年多的时间跨度中,其中有100天在学习AI,所以这里的DAY(天数)不是每天依次进行,而是有空的时候学习。目前我进行到了90天,希望自己能够坚持满100天,甚至更多时间。5.学习状态:我在2024年保持了比较好的学习状态,有意愿和动力也能头脑清醒的学进去东西。这种状态不仅体现在学AI,我在2024年还看了33本书,像《穷查理宝典》这样的大部头都能看进去。所以如果你看到这个100天日记觉得自己很难做到,那是学习状态没有到最好,不用有心里压力,能学多少算多少就行。6.有费用吗:本日记中学习资源的内容都是免费开源的,真的很感谢这些把信息开源的人,这样会AI的人才会越来越多。我也是秉持这个理念,把我的学习日记开源了

Others are asking
中小学AI教育场景 生成式 全息
以下是关于中小学 AI 教育场景生成式的相关内容: 北京市新英才学校在中小学 AI 教育方面进行了积极探索。跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 帮助下备课和授课,生物和信息科技老师合作带着学生训练 AI 模型以识别植物。数字与科学中心 EdTech 跨学科小组组长魏一然深入参与其中。 在英语课上,对于初中以上学生,一开始更多是老师带着使用 AIGC 工具,由学生提出 prompt,老师引导。例如在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话获取信息,还让 ChatGPT 生成单词解释和例句,加工生词生成题目、游戏或文章帮助学生复习单词。在社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。 教育科技长期以来在有效性和规模之间权衡,而有了 AI 这种状况不再存在。现在可以大规模部署个性化学习计划,为每个用户提供“口袋里的老师”。像 Speak、Quazel、Lingostar 已在做实时交流并给予反馈的语言教学。Photomath、Mathly 指导学生解决数学问题,PeopleAI、Historical Figures 通过模拟与杰出人物聊天教授历史。学生在作业中也利用 Grammarly、Orchard、Lex 等工具提升写作水平,处理其他形式内容的产品如 Tome、Beautiful.ai 协助创建演示文稿。
2025-02-17
有哪个AI可以读懂建筑施工图纸
以下是一些能够读懂建筑施工图纸的 AI 工具: 1. HDAidMaster:这是一款云端工具,建筑师能在平台上使用主流的 AIGC 功能进行有趣的集卡式方案创作,在建筑、室内和景观设计领域表现出色,搭载的建筑大模型 ArchiMaster 由建筑设计院开发,软件 UI 和设计成果颜值高。 2. Maket.ai:主要面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,设计师输入房间面积需求和土地约束,软件能自动生成户型图并查看详细设计结果。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,为设计师提供全新设计模式,在住宅设计早期可引入标准和规范约束 AI 生成的设计结果,保证设计合规性。 4. Fast AI 人工智能审图平台:从住宅设计图构件开始,形成全自动智能审图流程,能自动导入、划分区域、识别构件、审查强条和导出结果,同时为建筑信息自动建模打下基础,实现建筑全寿命周期内信息集成与管理。 但每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-02-17
和教师相关的ai
以下是与教师相关的 AI 应用: 1. 帮助教师获取信息和学习:可以要求人工智能解释概念,获取良好结果。例如,可参考。 2. 作为自动导师:。但使用时需注意可能产生的幻觉,关键数据要根据其他来源仔细检查。 3. 重构教育服务:授课教师、游戏玩家、情感伴侣等服务都可被 AI 重构。 4. 作为数字教师:借助大型语言模型,人工智能生成的角色可以像古时候的苏格拉底、孔子一样,采用对话式、讨论式、启发式的教育方法授课。例如,让牛顿亲自授课《牛顿运动定律》,让白居易为你讲述《长恨歌》背后的故事。能实现一对一辅导,提高学生参与感,还能根据学生情况提供定制化学习计划和资源,缓解教育资源不平等问题。 5. 生成作业和试题:AI 可以生成作业单和各类测试题,如模仿中高考、托福雅思、SAT(美国高考)、GRE(美国研究生入学考)等的试题,为教师提供真题库,为学生提供错题练习库。
