Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何零基础学习ai

Answer

以下是零基础学习 AI 的建议:

  1. 了解 AI 基本概念:
    • 建议阅读「从这里启程」部分,熟悉 AI 的术语和基础概念。了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。
    • 在知识库有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。

对于中学生学习 AI,建议如下:

  1. 从编程语言入手学习:
    • 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。
  2. 尝试使用 AI 工具和平台:
    • 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。
    • 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
  3. 学习 AI 基础知识:
    • 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。
    • 学习 AI 在教育、医疗、金融等领域的应用案例。
  4. 参与 AI 相关的实践项目:
    • 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。
    • 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。
  5. 关注 AI 发展的前沿动态:
    • 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。
    • 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。

总之,无论是零基础还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

二师兄的AI启蒙之路(2024年)

我叫二师兄,来自上海,典型的80后,房地产行业从业二十年,计算机零基础。兴趣爱好:悠悠球、数码产品、游戏、音乐、手办、乐高、汽车2024年[heading1]一月[content]4070TiSuper发售,我买了显卡配了4K160显示器,备战2024年8月发售的国产3A大作黑悟空和2025年发售的GTA6[heading1]二月[content]过年后,在七彩虹的售后群,有个老哥在分享用AI绘画的心得,问他要了SD秋叶安装包,下载了教学视频,自此迈出AI学习的第一步[heading1]三月[content]啃完SD的所有教程,秉着不浪费显卡资源的原则开始炼丹,人脸、画风、风景、景观、建筑的丹练了一些,不过因为图片数据集的质量一般,且很多是公司里的项目案例图片,所有lora仅供自嗨[heading1]四月[content]与小伙伴探讨AI变现的途径,尝试用GPT和SD制作图文故事绘本、小说推文的项目,因组员各自忙于事业而不了了之。但过程中练了一些绘本风格的丹。[heading1]五月[content]因公司岗位可能有调动,提前把电脑运到武汉的家里,但最终工作地点仍在昆明,开启了长达五个月无硬件支持的AI学习之路。有幸加入到Prompt battle社群,开始了Midjourney的学习,这一阶段打磨了另一种形式的文生图提示词学习。

