Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

学习agi从哪里开始

Answer

学习 AGI 可以从以下几个方面开始:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。

完整的学习路径建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。学习过程中账户投资,可先从国内模型工具入手,国内大语言模型工具好用,学习可以从提示词开始。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

记住,学习AI是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的AI知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

01-通往AGI之路知识库使用指南

[heading2]智能章节本章节提到若想深入学习内容可查看官方cookbook,还有创作者将内容做成可视化形式,后续会发到群里。另外整理了open AI的发展时间线、万字长文回顾等历史脉络内容,入门经典必读和面向开发者的文章值得阅读,欢迎上传相关PPT用作参考。[55:39](https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=3339000)学习过程中账户投资,可先从国内模型工具入手本章节AJ提出某些内容直接拿去可能有问题,提到了于一同学,并表示要更新过学习过程中账户投资金额相关内容。还指出学习可以先从国内模型工具入手,不花钱,若想进阶再考虑高阶方向,若想深入学习美学概念和操作可报野菩萨课程,那是AJ的启蒙老师。[56:40](https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=3400000)国内大语言模型工具好用,学习从提示词开始本章节主要提到若想深入使用某些工具可能需支出费用,但国内新工具已好用。接着要跟大家讲解prompt怎么写,会收录经典结构,强调与模型对话时要把话说清。还提及可从温达、李弘毅老师课程等学习入门,但与大语言模型相关建议从提示词开始。[58:08](https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=3488000)提示词在与各类模型对话中的重要性及结构化提示词的优势

