Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

做网络直播卖货,如何用人工智能回答客户问题

Answer

以下是关于您提出的问题的相关内容:

在网络直播卖货中使用人工智能回答客户问题,可以参考以下方面:

在其他领域中利用人工智能的经验:

  1. 零售和电子商务:
    • 产品推荐:利用人工智能分析客户数据,为客户推荐可能感兴趣的产品。
    • 搜索和个性化:改善搜索结果,提供个性化购物体验。
    • 聊天机器人:回答客户问题并解决问题。
  2. 阿里巴巴营销和产品页面优化:
    • 市场分析:借助人工智能工具研究市场趋势、消费者行为和竞争对手情况。
    • 关键词优化:分析和推荐高流量、高转化的关键词,优化产品标题和描述。
    • 产品页面设计:利用 AI 设计工具生成吸引人的页面布局。
    • 内容生成:使用 AI 文案工具撰写有说服力的产品描述和营销文案。
    • 图像识别和优化:借助 AI 技术选择或生成高质量产品图片。
    • 价格策略:分析不同价格点对销量的影响。
    • 客户反馈分析:了解客户需求,优化产品和服务。
    • 个性化推荐:根据用户购买历史和偏好提供推荐。
    • 聊天机器人:提供 24/7 客户服务。
    • 营销活动分析:了解活动效果。
    • 库存管理:预测需求,优化库存。
    • 支付和交易优化:分析支付方式对交易成功率的影响。
    • 社交媒体营销:在社交媒体上找到目标客户群体。
    • 直播和视频营销:分析观众行为,优化内容。

在客户服务方面,例如自然语言处理在客服聊天机器人中的应用,其具有适应性和自主性,能根据大量数据集训练来识别语言模式,为客户提供实时响应并生成类似人类的输出,但可能存在无意包含不准确或误导信息的风险。在医疗分诊系统中,能预测患者状况并推荐干预和治疗,但存在提供错误医疗建议导致不良后果且责任不明确的风险。

需要注意的是,在使用人工智能回答客户问题时,要确保回答的准确性和有效性,不断优化和改进人工智能的算法和模型,以提高服务质量和客户满意度。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

问:如何用 AI 完成阿里巴巴营销技巧和产品页面优化

使用AI来完成阿里巴巴营销技巧和产品页面优化,可以采取以下几个步骤:1.市场分析:利用AI分析工具来研究市场趋势、消费者行为和竞争对手情况。AI可以处理大量数据,快速识别出哪些产品受欢迎、价格区间、销量等关键信息。2.关键词优化:AI可以分析和推荐高流量、高转化的关键词,帮助卖家优化产品标题和描述,提高搜索排名和可见度。3.产品页面设计:AI设计工具可以根据市场趋势和用户偏好自动生成吸引人的产品页面布局。4.内容生成:AI文案工具可以撰写有说服力的产品描述和营销文案,提高转化率。5.图像识别和优化:AI图像识别技术可以帮助选择或生成高质量的产品图片,这些图片能够更好地吸引顾客并展示产品特点。6.价格策略:AI可以分析不同价格点对销量的影响,帮助卖家制定有竞争力的价格策略。7.客户反馈分析:AI可以分析客户评价和反馈,帮助卖家了解客户需求,优化产品和服务。8.个性化推荐:AI可以根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。9.聊天机器人:AI驱动的聊天机器人可以提供24/7的客户服务,解答疑问,提高客户满意度。10.营销活动分析:AI可以分析不同营销活动的效果,帮助卖家了解哪些活动更能吸引顾客并产生销售。11.库存管理:AI可以帮助预测需求,优化库存管理,减少积压和缺货情况。12.支付和交易优化:AI可以分析不同的支付方式对交易成功率的影响,优化支付流程。13.社交媒体营销:AI可以帮助卖家在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。14.直播和视频营销:AI可以分析观众行为,帮助卖家优化直播和视频内容,提高观众参与度和转化率。