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

Others are asking
ai编程
以下是关于 AI 编程的相关内容: 1. 借助 AI 学习编程的关键:打通学习与反馈循环。从“Hello World”起点开始,验证环境、建立信心、理解基本概念,形成“理解→实践→问题解决→加深理解”的学习循环。学习建议包括使用流行语言和框架(如 React、Next.js、TailwindCSS),先运行再优化,小步迭代,一次解决一个小功能,借助 AI 生成代码后请求注释或解释以帮助理解代码,遇到问题时采取复现、精确描述、回滚的步骤。同时要明确,AI 是强大的工具,但仍需人工主导,掌握每次可运行的小成果才能实现持续提升。原文链接: 2. 麦橘 0 基础跨界 AI 编程共学活动:麦橘是哲学专业模型师,此次跨界教学。活动从上星期开始策划未预告。麦橘展示用 AI 做小游戏,认为机制对简单小游戏很重要,还分享了自己尝试做 horror game 等的想法。使用 Poe 制作小游戏,因其性价比高且多种模型可用,支持写代码后的预览,还能教大家分享游戏。以小鸟过管道游戏为例,不懂代码也能让 AI 做游戏,通过告诉 AI 想要的效果让其调整,如降低难度等,最终做出游戏再搭排行榜成为洗脑小游戏。麦橘还介绍了增量游戏、肉鸽游戏的制作以及与 AI 交互的情况。 3. 软件 2.0 编程:在可以低成本反复评估、并且算法难以显式设计的领域,软件 2.0 日益流行。考虑整个开发生态以及如何适配这种新的编程范式时,会有很多令人兴奋的机会。长远来看,这种编程范式拥有光明的未来,因为当开发通用人工智能(AGI)时,很可能会使用软件 2.0。
2025-01-09
研究生做科研写论文有没有好的AI工具推荐
以下是一些适合研究生做科研写论文的 AI 工具推荐: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,如果是医学课题需要 AI 给出修改意见,可以考虑使用: 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 2. Scholarcy:能从文档提取结构化数据,生成文章概要,包含关键概念等板块内容。 3. ChatGPT:强大的自然语言处理模型,可提供修改意见和帮助。 对于 AI 文章排版工具,论文排版方面: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. Latex:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-09
什么是AI
AI 是一门令人兴奋的科学,它是指某种模仿人类思维,可以理解自然语言并输出自然语言的东西。 对于没有理工科背景的人来说,可以将其当成一个黑箱。AI 技术无论如何发展,其生态位仍是一种似人而非人的存在。 从历史角度看,最初计算机由查尔斯·巴贝奇发明,用于按照明确的程序进行数字运算,现代计算机虽更先进但仍遵循相同理念。而对于像根据照片判断人的年龄这类无法明确编程的任务,正是 AI 所感兴趣的。 在应用方面,AI 健身是利用 AI 技术辅助或改善健身训练和健康管理的方法,能根据用户情况提供定制化训练计划和建议。例如 Keep、Fiture、Fitness AI、Planfit 等都是不错的 AI 健身工具。
2025-01-09
最好用的聊天AI是哪个
目前,在聊天 AI 领域,Open AI 的 ChatGPT 遥遥领先,占 AI 聊天机器人类别总访问量的 76.31%。角色 AI 以 19.86%的访问量位居第二。其他竞争者如 Google 的 Bard、Janitor AI、Perplexity AI、You.com、Crushon AI 和 Personal AI 各自产生的访问量不到总访问量的 2%,但 Bard 正在成长,直到 2023 年 3 月才推出。 在写作方面,最佳免费选项有 Bing(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx)和 Claude 2(https://claude.ai/),付费选项有带有插件的 ChatGPT 4.0/ChatGPT。目前,GPT4 仍然是功能最强的人工智能写作工具,可在 Bing(选择“创新模式”)上免费访问,或通过购买 ChatGPT 的$20/月订阅来访问。Claude 紧随其后,也提供有限的免费选项。 ChatGPT 基于 OpenAI 最先进的语言模型 gpt3.5turbo。使用 OpenAI 的 API,可使用 gpt3.5turbo 构建自己的应用来起草邮件、写 Python 代码、回答关于一组文档的问题、创建会话代理、给软件提供自然语言接口、辅导各种学科、语言翻译、假扮成游戏或其他内容的角色等。您也可以体验新的 OpenAI 在线编辑器的聊天格式(https://platform.openai.com/playground?mode=chat)。
2025-01-09
给我提供一下国内AI大模型链接
以下是为您提供的国内AI大模型链接: 阿里: 智谱AI: 科大讯飞: 百度: 抖音: 中科院: 百川智能: 商汤: MiniMax: 上海人工智能实验室:
2025-01-09
如何使用AI