2025-02-17
目前ai有哪些活动
目前的 AI 活动包括: 1. 全新 AI 整活计划第七期:一起去抓小精灵! 可能会是新的流量爆款,ins 上已经火爆。 给大家准备好了海辛和阿文的教程。 活动链接:https://waytoagi.feishu.cn/wiki/DQj6waWzkiFkRQkSm1Ic5YKFnoe 2. 阿里云 AI 实训营全新升级上线!! 免费学习,交作业拿好礼。 共学、共享、共实践,1 月 24 号正式开课。 阿里云资深专家带你掌握 AI 应用场景最新实操。 加入学习链接:https://click.aliyun.com/m/1000401471/ 3. 投稿内容:使用 DeepSeek 写一篇以“反转”为主题的 1000 字内短篇小说,尽情挥洒你的创意叭! 投稿地址:通往 AGI 之路腾讯频道【deepseek 专区】点击投稿 小程序://腾讯频道/tN8kNr1nLwcAC0b 2 月 16 日晚 8 点截止并现场直播评选如何用 AI 评选出最佳小说家! 活动详情: 4. 摊位活动: 乐易科学院:通过 AI 的技术,结合量子、暗物质、天体运行规律等能量形式从科学、物理学、天文学、心理学等方面讲解国学和传统文化。可以通过技术方式批八字、调风水、进行性格色彩分析,让每个人找到方向,成为更好的自己。摊位区域:C,摊位编号:27,摊位类型:玄学+科学。 AIGC 策划程序美术(3AI 简称 3A 游戏)应用独立游戏开发:摊位区域:C,摊位编号:76,摊位类型:游戏宣传。 AI 人像摄影绘画:摊位区域:C,摊位编号:77,摊位类型:照片。 主题是:B2B AI 营销与 AI 落地项目快速🔜落地~ 具体涵盖 3 个方向: AI 训练 to b,出应用,智能体 agent,文生图生视频都涉及。 美国独立站搭建,工作流给模特戴上珠宝饰品。 Google seo 与 AI 结合。 技术尝试: 好消息,代码写出来了,可以运行,也有 bug。 最近还做出来很多 AI 工具,帮 HR 筛选简历的 AI 工具,行业新闻 AI 生成与自动推送的工作流,小红书 AI 生成的工具,Newsletter AI 生成的工具…… 摊位区域:C,摊位编号:58,摊位类型:产品展示。 5. 030 基础建站相关活动: 共学活动课程安排:近日的共学活动包括建站、编程、用 AI 手搓机器人等课程,并有李吉刚等老师授课。 课程准备与作业:课程有回放链接,会在 B 站专题呈现,还有小作业,部分课程需提前准备材料和购买清单。 线下活动规则:学校若未组队可报名,满 30 人寄物料。活动有创业者、投资人、交易所三个角色,有初始资本,通过股权和现金交换,最终选出最佳投资人和创业者。 线下活动奖励:最佳投资人和创业者有礼品、奖品,config UI 赛道的优秀者可去东京参加 CCS 东京的 config UI 大会,包机酒。 线下活动赞助:活动有豆包、飞书等大厂工具赞助。 Config UI 共学活动:11 月 16 日至 17 日举办首次活动,有优质创作者和开发者参与,提供了课程和回放,左侧“社区共创项目”有文档内容,18 号海鑫、阿文将讲解搭建基础和小应用,共学结束后将开展第二期。 编程课程:大雨老师的编程课原本 10 天压缩为 2 天,先给概念,后续可深入学习。 AIGC 营销视频大赛:伊利主办,奖金丰厚,赛道多,明天早上 10 点有直播,下周开始相关教学,鼓励以赛代练,活动信息在知识库首页、网站和公众号。 交流渠道:QQ 群号码后续会公布,活动相关疑问可在群里交流。
2025-02-17
ai数字人
AI 数字人是运用数字技术创造出来的人,目前业界尚无准确定义,一般可根据技术栈分为两类: 1. 真人驱动的数字人:重在通过动捕设备或视觉算法还原真人动作表情,主要应用于影视行业及直播带货。其表现质量与手动建模精细程度及动捕设备精密程度直接相关,不过随着视觉算法进步,在无昂贵动捕设备时也能通过摄像头捕捉人体骨骼和人脸关键点信息达到不错效果。 2. 算法驱动的数字人:强调自驱动,人为干预更少,技术实现更复杂。其大致流程中的三个核心算法分别是: ASR(语音识别):能将用户音频数据转化为文字,便于数字人理解和生成回应。 AI Agent(人工智能体):充当数字人大脑,可接入大语言模型,拥有记忆模块等使其更真实。 TTS(文字转语音):将数字人依靠 LLM 生成的文字转换为语音,保持语音交互一致性。 此外,还有一些关于 AI 数字人的摊位活动,例如:为企业和个人提供数字劳动力,解决重复性、创意性工作难题的“AI 数字员工”体验 demo 包括抖音运营、AI 客服、智能问诊、企业定制员工、定制知识库等;“AIGC(图生图)趣味定制;AI 数字人定制”等。