【法律法规】《促进创新的人工智能监管方法》.pdf

and adaptive characteristics.While many aspects of the technologies described in these casestudies will be covered by existing law,they illustrate how AI-specific characteristics introducenovel risks and regulatory implications.Figure 1:Illustration of our strategy for regulating AIcharacteristics ensure any current or future AI system that meets this criteria will be within scope.See A guide to using artificialintelligence in the public sector,Government Digital Service and Office for Artificial Intelligence,2019.A pro-innovation approach to AI regulationCase study 3.1:Natural language processing in customer service chatbotsAdaptivity:Provides responses to real-time customer messages,having been trained onhuge datasets to identify statistical patterns in ordinary human speech,potentiallyincreasing personalisation over time as the system learns from each new experience.Autonomy:Generates a human-like output based on the customer's text input,to answerqueries,help customers find products and services,or send targeted updates.Operateswith little need for human oversight or intervention.Illustrative AI-related regulatory implication:Unintentional inclusion of inaccurate ormisleading information in training data,producing harmful instructions or convincinglyspreading misinformation.Case study 3.2:Automated healthcare triage systemsAdaptivity:Predicts patient conditions based on the pathology,treatment and risk factorsassociated with health conditions from the analysis of medical datasets,patient recordsand real-time health data.Autonomy:Generates information about the likely causes of a patient’s symptoms andrecommends potential interventions and treatments,either to a medical professional orstraight to a patient.Illustrative AI-related regulatory implication:Unclear liability for an AI triage systemthat provides incorrect medical advice,leading to negative health outcomes for a patientand affecting the patient's ability to obtain redress.Case study 3.3:Text-to-image generatorsAdaptivity:Uses large amounts of online content to learn how to create rich,highlyspecific images on the basis of a short text prompt.Autonomy:Based on text input,these systems generate images that mimic the qualities

