大模型的实际应用包括以下方面:
大模型只能接收特定类型的输入内容,并按要求输出结果,但无法直接代替用户自动执行操作,这就极大限制了AI的能力,在实际的业务场景中仍需要大量的人工配合才能发挥作用。AI Power集成了丰富的AI组件及各种技能组件,可以极大地拓展AI服务的能力边界,打造AI Agent。比如搜索引擎组件可以让AI接入互联网获取实时信息,RPA组件可以直接调用影刀RPA客户端应用,从而实现AI自动化操作等。[heading2]无缝多样的使用方式[content]嵌入方式:网页分享、对话助理、API集成等企业有非常多分散的系统,对外的官网、客服群,内部的OA、CRM、ERP等,业务数据全都分散在这一个个信息孤岛上,很难用一套方案打通所有系统。AI Power提供网页使用、API对接、影刀RPA内置指令等多种调用方式,方便企业在不同的业务场景下灵活选择最适合的接入方式,让内部员工、外部客户等便捷地与AI交互。[heading2]贴身的企业级服务支持[content]服务内容:提供教学培训、技术答疑、场景共创等方面的贴身服务大模型类的AI对大部分企业来说都是新东西,企业既缺少对应的开发经历,也缺少相关的人才储备,从0开始非常困难,也容易走弯路。影刀AI Power拥有完整的产品运营、客户成功、技术支持团队,为每个客户提供贴身服务,帮助企业把产品用起来,把AI落地下去,找到最佳实践,助力业务成功。
agent算是从年前到现在,比较火的一个概念了,也被很多人认为是大模型的未来的一个主要发展方向。首先我们看这个很经典的一张图看起来还是蛮复杂的,然后市面上的很多描述agent的文章写的也比较复杂,说智能体是啥智能的最小单元,相较于copilot,是可以给他设定一个目标后主动完成任务的等等。当然这些说法都没错,但是我觉得还是有些不好理解的。所以我们依然先从原理着手去理解下,agent是个什么东西。首先这张图里,中间的“智能体”,其实就是llm,或者说大模型。四个箭头,分别是我们为llm增加的四个能力。工具、记忆、行动、规划。那么这个是怎么新增的呢?目前行业里主要用到的是一个叫langchain的框架,这个框架可以简单理解为,他把llm和llm之间,以及llm和工具之间,通过代码或prompt的形式,进行了串接。这个其实也像是在rag的基础上再进了一步。因为我们知道rag其实是给了大模型一个浏览器工具来使用嘛,那agent,其实就是给了大模型更多的工具。比如像是长期记忆,其实就是给了大模型一个数据库工具让其往里记录重要信息。规划和行动,其实就是在大模型的prompt层做的些逻辑,比如让其将目标进行每一步的拆解,拆解完成后,每一步去输出不同的固定格式action指令,给到工具作为输入。当然langchain或者说agent还不止这些,也会有很多其他的代码逻辑体现在其中,不过其主要的主干逻辑,其实还是在prompt层和工具层,完成的设计。
目前大模型的产品类型,主要有两种:Copilot:翻译成副驾驶,助手。在帮助用户解决问题时起辅助作用,例如github copilot是帮助程序员编程的助手Agent:更像一个主驾驶,智能体,可以根据任务目标进行自主思考和行动,具有更强的独立性和执行复杂任务的能力我们从核心功能、流程决策、应用范围和开发重点几个方面对比Copilot和Agent:1.核心功能Copilot:更像是一个辅助驾驶员,更多地依赖于人类的指导和提示来完成任务。Copilot在处理任务时,通常是在人为设定的范围内操作,比如基于特定的提示生成答案。它的功能很大程度上局限于在给定框架内工作。Agent:像一个初级的主驾驶,具有更高的自主性和决策能力。能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。2.流程决策Copilot:在处理流程方面,Copilot往往依赖于Human确定的流程,这个流程是静态的。它的参与更多是在局部环节,而不是整个流程的设计和执行。Agent:Agent解决问题的流程是由AI自主确定的,这个流程是动态的。它不仅可以自行规划任务的各个步骤,还能够根据执行过程中的反馈动态调整流程。3.应用范围Copilot:主要用于处理一些简单的、特定的任务,更多是作为一个工具或者助手存在,需要人类的引导和监督。Agent:能够处理复杂的、大型的任务,并在LLM薄弱的阶段使用工具或者API等进行增强。4.开发重点Copilot:主要依赖于LLM的性能,Copilot的开发重点在于Prompt Engineering。Agent:同样依赖于LLM的性能,但Agent的开发重点在于Flow Engineering,也就是在假定LLM足够强大的基础上,把外围的流程和框架系统化,坐等一个强劲的LLM核心。