使用 AI 可以通过以下方式实现不同的任务: 在阿里巴巴营销技巧和产品页面优化方面: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以获取关键信息。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好生成吸引人的产品页面布局。 4. 内容生成:依靠 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:利用 AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 6. 价格策略:通过 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:运用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户购买历史和偏好提供个性化产品推荐,增加销售额。 9. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 客户服务,解答疑问,提高满意度。 10. 营销活动分析:依靠 AI 分析不同营销活动效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:利用 AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:通过 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,进行精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 在 Python 安装灵码 AI 编程助手方面: 1. 安装 Python 运行环境:参考。 2. 点击左上角的 FileSettingsPluginsMarketplace 进行安装。 3. 安装完成插件会提示登录,按要求注册登录即可。使用上和 Fitten 差不多。 在利用 AI 写课题方面: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:借助 AI 工具撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2025-01-09
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习,同时掌握提示词的技巧。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。知识库中有很多实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 6. 持续学习和跟进: AI 发展迅速,新成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其适合纯 AI 小白,学习模式为输入→模仿→自发创造。但其中的学习内容可能因 AI 发展而变化,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。该日记中的学习资源免费开源,且学习时间灵活,不必有压力,能学多少算多少。
2025-01-09
请问如何学习MJ
以下是关于学习 Midjourney 的相关内容: 1. Midjourney 今天发布了模型个性化 Personalization 或'p'的早期测试版本。其工作原理是:每次写提示时,很多信息是“隐含的”,MJ 的算法通常会用社区的综合偏好填补空白,而模型个性化会学习您的喜好来填补空白。使用模型个性化的要求包括:目前从成对排名中的投票和喜欢的探索页面上的图像中学习,需要大约 200 个成对排名/喜欢才能生效,可在排名页面查看评分数量或在 Discord 上输入/info。使用方法为:在提示后输入p,或使用提示栏中的设置按钮为所有提示启用个性化功能,启用时会在提示后添加一个“代码”,可分享此代码让他人使用应用于该图像的个性化效果,还可以使用s 100 控制个性化效果的强度(0 为关闭,1000 为最大,100 为默认)。但需注意个性化目前不是稳定功能,会随更多成对排名而变化,且可能会推出算法更新。 2. 训练 Midjourney 的 prompt 流程:可以复制每一步,按照步骤跟 GPT 聊下去。原理是把 MJ 的官网说明书喂给 GPT,让它根据说明了解机制和结构,给出适合的提示词。 3. MJ 很长一段时间内依赖 discord 进行操作,可简单理解为一个微信群/钉钉群,群里有机器人,@它并给一段文字,它就会出图片。也可自己创建群组(服务器),把机器人拉进来对话创作。开始创作时@机器人,MJ 会返回 4 宫格图片。想要放大一张图,点击上面的 U 1——4,MJ 会发大图回来。或者看看其他风格,点击上面的 v 14,MJ 会返回新的 4 宫格。简单来说,步骤包括告诉 MJ 要什么,MJ 给 4 个不同风格小图,放大或再看其他风格,在这些图片基础继续处理。初学可能会有一些想法,比如第一次出图感觉不错,但再改可能难,此时设计师技能上线。以前除了氪金多练习没好办法,现在可以去离谱村进修。
2025-01-09
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-09
如何学习提示词