Others are asking
做卖货视频,想要把其中的人物和部分物体换掉,声音也换掉,可以用哪些方法
以下是一些可以用于做卖货视频时换掉人物、部分物体和声音的方法: 1. 数字人脸创作: 可以使用一系列逼真的照片或插图人脸来创造,所有人脸都经过优化,在添加语音和动作时能实现最佳效果。 上传自己的照片,如自己、朋友或家人的面部照片进行创作。 利用 DID 自带的 Stable Diffusion 的能力生成想象中的人脸,如描述“一个外星女神”“一个微笑的十九世纪维多利亚绅士”等。 数字人像添加到人脸库后可随意重复使用,输入新脚本让其说话。 2. 数字人说话方式: 用 GPT 直接生成脚本让数字人说话。 利用 GPT3 文本生成技术撰写脚本。 先选好脸,再输入脚本。 输入准备好的脚本,在 DID 中选择数百种语言和口音,并调整角色说话风格。 上传自己的音频记录,或从电影、电视剧中剪辑喜欢的台词、吟唱自编的歌曲。 3. 相关工具和操作指引: 利用 TecCreative 工具,如数字人口播配音,输入口播文案,选择期望生成的数字人形象及目标语言即可生成数字人口播视频。 图片换脸,仅需上传原始图片和换脸图片,即可一键实现素材换脸。 视频换脸,自动识别视频中的人脸,并将其替换为选择的脸部。 音频合成数字人,上传音频文件,选择数字人角色和输出类型即可生成。 AI 配音,多语种智能配音,区分男声和女声。 AI 字幕,智能识别视频语言并生成对应字幕。 4. 实战操作: 准备视频中播放的内容文字,可利用 AI 生成。 使用剪映 App 对视频进行简单处理,如添加文字内容轨道,替换默认文本内容等。
2024-12-30
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,如今能战胜人类棋手的程序基于神经网络和强化学习。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断人的年龄无法明确编程,这正是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md
2025-02-17
人工智能时代对社会有什么冲击
人工智能时代对社会的冲击主要体现在以下几个方面: 1. 劳动力市场:预计在未来几年对劳动力市场产生重大影响,包括好的和坏的方面,但工作变化速度比多数人想象的慢,人们不必担心缺乏事情可做。 2. 能力放大:能使人类天生的创造和彼此有用的欲望得到前所未有的放大,社会将重新进入不断扩张的世界。 3. 深度学习:是一种有效的算法,计算能力和数据量越大,解决难题的能力越强,将随着规模而变得更好,对全球人民生活产生有意义的改善。 4. 个人助理:人工智能模型将很快作为自主的个人助理,代表用户执行特定任务。 5. 资源分配:获得充足的计算和能源对于实现人工智能民主化和防止不平等至关重要。 6. 风险控制:控制人工智能的风险对于最大限度地发挥其优势并确保积极的未来至关重要。 同时,在教育方面,孩子将拥有虚拟导师,能够提供个性化教学,类似概念还可应用于医疗保健改进、创建各种软件等领域,带来共享的繁荣。
2025-02-16
什么是人工智能
人工智能(Artificial Intelligence)是一门研究如何使计算机表现出智能行为的科学,例如做一些人类所擅长的事情。 最初,查尔斯·巴贝奇发明了计算机,用于按照明确的程序(即算法)进行数字运算。现代计算机虽更先进,但仍遵循受控计算理念。若知道实现目标的每一步骤及顺序,就能编写程序让计算机做事。 然而,像“根据照片判断一个人的年龄”这类任务,因无法明确大脑完成此任务的具体步骤,所以难以编写程序让计算机完成,这类任务正是人工智能感兴趣的。 人工智能分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等;AGI 能做任何人类可以做的事。 在人工智能术语方面: 机械学习是让电脑在不被编程的情况下自己学习的研究领域,是学习输入输出的映射,一般有输入 A 必然输出 B 的软件。 数据科学是分析数据集,从数据中获取结论与提示,输出结果往往是幻灯片、结论、PPT 等。 神经网络/深度学习有输入层、输出层和中间层(隐藏层)。
2025-02-16
关于音频生成的人工智能工具有哪些