2025-02-17
ai数字人
AI 数字人是运用数字技术创造出来的人,目前业界没有关于其的准确定义,但一般可根据技术栈分为两类: 1. 真人驱动的数字人:重在通过动捕设备或视觉算法还原真人动作表情,主要应用于影视行业及直播带货。其表现质量与手动建模精细程度及动捕设备精密程度直接相关,不过随着视觉算法进步,在无昂贵动捕设备时也能通过摄像头捕捉人体骨骼和人脸关键点信息达到不错效果。 2. 算法驱动的数字人:强调自驱动,人为干预更少,技术实现更复杂。其大致流程中的三个核心算法分别是: ASR(语音识别):能将用户音频数据转化为文字,便于数字人理解和生成回应。 AI Agent(人工智能体):充当数字人大脑,可接入大语言模型,拥有记忆模块等使其更真实。 TTS(文字转语音):将数字人依靠 LLM 生成的文字转换为语音,保持语音交互一致性。 此外,摊位活动中也有关于 AI 数字人的主题,如为企业和个人提供数字劳动力,解决重复性、创意性工作难题,包括抖音运营、AI 客服、智能问诊、企业定制员工、定制知识库等体验 demo。还有 AIGC 数字艺术挂画、AI 智能体应用、AI 数字人定制等相关内容。
2025-02-17
我是一个ai小白,请给我推荐一个语言大模型的提示词优化工具
以下为您推荐两个语言大模型的提示词优化工具: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,中英文均可。 启用提示词优化后可扩展提示词,更生动描述画面内容。 小白用户可点击提示词上方官方预设词组进行生图。 写好提示词需内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 可调整负面提示词,利用“加权重”功能让 AI 明白重点内容,还有翻译、删除所有提示词、会员加速等辅助功能。 2. Prompt Perfect: 能够根据输入的 Prompt 进行优化,并给出优化前后的结果对比。 适合写论文、文章的小伙伴,但使用该能力需要消耗积分(可通过签到、购买获得)。 访问地址:
2025-02-17
纯小白对于模型等等都没有任何概念能看懂吗
对于纯小白来说,理解模型等相关概念是有一定挑战的,但通过以下内容可以逐步入门: Tusiart 相关概念: 1. 首页包含模型、帖子、排行榜,其中发布了各种模型和生成的图片。不同模型有 checkpoint 和 lora 两种标签,有的还有 XL 标签属于 SDXL 新模型。点击可查看模型详细信息,下方是返图区。 2. 基础模型(checkpoint)是生图必需的,任何生图操作都要先选定。它与 lora 不同,lora 是低阶自适应模型,类似小插件,可有可无,但对细节控制有价值,旁边的数值是其权重。 3. ControlNet 可控制图片中特定图像,如人物姿态、生成特定文字等,属于高阶技能。 4. VAE 是编码器,类似滤镜,调整生图饱和度,一般选择 840000 这个。 5. Prompt 提示词是想要 AI 生成的内容,负向提示词是想要 AI 避免产生的内容。 6. 图生图是上传图片后,sd 根据图片、模型及输入信息重绘,重绘幅度越大,输出图与输入图差别越大。 AI 技术原理相关概念: 1. 生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,学习输入和输出映射关系,包括分类和回归)、无监督学习(学习数据无标签,算法自主发现规律,如聚类)、强化学习(从反馈学习,最大化奖励或最小化损失,类似训小狗)。 深度学习是一种参照人脑的方法,有神经网络和神经元,神经网络可用于多种学习。 生成式 AI 可生成文本、图片、音频、视频等。 LLM 是大语言模型,生成图像的扩散模型不是大语言模型,有的大语言模型如谷歌的 BERT 模型可用于语义理解。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它基于自注意力机制处理序列数据,比 RNN 更适合处理文本长距离依赖性。
2025-02-13