学习提示词可以通过以下步骤和方法: 1. 基础概念学习: 了解相关模型(如 Stable Diffusion)的工作原理和架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方资料: 通读官方文档,获取提示词相关指南。 学习开发团队和专家的教程与技巧分享。 3. 学习常见术语和范例: 熟悉相关领域(如 UI、艺术、摄影)的专业术语和概念。 研究优秀的图像标题和描述作为范例。 4. 掌握关键技巧: 学会组合多个词条精确描述想要的效果。 掌握使用特定符号(如“()”、“”)控制生成权重。 学会处理抽象概念、情感等无形事物的描述。 5. 实践与反馈: 用不同提示词生成各种风格和主题的图像。 对比结果与提示词,分析原因并总结经验。 在社区分享,请教高手获取反馈建议。 6. 创建提示词库: 按主题、风格等维度建立自己的词库。 记录成功案例方便后续参考复用。 7. 持续跟进前沿: 关注模型的最新更新和社区分享。 掌握提示词的新技术、新范式和新趋势。 此外,还需注意: 1. 理解提示词的作用:向模型提供上下文和指示,其质量直接影响输出质量。 2. 学习构建技巧:明确任务目标,用简洁准确语言描述,提供足够背景信息和示例,使用清晰指令,明确特殊要求。 3. 参考优秀案例:在领域社区、Github 等资源中学习。 4. 实践、迭代、优化:多与模型互动,尝试变体并优化。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等。 6. 跟上前沿研究:持续关注最新成果和方法论。 总之,要了解模型特性,具备清晰表述需求的能力,通过多实践、多学习、多总结来掌握提示词的运用。
2025-01-09
我想学习COZE平台创建智能体的详细教程。
以下是在 COZE 平台创建智能体的详细教程: 1. 基础智能体创建: 进入 coze 官网(www.coze.cn),注册并登录。 点击页面左上角的⊕。 通过【标准创建】填入 bot 的基本信息。 2. Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定 Bot 的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置:插件可扩展 Bot 的专业能力,如计算器、日历等工具;工作流可设置固定的处理流程和业务逻辑;图像流可处理和生成图像相关功能;触发器可设置自动化响应条件。 知识库管理:文本可存储文字类知识材料;表格可用于结构化数据的存储和调用;照片可作为图像素材库。 记忆系统:变量可存储对话过程中的临时信息;数据库可管理持久化的结构化数据;长期记忆可保存重要的历史对话信息;文件盒子可管理各类文档资料。 交互优化(底部区域):可设置开场白、用户问题建议、快捷指令、背景图片等。 预览与调试(右侧区域):实时测试 Bot 的各项功能,调试响应效果,优化交互体验。 3. 图像流相关: 打开 Coze 官网(https://www.coze.cn/home)。 创建图像工作流,图像流分为智能生成、智能编辑、基础编辑三类。 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 按照构架配置工作流,调试工作流效果,可使用毛坯房测试用例(https://tgi1.jia.com/129/589/29589741.jpg)。 开始节点对应配置三项内容,进行提示词优化。 人设和回复逻辑:技能 1 中 3 项中的编译数字来源,然后点击右上角发布。
2025-01-08
怎么学习COZE平台的操作?要全面详细
以下是全面学习 COZE 平台操作的方法: 1. 前置条件:起码已经使用过 Coze,并亲自搭建过一些简单的工作流。 2. 重点学习资源: 官方案例非常值得学习,不要错过优质资源。 观看 90 分钟的视频教程,文档教程为辅。例如“【90 分钟视频教程】全网最详细的 Coze AI 应用教学”中的案例演示,如 Coze 的创意写真馆应用:https://www.coze.cn/template/project/7442139374751629323? 以及 。 3. 操作步骤: 对于不了解 Coze 操作的情况,可以按照以下步骤完成 Agent 最后的测试与封装: 试运行整个工作流,验证整体运行效果,包括响应速度、生成质量。点击「试运行」,把待精读文章输入「开始节点」的{{BOT_USER_INPUT}},观察流程在 1 分钟内是否运行完成,最终输出的“回答内容”是否符合预期。 迭代优化工作流,提升性能。此步骤可自行按照配置思路进行细致优化。 在外层 bot 中封装工作流。 进行外层 bot 调试。 完成以上步骤后,即可发布 bot 。
2025-01-08
零基础如何学AI
对于零基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还有一些个人的学习经历供您参考: 二师兄来自上海,计算机零基础。2024 年 2 月在售后群接触到 AI 绘画,下载安装包和教学视频,迈出学习第一步。3 月啃完相关教程并开始炼丹。4 月与小伙伴探讨 AI 变现途径,5 月因工作变动在无硬件支持下继续学习。 参加「AI 编程共学」活动,包括 10 月 28 日麦橘的 0 基础做小游戏分享、10 月 29 日梦飞的 0 编程基础入门 Cursor 极简使用指南、10 月 30 日银海的 0 基础学做 AI 拍立得、10 月 31 日的 0 基础做小游戏分享等。
2025-01-08
推荐一些适合零基础的小学生、初中生学习的实用的Ai课程
以下是为零基础的小学生、初中生推荐的实用 AI 课程: 1. 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 在「」中,有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 野菩萨的 AIGC 资深课也是不错的选择,这门课程由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程。课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。ChatGPT 体系课程有 ChatGPT 基础、核心 文风、格式、思维模型等内容。ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。应对 SORA 的视听语言课程涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 4. 如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。冠军奖励:4980 课程一份;亚军奖励:3980 课程一份;季军奖励:1980 课程一份;入围奖励:598 野神殿门票一张。 在学习过程中,您可以根据自己的兴趣选择特定的模块深入学习,一定要掌握提示词的技巧,它上手容易且很有用。理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。同时,与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-01-08