Others are asking
我是新手,通往AGI之路,如何开始学习
对于新手学习 AI,建议您参考以下布鲁姆分类法学习路径: 1. 记忆方面:先从了解 AI 的历史(https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tbl1tOC3ZKbrcHVn&view=vewTtypUZc )、基本术语(https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tbltvr7KExCt7Jpw&view=vewjxk9tDu )、重要人物(https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tblLtN12KuvP5reO&view=vewuvGBXhd )、方法和原理(https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tblolGx2mprs1EQz&view=vewx5ROYtl )等开始,看看入门课程(https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w )。 2. 应用方面:深入了解 Prompt(https://ywh1bkansf.feishu.cn/wiki/Q5mXww4rriujFFkFQOzc8uIsnah?table=tbldSgFt2xNUDNAz&view=vewo2g2ktO ),选择适合自己的 AI 对话(https://ywh1bkansf.feishu.cn/wiki/QddLw0teKi7nUCkDRIecskn3nuc )、绘画(https://ywh1bkansf.feishu.cn/wiki/Q5ddwxfkMiVUZBkQXN7cgXf4nOb )和语音(https://ywh1bkansf.feishu.cn/wiki/ZXPiw2OuLi2YsxkkmaLcPTyInrc )产品,每天使用它们来解决实际问题或提升效率(https://waytoagi.feishu.cn/wiki/A0Y0wpBOcig7HLkSFNcceTA6nwb )。 3. 分析方面:大量阅读各类文章(https://ywh1bkansf.feishu.cn/wiki/YjJgwbKnriZBZ0kVn6Kc1gSKnsf?table=tblsQKR3a22uFqsp )、视频(https://ywh1bkansf.feishu.cn/wiki/LEnvwwEy0iufT3k4kfVc8Ehenvf?table=tbllpoPWJn6MNOR6&view=vew68BlUHo )以及行业报告(https://ywh1bkansf.feishu.cn/wiki/FnXcwGrwSimQxnkNo1kcJzPYn7f ),理解各知识之间的关系。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」知识库首页(https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e )的布鲁姆分类法,设计自己的学习路径。
2025-01-11
AI和AGI有什么区别
AI(人工智能)和 AGI(通用人工智能)主要有以下区别: 1. 任务范围: AI 通常是针对特定任务或范围较小的任务来设计和训练的,例如智能音箱、网站搜索、自动驾驶等。 AGI 则具有能够完成任何人类可以完成的智力任务的能力,适用于不同的领域。 2. 认知能力: AI 不具备像人类一样的认知能力,无法超出为其设定的小范围领域来解决一般问题。 AGI 拥有人类水平的智能和理解能力,同时可能拥有某种形式的意识或自我意识。 3. 应用实例: 弱人工智能的例子包括 Siri 或 Alexa 等虚拟助手,流媒体服务所使用的推荐算法,以及为特定客服任务所设计的对话机器人。 目前还没有任何 AGI 系统的实际应用案例,它仍是人工智能研究的长期目标。 4. 发展阶段: AI 中的 ANI(弱人工智能)已经得到了巨大发展。 AGI 还没有取得巨大进展,目前仍处于理论概念阶段。
2025-01-10
通往Agi之路
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能学习的中文知识库和社区平台。 社区简介:为学习者提供系统全面的 AI 学习路径,涵盖基础概念到实际应用,由开发者、学者和 AI 爱好者共同建设,提供丰富学习资源,包括文章、教程、工具推荐及最新行业资讯,还定期组织活动,如视频挑战赛、模型创作大赛等,鼓励实践学习、促进交流合作。对 AI 学习感兴趣的加入是不错选择,可获取知识、参与活动、共同成长。 品牌 VI:融合独特设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性,共同构建充满活力和前瞻性的品牌形象。颜色选择彩虹色代表多样性、包容性和创新;图案标志性是鹿,与“路”谐音,象征通往 AGI 未来的道路,其形象优雅智慧;字体选择简洁现代的非衬线字体,强调信息传达的清晰直接。 知识库特色:是由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库,以“无弯路,全速前进”为目标,助力怀揣 AI 梦想的人疾速前行。不仅是知识库,也是连接学习者、实践者和创新者的社区,大家在此碰撞思想、相互鼓舞、一同成长。通过举办活动和分享,获得奖项和媒体报道,期待为大家带来更多更好内容。 角色设计:因 AI 发展产生各式各样学习交流社区,进行第一期小鹿形象设计,根据每个社区特点设计角色,以可爱形象消解对 AI 的陌生感和恐惧感,更好学习 AI 融入社区。第一期共计 10 个角色,每个都有自己的性格、喜好和故事。
2025-01-10
什么是AGI?
AGI 即通用人工智能(Artificial General Intelligence),是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,尚未有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级,分别为: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 在 AI 的分类中,与 AGI 相对的是 ANI(Artificial Narrow Intelligence,弱人工智能),弱人工智能只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。
2025-01-10
请问什么是AGI
AGI 即通用人工智能(Artificial General Intelligence),是指具有人类水平的智能和理解能力的 AI 系统。 它有以下特点和相关内容: 与弱人工智能不同,强人工智能能够完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前还只是一个理论概念,还没有任何 AI 系统能达到这种通用智能水平。 阿兰·图灵提出了图灵测试,将某一计算机系统和真人进行比较,若人类评审员在文本对话中无法区分真人和计算机系统,那么这个计算机系统就会被认为是“智能”的,该测试目前也被用作“智能”的定义。 例如 OpenAI 有关于实现 AGI 的计划,如原计划在 2026 年发布的 GPT7 因埃隆·马斯克的诉讼而被暂停,计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。 更多信息请见 。