我是AI小白,希望到这里学习AI基础知识
以下是为您整理的 AI 基础知识学习内容: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习的定义及其之间的关系,以及其主要分支和联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 7. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 8. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 9. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-02-12
小白 如何学习ai
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 知识库中有很多实践后的作品、文章分享,欢迎实践后进行分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其适合纯 AI 小白,学习模式为输入→模仿→自发创造。学习内容可根据自身兴趣在 waytoAGI 社区寻找最新的内容。学习时间较为灵活,资源免费开源。同时,像元子语从 prompt 开始接触 AI,意识到虽然开始可能有疑虑,但通过参与和学习,会发现门槛在社区中已被解决。
2025-02-12
deepseek小白怎么用
使用 DeepSeek 小白版的步骤如下: 1. 搜索 www.deepseek.com,点击“开始对话”。 2. 将装有提示词的代码发给 DeepSeek。 3. 认真阅读开场白之后,正式开始对话。 DeepSeek 的设计思路包括: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定)。 此外,还提到了华尔街分析师对 DeepSeek 的反应、DeepSeek 的实际使用体验以及复旦大学 OpenMOSS 发布实时语音交互模型等相关信息,但这些与 DeepSeek 小白版的使用方法无关。
2025-02-12
那些ai可以适合小白短视频创作者使用
以下是一些适合小白短视频创作者使用的 AI 工具: 1. 国外工具: PixVerse:具有多模态输入功能,支持文本到视频和图像到视频的转换,提供多种风格选项,可通过调整动作强度、添加负面提示词等方式实现精细化控制,创作效率较高,有社区支持,还提供视频上采样功能,但 Web 应用和 Discord 服务器生成的视频质量存在差异,使用时仍需提供准确的文本描述。 2. 国内工具: 可灵:视频生成质量高,可与国际顶尖模型媲美,生成速度快,处理效率高于国外同类产品,对于国内用户可访问性好,使用便捷、稳定,除价格因素外,在功能和性能上表现出色。 此外,对于小白短视频创作者来说,自媒体、非专业创作者通常有着明确的视频剪辑痛点,比如寻找视频素材花费时间长、需注意版权问题等。一些产品如 Invideo AI、Pictory 能发力脚本生成分镜、视频,帮助降低素材制作门槛。Gamma AI 能实现文章高效转 PPT,结合其他产品的能力可快速转化为视频内容。OpusClip 提供的长视频转短视频功能可解决同一素材在不同平台分发导致制作成本升高的痛点。
2025-02-12
没有接触过AI的小白刚来到这个网站应该从哪里学习
对于刚接触 AI 的小白,您可以从以下几个方面开始学习: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 您还可以参考《雪梅 May 的 AI 学习日记》,这适合纯 AI 小白。其学习模式是输入→模仿→自发创造。学习内容方面,由于 AI 节奏快,很多材料可能不适用,您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。而且学习时间灵活,资源免费开源。另外,像元子语从 prompt 开始自己的 AI 之旅,通过参与活动和近距离观察,发现 AI 的门槛并非高不可攀。
2025-02-11
好长时间没接触AI了,大概有三四个月没学习了,你能快速指引我吗
以下是为您提供的快速指引,帮助您重新学习 AI: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 希望以上指引对您有所帮助,祝您在 AI 学习中取得进步!