0基础如何学习AI,并找到合适的工作
对于 0 基础学习 AI 并找到合适工作,以下是一些建议: 1. 基础知识学习: 了解 AI 的基本概念,包括人工智能、机器学习(监督学习、无监督学习、强化学习)、深度学习、生成式 AI 等。 学习相关技术名词的含义和关系,例如神经网络、神经元、大语言模型等。 2. 学习资源: 可以通过通俗易懂的视频来学习,比如了解什么是 AI 大模型及其原理。 3. 技术原理: 掌握 Transformer 模型,它基于自注意力机制处理序列数据,比传统的循环神经网络或卷积神经网络更适合处理文本的长距离依赖性。 4. 实践与项目: 从简单的项目入手,如使用 Scratch 项目进行编程练习。 逐渐参与更复杂的实践项目,积累经验。 5. 就业准备: 根据目标工作的要求,有针对性地提升技能。 制作优秀的简历和项目作品集,展示自己的能力和成果。 需要注意的是,学习 AI 需要时间和努力,并且要不断跟进领域的最新发展。
2025-01-07
小白如何0基础学Ai
对于 0 基础学习 AI 的小白,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后进行分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 岗位技能要求: 对于“AI 提示词工程师”岗位,需要具备市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象出来集成为一个互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发等综合能力。 7. 学习资源: 对于 0 基础小白,可在网上找教程,推荐看科普类教程,阅读 OpenAI 的文档,理解每个参数的作用和设计原理。 推荐一些练手的 Prompt 工具和相关教程文档。 8. 学习模式和注意事项: 可以参考《雪梅 May 的 AI 学习日记》,采用输入→模仿→自发创造的学习模式。 注意学习内容可能因 AI 发展迅速而过时,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 学习时间可灵活安排,学习资源大多免费开源。
2025-01-06
没有编程基础可以学习ai吗
没有编程基础也可以学习 AI,但会面临一定的挑战。以下是一些建议: 1. 学习基础知识: 数学基础:包括线性代数、概率论、优化理论等。 了解 AI 的基本概念、发展历程、主要技术分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 选择学习路径: 偏向技术研究方向:学习监督学习、无监督学习、强化学习等机器学习基础,以及神经网络、卷积网络、递归网络、注意力机制等深度学习知识。 偏向应用方向:掌握 Python、C++等编程基础,学习监督学习、无监督学习等机器学习基础,熟悉 TensorFlow、PyTorch 等深度学习框架。 3. 工具和平台: 可以从 Python、JavaScript 等编程语言开始学习。 尝试使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向初学者的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 4. 学习方式: 阅读入门文章和相关书籍。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习。 特别推荐李宏毅老师的课程。 5. 实践和尝试: 掌握提示词的技巧,上手容易且很有用。 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 需要注意的是,无论是技术研究还是应用实践,数学基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-04
我想要做一个ai工具,针对电子元器件行业,我来提供专业术语翻译的知识库和固定描述语句翻译方法,希望上传中文PDF后,可以下载一个翻译好的PDF,0编程基础应该怎么做呢
对于您这种没有编程基础但想要制作针对电子元器件行业的 AI 工具来实现中文 PDF 上传并下载翻译好的 PDF 的需求,以下是一些建议: 首先,您需要学习一些基本的 AI 概念和技术知识,了解自然语言处理(NLP)的基本原理。 其次,可以考虑使用现有的无代码或低代码 AI 开发平台。这些平台通常具有可视化的界面和易于操作的工具,能够帮助您在不编写代码的情况下构建简单的 AI 应用。 然后,针对您的专业术语翻译需求,需要对电子元器件行业的术语进行系统整理和分类,建立一个清晰的术语库。 同时,确定固定描述语句的翻译规则和方法,并将其转化为可在 AI 工具中应用的逻辑。 在实施过程中,要不断测试和优化您的工具,以确保翻译的准确性和质量。 总之,虽然没有编程基础会增加一定的难度,但通过合理利用现有资源和持续学习,您是有可能实现这个目标的。
2025-01-04