以下是一些关于音频生成的人工智能工具: ElevenLabs:一家前沿人工智能公司,专注于文本转语音、语音变声器、配音、文本转音效和语音克隆,为创作者、企业和开发者提供超逼真和可定制的语音解决方案。前 5000 名注册用户可享受 2 个月的入门计划。 Hailuo Audio by Minimax:面向创作者和电影制作人的下一代音乐生成、文本转语音和语音克隆模型。 Cartesia:优质文本转语音服务,既以开发者为中心,又适合实时对话用例,专注于行业领先的延迟、逼真的声音和准确的发音。提供 1 个月的专业计划。 Sync:研究公司,致力于为动画师、开发者和视频编辑提供前沿的人工智能视频口型同步解决方案。2 个月的 Sync 创作者层级+额外生成积分。 Tunes by Freepik:使用 Freepik Tunes 让您的项目更具表现力。发现精选音乐、高质量音效和强大的音频工具,可在 Freepik Tunes 上无限制下载。 以下是一些人工智能音频初创公司: Lemonaide Music:与 DAW 集成的生成音乐工具,100%免版权费。 tuney.io:为创意媒体提供的伦理音乐 AI。 KORUS AI:AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 TRINITI:通过音乐赋予新的创作和表达方式。 voice swap:使用 AI 改变歌唱声音。 mix audio:为创造力和生产力提供 AI 音乐。 Audiogen:使用 AI 生成声音、音效、音乐、样本、氛围等。 Wavtool:带有 AI 助手并支持本地 VST 插件的网页 DAW。 Wavacity:Audacity®音频编辑器的网页版。
2025-02-16
人工智能对现在时代有什么冲击
人工智能对现在时代的冲击主要体现在以下几个方面: 1. 劳动力市场:预计在未来几年对劳动力市场产生重大影响,包括好的和坏的方面,但工作变化速度比多数人想象的慢。 2. 社会发展:使社会重新进入不断扩张的世界,人们可以再次专注于正和游戏,天生的创造和彼此有用的欲望将得到前所未有的放大。 3. 技术进步:深度学习有效,随规模扩大预期改善,能帮助解决难题,模型将作为个人助理执行特定任务,促进各领域科学进展。 4. 资源与普及:降低计算成本以普及人工智能,否则可能导致其成为有限资源,引发战争并成为富人工具。 5. 社会变革:社会和经济将发生长期巨大变革,人们会发现新的做事、互助和竞争方式。 6. 不均衡影响:AGI 将产生不均衡影响,一些行业变化小,科学进步可能更快,许多商品价格大幅下跌,奢侈品和受限资源价格上涨。 7. 公共政策:关于如何将人工智能系统融入社会的公共政策和集体意见非常重要,要权衡安全性和个人授权。 8. 社会控制:存在专制政府利用人工智能进行大规模监控从而剥夺人民自主权的风险。
2025-02-16
如果让你来给小学生设计一门人工智能视频课,12集,你会怎么设计
对于为小学生设计一门 12 集的人工智能视频课,以下是我的设计思路: 第一集:《走进神奇的 AI 世界》 介绍什么是人工智能,通过有趣的例子展示 AI 在日常生活中的应用,激发学生的兴趣。 第二集:《AI 的历史之旅》 讲述人工智能的发展历程,从早期的概念到现代的突破。 第三集:《AI 如何理解我们》 讲解 AI 是如何处理和理解人类输入的信息,如语言、图像等。 第四集:《智能机器人小伙伴》 介绍机器人如何通过 AI 技术实现各种功能和动作。 第五集:《AI 在游戏中的魔法》 展示 AI 在游戏中的应用,如游戏角色的智能行为。 第六集:《AI 与医疗保健》 讲述 AI 在医疗领域的作用,如疾病诊断、医疗影像分析等。 第七集:《AI 与交通出行》 介绍 AI 如何改善交通状况,如智能交通系统。 第八集:《AI 与教育的碰撞》 探讨 AI 在教育中的应用,如个性化学习、智能辅导。 第九集:《AI 绘画的奇妙世界》 让学生了解 AI 绘画的原理和创作过程。 第十集:《AI 音乐的旋律》 介绍 AI 在音乐创作和演奏方面的应用。 第十一集:《AI 的未来展望》 一起畅想未来 AI 可能带来的更多变化和创新。 第十二集:《我和 AI 的故事》 鼓励学生分享自己对 AI 的理解和想象,总结课程内容。 在每一集的设计中,都会采用生动有趣的动画、简单易懂的案例和互动环节,让小学生能够轻松理解和参与。
2025-02-14
直播实时语音转文字的软件
以下是一些直播实时语音转文字的软件及相关信息: Vidnoz AI:支持 23 多种语言的配音,音质高保真,支持文本转语音和语音克隆功能,提供语音参数自定义和背景音乐添加工具,并提供面向个人和企业的经济实惠的定价方案。 OpenAI 的 wishper:https://huggingface.co/openai/whisperlargev2 ,还有在 JAX 上运行的相关项目:https://huggingface.co/spaces/sanchitgandhi/whisperjax ,此项目后端支持 TPU v48,与 A100 GPU 上的 PyTorch 相比,速度快 70 多倍,是目前最快的 Whisper API。 语音识别(Automatic Speech Recognition,ASR)可以将音视频中包含的人类声音转换为文本,适用于多种场景,如会议记录、客户服务、媒体制作、市场研究及多样化的实时交互场景,包括会议、课堂录音记录、客服电话分析、字幕生成、市场研究与数据分析等,能显著提升工作效率、服务质量与人机交互体验。在实时语音模型方面,可应用于会议、直播、客服、游戏、社交聊天、人机交互等场景,为直播带货、赛事直播等提供实时字幕。