2024-12-19
非专业人如何接触了解AI并通过AI盈利
以下是为非专业人士接触了解 AI 并通过 AI 盈利的建议: 艺术创作方面: 目前许多 AI 工具存在幻觉或处理请求时间长的问题。为满足高级用户需求,预计很多公司会推出如 ChatGPT 那样的“专业版”套餐,若您试图通过内容盈利,可关注此类服务。 AI 数字人直播方面: 1. 盈利方式: 直接卖数字人工具软件,实时驱动的一年 4 6 万往上,非实时驱动的一个月 600 元,但效果差且市场价格混乱。 提供数字人运营服务,按直播间成交额抽佣。 2. 适用品类和场景: 适用于不需要强展示的商品,如品牌食品饮料;虚拟商品,如门票、优惠券等。 效果最好的是店播,数据基本能保持跟真人一样。不适用于促销场景和服装品类。 3. 壁垒和未来市场格局: 目前有技术门槛,如更真实的对口型、更低的响应延迟等。但时间拉长,技术上没壁垒。 不会一家独大,可能 4 5 家一线效果,大多二三线效果公司。 把客户服务好、能规模化扩张的公司更有价值。有资源、有业务的大平台下场可能带来降维打击。 AI 市集方面: 像“AI 切磋大会”这样的活动,为大众提供了接触和了解 AI 的机会。例如现场有非遗 AI 刮刮乐、AI 3D 打印、AI 视频转绘、AI 量化交易、AI 产品设计等贴近日常的项目。高一学生“小朱婷”基于通义千问开发“航天小飞侠”AI 助理模型并通过抽奖环节盈利;还有根据 MBTI 和星座生成专属鸡尾酒配方的 AI 调酒等新奇项目。
2024-12-17
文科生如何开始接触人工智能
对于文科生开始接触人工智能,以下是一些建议: 1. 了解基本概念: 阅读相关资料,熟悉AI的术语和基础概念,如人工智能的定义、主要分支(机器学习、深度学习、自然语言处理等)及它们之间的联系。 浏览入门文章,了解AI的历史、当前应用和未来发展趋势。 2. 开始学习之旅: 参考「」,找到为初学者设计的课程,如李宏毅老师的课程。 利用在线教育平台(如Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI领域广泛,可根据自身兴趣选择特定模块,如图像、音乐、视频等。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后进行实践,巩固知识,尝试使用各种产品创作作品。 分享实践成果。 5. 体验AI产品: 与ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的体验,激发对AI潜力的认识。 有兴趣的伙伴,可以留言互动,如有需要还能提供一份AI工具逐渐进入状态的tips文章。
2024-12-08
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21
我是一个文科生,没有接触过相关知识,该如何开始学习AGI
对于文科生且没有相关知识基础的您,开始学习 AGI 可以参考以下步骤: 1. 记忆阶段:先从以下方面开始了解,比如。 2. 理解阶段:进一步了解 AI 领域的都试一试。 您还可以参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-09-28
如何构建自己领域的微调数据集
构建自己领域的微调数据集可以参考以下步骤: 1. 确定目标领域和应用需求:明确您希望模型在哪个细分领域进行学习和优化。 2. 数据收集:广泛收集与目标领域相关的数据。例如,若要训练二次元模型,需收集二次元优质数据;若要微调 Llama3 ,可参考相关文档获取数据集。 3. 数据标注:对收集的数据进行准确标注,以便模型学习到有效的特征。 4. 数据清洗:去除无效或错误的数据,提高数据质量。 5. 特殊处理:如为数据添加特殊 tag 等。 以 Stable Diffusion 为例,可收集如 833 张宝可梦数据,并按照特定步骤进行清洗、标注和添加特殊 tag 。对于 Llama3 ,获取数据集后上传到服务器,编写并执行微调代码即可进行微调。 在微调过程中,还需注意一些问题,如大型语言模型微调可能面临训练时间长、成本高等挑战,此时可考虑参数有效调优等创新方法。
2025-02-17
ai在学习领域应用
AI 在学习领域有广泛的应用,具体如下: 对于中学生: 1. 从编程语言入手学习:可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习奠定基础。 2. 尝试使用 AI 工具和平台:例如 ChatGPT、Midjourney 等生成工具,体验其应用场景。也可以探索面向中学生的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等),以及其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考其对未来社会的影响,培养思考和判断能力。 AI 的应用场景还包括: 1. 自动驾驶:用于开发自动驾驶汽车,提高交通安全性和效率。 2. 交通管理:优化交通信号灯和交通流量,缓解交通拥堵。 3. 物流和配送:优化物流路线和配送计划,降低运输成本,包括无人机送货。 4. 教育:实现个性化学习,为每个学生提供定制化的学习体验。 5. 农业:分析农田数据,提高农作物的产量和质量。 6. 娱乐:开发虚拟现实和增强现实体验。 7. 能源:优化能源的使用,提高能源效率。 在教育领域的具体应用: 1. 个性化学习平台:如 Knewton 平台,通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。 2. 自动评估:如 Pearson 的 Intelligent Essay Assessor,利用自然语言处理技术批改作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 Google 的 AI 教育工具 AutoML,创建定制学习内容,提高学习动机和知识掌握程度。 4. 虚拟现实和增强现实:如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生安全进行实验操作并获得即时反馈。