2025-01-10
AGI是什么意思
AGI 即 artificial general intelligence,意为通用人工智能。它指的是能够做任何人类可以做的事的人工智能。 在 AI 领域,AI 分为 ANI 和 AGI,ANI(artificial narrow intelligence,弱人工智能)只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等,而 AGI 则涵盖了广泛的认知技能和能力,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等。 在 1990 年代末至 2000 年代,越来越多的人呼吁开发更普适的 AI 系统,名词“通用人工智能”(AGI)在 2000 年代初流行起来,以强调从“狭义 AI”到更广泛的智能概念的追求。我们使用 AGI 来指代符合 1994 年定义所捕捉到的智能广泛能力的系统,且包括了这些能力在或超过人类水平的附加要求。然而,目前并没有一个被广泛接受的 AGI 定义。
2025-01-10
我说我现在对ai不大很明白,你想系统的学习一下ai应用,我印在从哪里开始学
如果您想系统学习 AI 应用,可以从以下几个方面入手: 一、基础概念和知识 1. 了解 AI 背景知识,包括人工智能、机器学习、深度学习的定义及其之间的关系。 2. 回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 掌握统计学基础,熟悉均值、中位数、方差等统计概念。 2. 了解线性代数基本概念,如向量、矩阵。 3. 学习基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 学习监督学习,了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 熟悉无监督学习,如聚类、降维等算法。 3. 了解强化学习的基本概念。 四、评估和调优 1. 学会如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 掌握模型调优的方法,如使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习途径和实践 1. 阅读「」部分,熟悉 AI 的术语和基础概念。 2. 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习。 3. 选择感兴趣的模块深入学习,比如图像、音乐、视频等。掌握提示词的技巧,上手容易且很有用。 4. 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 七、中学生学习 AI 的特别建议 1. 从编程语言入手,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 ChatGPT、Midjourney 等 AI 生成工具,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,了解其基本概念、发展历程、主要技术及在各领域的应用案例。 4. 参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 5. 关注 AI 领域的权威媒体和学者,了解最新进展,思考其对未来社会的影响。 总之,系统学习 AI 应用需要逐步积累知识、多实践,并根据自己的兴趣和需求选择合适的学习方向和方法。
2025-01-12
普通人如何学习利用ai,提高工作学习效率,怎么学习及学习顺序是怎样的
以下是为普通人提供的学习利用 AI 以提高工作学习效率的方法及学习顺序: 一、了解 AI 基本概念 首先,建议阅读相关资料,如「」部分,熟悉 AI 的术语和基础概念,包括人工智能是什么、其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的一系列课程。特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。可根据自身兴趣选择特定模块深入,比如一定要掌握提示词的技巧,其上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。尝试使用各种产品做出自己的作品,在知识库中也有很多大家实践后的作品和文章分享,欢迎自己实践后也进行分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。通过对话获得对 AI 在实际应用中表现的第一手体验,激发对 AI 潜力的认识。 此外,还可以参考《雪梅 May 的 AI 学习日记》中的学习模式,即输入→模仿→自发创造。同时注意,学习资源大多是免费开源的,可在 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。学习时间可根据自身情况灵活安排,不必有压力,能学多少算多少。
2025-01-12
AI学习
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-11
推荐一些AI学习知识库
以下是为您推荐的一些 AI 学习知识库: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅:在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可根据兴趣选择特定模块深入学习,同时掌握提示词技巧。 4. 实践和尝试:理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。知识库中有很多实践后的作品、文章分享,欢迎您实践后分享。 5. 体验 AI 产品:与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)互动,了解其工作原理和交互方式。 书籍推荐: 1. Python 方面:《Python 学习手册》《Python 编程》。 2. AI 方面:《人类简史》(“认知革命”相关章节)、《深度学习实战》。 课程&资源&信息推荐: 1. B 站 up 主“PAPAYA 电脑教室”的 Python 入门课,完全免费。 2. Andrej Karpathy 关于大模型的讲解,油管地址:https://www.youtube.com/watch?v=zjkBMFhNj_g ,B 站地址:https://www.bilibili.com/video/BV1AU421o7ob 。 3. AJ 和众多小伙伴们共创的资料库(一个飞书文档):🌈通往 AGI 之路(一个飞书文档),这是当下最全的中文 AI 资料库,免费、开源、共创,包含几乎所有有价值的文档、文章、资料、资讯,并永远第一时间更新,链接:https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e 。
2025-01-11
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-11