2025-02-11
假设你是经验丰富的AI工程师,现在需要搭建能够自行识别电商直播平台中客户提出的问题并给出不死板且AI痕迹弱的回答,同时直播的主播是我们虚拟的数字人,请问需要怎么做,请给出具体步骤
以下是搭建能够自行识别电商直播平台中客户提出的问题并给出自然回答,且直播主播为虚拟数字人的具体步骤: 1. 选择数字人工具软件: 考虑实时驱动和非实时驱动两类。实时驱动能在直播时更改音频话术,真人可接管,标准零售价一年 4 6 万往上;非实时驱动一个月 600 元,但效果差,类似放视频的伪直播,市场价格混乱。 2. 确定数字人运营服务模式: 按直播间成交额抽佣。 3. 明确适用品类和场景: 适用于不需要强展示的商品,如品牌食品饮料;适用于虚拟商品,如门票、优惠券等;店播效果较好,数据能保持跟真人一样;不适用于促销场景和服装品类。 4. 了解 AI 直播的壁垒和未来市场格局: 目前有技术门槛,如更真实的对口型、更低的响应延迟等,但长期看技术上无壁垒。 市场不会一家独大,可能 4 5 家一线效果公司,大多为二三线效果公司。 能把客户服务好、规模化扩张的公司更有价值,疯狂扩代理割韭菜的公司售后问题多。 有资源、有业务的大平台下场可能带来降维打击,如剪映若不仅提供数字人,还提供货品供应链、数据复盘分析等全环节服务,会对其他公司形成竞争压力。
2025-02-06
抖音直播间ai自动回复
以下是关于抖音直播间 AI 自动回复的相关知识: 在当下的 AI 产品中,大都支持自定义 AI 的回复方式。例如在 ChatGPT/GPTs 里是“Instructions”,在 Coze 里是“人设与回复逻辑”。设定“人设与回复逻辑”时,这里的写法就是 Prompt,您可以足够相信 AI 的智商,无论怎么写,它一般都能理解,但以下仅供参考,您可以自由发挥。 目标是尝试输入某个 AI 产品的网址,如:https://www.anthropic.com/news/introducingclaude ,AI 会自动处理并返回这个产品的名称、简介等信息。 测试“人设与回复逻辑”时,尝试输入网址:https://www.anthropic.com/news/introducingclaude ,也就是 Claude 的介绍信息页,AI 就会按照预先设定的格式进行返回。但由于 AI 的特性,它并不总能返回合适的结果。处理这种情况的方法有很多,比如重试、优化 Prompt 或者使用 Workflow(这个后面讲)。 另外,在【AI+知识库】商业化问答场景中,大语言模型就像一个学习过无数本书、拥有无穷智慧的人,对公共知识、学识技能、日常聊天十分擅长。提示词则是告诉这个全知全能的人,他是一个什么样的角色、要专注于哪些技能,让他能够按照您的想法,变成一个您需要的“员工”。知识库相当于给这个“聪明”员工发放的一本工作手册,例如设定使用阿里千问模型,角色是“美嘉”,知识库放的是《爱情公寓》全季的剧情,这样当您提问时,AI 就能根据设定和知识库进行回复。
2025-02-05
ai数字人直播怎么弄
以下是关于 AI 数字人直播的相关信息: 1. 盈利方式: 直接卖数字人工具软件,实时驱动的一年 4 6 万往上,非实时驱动的一个月 600 元,市场价格较混乱。 提供数字人运营服务,按直播间成交额抽佣。 2. 适用品类和场景: 适用于不需要强展示的商品,如品牌食品饮料;虚拟商品,如门票、优惠券等。 电商直播中店播效果较好,不适用于促销场景和服装品类。 3. 壁垒和未来市场格局: 长期来看技术上没壁垒,目前仍有技术门槛,如更真实的对口型、更低的响应延迟等。 不会一家独大,可能 4 5 家一线效果,大多二三线效果公司。 把客户服务好、能规模化扩张的公司更有价值。 有资源、有业务的大平台下场可能带来降维打击。 此外,目前业界对数字人的定义还不明确,一般可根据技术栈分为真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要应用于影视行业和直播带货。
2025-02-02
我想要能代替我直播的数字人工具