2025-02-17
我现在在储能领域工作 ,我现在 可以用AI做什么支持我的工作和生活
在储能领域工作,您可以通过以下方式利用 AI 支持工作和生活: 工作方面: 优化储能系统的设计和运行:利用 AI 分析数据,优化设备参数模型搭建,提高储能系统的效率和稳定性。 物流和配送规划:借助 AI 优化储能设备的运输路线和配送计划,降低运输成本。 知识沉淀和体系文档优化:利用 AI 辅助整理和优化储能相关的技术手册、工艺问题分析等文档。 生产计划和排产:通过 AI 制定更合理的生产计划和排产方案。 生活方面: 教育学习:利用 AI 实现个性化学习,获取储能领域的专业知识。 创意启发:例如在艺术创作方面,像作画,可以将自己的构思与 AI 生成的创意相结合。 需要注意的是,在使用 AI 时要正确引导和合理运用,避免过度依赖。
2025-02-14
AI领域,传统机器学习,nlp,深度学习,大语言模型,rag,agent,请生成一张让普通人能看懂的AI领域概念图
以下是为您生成的 AI 领域概念图的相关解释: 人工智能(AI):一种目标,让机器展现智慧。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失。 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因为有很多层所以叫深度),神经网络可用于多种学习方式。 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-02-11
大模型擅长的领域
大模型擅长的领域包括: 1. 自然语言处理任务: Encoderonly 模型适用于分类和情感分析等任务,如 BERT。 Encoderdecoder 模型用于翻译和摘要等,如 Google 的 T5。 Decoderonly 模型擅长自然语言生成任务,如故事写作和博客生成,也是众多 AI 助手的结构。 2. 数据处理: 预训练数据量大,往往来自互联网,包括论文、代码和公开网页等,通常用 TB 级别的数据进行预训练。 参数众多,如 OpenAI 在 2020 年发布的 GPT3 就已达到 170B 的参数。 3. 具体应用场景: 文本生成和内容创作,如撰写文章、生成新闻报道、创作诗歌和故事等。 聊天机器人和虚拟助手,提供客户服务、日常任务提醒和信息咨询等。 编程和代码辅助,包括代码自动补全、bug 修复和代码解释。 翻译和跨语言通信,促进不同语言背景用户之间的沟通和信息共享。 情感分析和意见挖掘,为市场研究和产品改进提供数据支持。 教育和学习辅助,创建个性化学习材料、自动回答学生问题和提供语言学习支持。 图像和视频生成,如 DALLE 等模型根据文本描述生成相应内容。 游戏开发和互动体验,创建游戏角色对话、故事情节生成和增强玩家沉浸式体验。 医疗和健康咨询,理解和回答医疗相关问题,提供初步健康建议和医疗信息查询服务。 法律和合规咨询,帮助解读法律文件,提供合规建议。 4. 法律领域: 信息检索与整理,能迅速从大量数据中检索相关信息,提取和整理案件相关资料。 模式识别与预测,通过导入历史数据和参考信息,设定指令,预测案件可能结果,辅助制定诉讼策略。 自动化文档处理,自动生成和修改标准化文本与合同,减少律师文档起草和修订工作量。 多任务处理能力,同时处理多个任务,提高效率。
2025-02-11
最新的AI在安全领域的应用新闻
以下是最新的 AI 在安全领域的应用新闻: 1. 随着 AI 不断发展,AI 应用中的新功能带来新漏洞,现有企业和研究学者已加强对“越狱”的研究。OpenAI 提出通过“指令层次结构”来修复“忽略所有先前指令“攻击的方法,并已在 GPT40 Mini 中得到部署。Anthropic 在多重越狱方面的工作表明了“警告防御”的潜力,Gray Swan AI 的安全专家已试用“断路器”。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建了首个红队抵抗组织基准。 2. 英国创建了世界上第一个人工智能安全研究所 AISA,有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。AISA 还发布了 Inspect 框架用于 LLM 安全评估。英国宣布与美国等效机构签署谅解备忘录,并计划在美国旧金山设立办事处。英国通过其高级研究与发明机构(ARIA),花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险,还计划设立“AI 安全研究实验室”。美国能源部利用内部测试床评估人工智能对关键基础设施和能源安全带来的风险。 3. Microsoft 的 AI Security Copilot 能够在几分钟内提供可操作的建议,简化对攻击的紧急理解,揭示威胁,甚至预测攻击者最有可能的下一步行动。
2025-02-08