以下是一些能代替您直播的数字人工具相关信息: 数字人类型和应用场景: 1. 二维/三维虚拟人:用于游戏、IP 品牌(柳夜熙)、内容创作等。 2. 真人形象数字人:用于直播卖货、营销/投流广告视频录制(Heygen)、语言学习(CallAnnie)等。 数字人的价值: 1. 代替人说话,提升表达效率和营销效率,例如真人做不到 24 小时直播,但数字人可以。 2. 创造真实世界无法完成的对话或交流。 数字人面临的问题: 1. 平台限制:目前数字人水平参差不齐,平台担心直播观感,有一定打压限制。比如抖音出台一些标准,而微信视频号容忍度更低,人工检查封号。 2. 技术限制:形象只是皮囊,智能水平和未来想象空间,依赖大模型技术提升。 3. 需求限制:直播带货算个落地场景,但不刚。“懂得都懂”的刚需场景,国内搞不了。目前更多是体验新鲜感。 4. 伦理/法律限制:声音、影像版权等,比如换脸、数字永生等等。 数字人直播盈利方式: 1. 直接卖数字人工具软件。分实时驱动和非实时驱动两类,实时驱动在直播时能改音频话术,真人接管。市面价格在一年 4 6 万往上(标准零售价)。非实时一个月 600 元,效果很差,类似放视频的伪直播,市场价格混乱,靠发展代理割韭菜。 2. 提供数字人运营服务,按直播间成交额抽佣。 AI 直播卖货适用品类和场景: 1. 适用于不需要强展示的商品,如品牌食品饮料。如果服装就搞不了,过品快,衣服建模成本高。 2. 适用于虚拟商品,如门票、优惠券等。 3. 不适用于促销场景,这涉及主播话术、套路,调动直播间氛围能力等。 4. 电商直播分为达播跟店播,数字人直播跑下来效果最好的是店播,数据基本能保持跟真人一样(朋友公司数据)。 AI 直播的壁垒和未来市场格局: 1. 时间拉长,技术上没壁垒。但目前看仍有技术门槛,单纯靠开源算法拼的东西,实时性、可用性不高。比如更真实的对口型,更低的响应延迟等。 2. 不会一家独大,可能 4 5 家一线效果,大多二三线效果公司。因为它只是工具,迁移成本低。 3. 真正把客户服务好,能规模化扩张的公司更有价值。疯狂扩代理割韭菜,不考虑客户效果的公司,售后问题很麻烦。 4. 有资源、有业务的大平台下场,可能会带来降维打击,例如剪映马上要做,如果不仅提供数字人,还提供货品供应链、数据复盘分析等等,全环节打通会绑定商家,很难打。 虚拟主播的驱动方式: 目前,虚拟数字人从技术驱动方式上可以分为两类,一种是“中之人”驱动,另一种是由 AI 驱动。 “中之人”通过动作捕捉和面部捕捉技术,实现虚拟人与现实的交互。动作捕捉技术可以提供一套全身动捕硬件设备,售价约为 29000 元,另需缴纳 800 元的软件年度服务费。如果只需要捕捉面部表情,价格则约为 6000 元左右。总的来说,“中之人”是虚拟人物的“皮囊”,而“中之人”才是其真正的灵魂。 AI 驱动是通过 AI 技术实现虚拟人的创建、驱动和内容生成的综合技术,使其具备感知、表达等交互能力。AI 驱动的虚拟人能够智能地读取并解析外部输入信息,并根据解析结果做出决策,然后驱动人物模型生成相应的语音和动作,从而与用户进行互动。这种“一站式”技术让虚拟数字人具备更加自然、智能、人性化的交互能力。
2025-01-31
2025年AI新年春晚在哪儿直播?几点直播?从哪个平台上可以看得到?微信视频号?抖音?B站还是什么渠道可以看得到?
2025 年 AI 春晚的相关信息如下: 直播视频名称:共创贺新春,AI 中国年,第二届 AI 春晚! 60 字内容简介:30 多个共创 AI 节目,来自 1000 多位共创者 3 个月的辛勤筹备。2025 年 1 月 29 日(大年初一)晚上 6:00 准点开播。 正式开放配置时间:1 月 29 日晚上 5:45 正式直播时间:1 月 29 日晚上 6:00 关于转播: 有转播经验的:能直接接受 https,rtmp 信号源的可以直接用拉流地址。 第一次转播的小伙伴:如果直播平台不能直接接入信号源,请先下载一个 OBS:https://obsproject.com/zhcn/download 。配置教程已置顶主流直播平台推流地址获取方式可以参考这篇文章后半段:https://zhuanlan.zhihu.com/p/653204958?utm_id=0 。 直播技术问题咨询: AI 春晚是由 WaytoAGI 社区组织的一场由 AI 技术驱动的晚会,首届 AI 春晚的完整视频可在 B 站上观看。首届 AI 春晚于 24 年大年初一当晚直播,18 万人在线观看,后续视频播放量超过 200 万,媒体曝光量超过 500 万,被誉为 AI 视频寺庙时代的一部现象级作品。 更多详细信息可参考 WaytoAGI 的官方网站。 完整版:https://www.bilibili.com/video/BV15v421k7PY/?spm_id_from=333.999.0.0 。 相关进度:
2025-01-24
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
ai的研究是否可以分为神经网络与知识图谱两个大的分类?
AI 的研究可以分为多个不同的分类,并非仅仅局限于神经网络与知识图谱这两个大的分类。 在常见的分类中: 非监督学习:最著名的是聚类,只需提供大量数据,让 AI 自行找出有趣信息。 迁移学习:在任务 A 中学习的内容可用于帮助完成任务 B,在计算机视觉领域有较多应用。 强化学习:根据输出好坏给予奖励或惩罚,利用“奖励信号”让 AI 自动学习最大化奖励,但需要大量数据。 生成对抗网络:由生成器和判别器构成,两者不断训练和竞争,提高生成真实数据的能力,广泛应用于多种领域。 此外,从技术和应用的角度来看: 知识图谱:在搜索等场景中展示关键信息,如人物相关信息、酒店信息等。 在企业中建构人工智能方面,NLG 可作为全新场景讨论,生成内容分为根据任务要求生成标准结果和根据信息进行内容创作两类,分别偏向 B 端和 C 端。NLP 能做的事情较标准化,LLM 的出现对其有提升和冲击。知识图谱领域本身有多种技术路径,与 LLM 可能是互补关系。 对于希望精进的学习者,还需要了解 AI 的背景知识,包括基础理论、历史发展、数学基础(统计学、线性代数、概率论),掌握算法和模型(监督学习、无监督学习、强化学习),学会评估和调优(性能评估、模型调优),以及神经网络基础(网络结构、激活函数)等。
2025-02-12
什么是深度神经网络
深度神经网络是机器学习文献中的一类模型,受到生物神经网络的启发。一般来说,深度神经网络可分为以下几类: 1. 前馈神经网络:这是实际应用中最常见的类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数。 2. 循环网络:在其连接图中有定向循环,可能具有复杂动态,训练较难,但更具生物真实性。 深度神经网络具有以下特点和应用: 1. 可以计算一系列改变样本相似性的变换,几乎能应用于任何从输入到输出空间复杂映射的机器学习问题。 2. 能够用于模拟大脑工作方式、了解并行计算风格以及解决实际问题。 在其发展过程中,如感知机的出现推动了机器学习的问世,展示了其对简单形状分类的学习能力。神经网络本质上是多层感知机,早期只有输出层,而典型应用如分辨手写数字。 同时,在深度神经网络的研究中,还涉及到如深度玻尔兹曼机、受限玻尔兹曼机、深度信念网络等相关内容。但使用反向传播等方法存在需要有标签的训练数据、学习时间不理想、可能陷入局部最小等问题。
2025-02-03
网络上有关于AI知识的授课,请问标价一般在多少范围内合适
网络上关于 AI 知识的授课,比如“野菩萨”的课程,其内容丰富多样,包括: 预习周课程:涵盖 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:包含 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 该课程标价情况如下: 冠军奖励:4980 课程一份。 亚军奖励:3980 课程一份。 季军奖励:1980 课程一份。 入围奖励:598 野神殿门票一张。 同时,如果想要免费获得这门课程,可以参与 video battle,每期的评委野菩萨老师都非常严格,需要寓意深度审美并存。您可以扫码添加菩萨老师助理,了解更多课程信息。
2025-01-31
如何学习对抗神经网络
以下是关于学习对抗神经网络的相关内容: 图像生成方面:Google 有一个 AI 入门课程,介绍扩散模型,课程地址为 https://www.cloudskillsboost.google/course_templates/541,相关视频学习可参考 https://youtu.be/J0AuVBxzui0 。扩散模型是 Google Cloud 上许多先进图像生成模型和工具的基础,课程会介绍其背后理论及在 Vertex AI 上的训练和部署。图像生成领域有多种方法,如变分自动编码器将图像编码为压缩形式再解码回原始大小;生成对抗模型(GAN)让两个神经网络相互对抗,一个生成图像,一个鉴别真伪;自回归模型将图像视为一系列像素来生成。 主要人工智能技术概览:生成对抗网络是一种深度学习模型,由生成器和判别器构成。生成器生成虚拟数据,判别器判断数据真假,二者不断训练竞争以提高生成器生成真实数据的能力,广泛应用于图像、声音、文本等领域。 进化史:生成对抗网络(GAN)是深度学习领域的重要里程碑,诞生于 2014 年,可帮助神经网络用更少数据学习,生成更多合成图像,用于识别和创建更好的神经网络。GAN 由两个神经网络玩猫捉老鼠的游戏,一个创造假图像,一个判断真假。它有助于创建图像和现实世界的软件模拟。
2025-01-26