Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型的实际应用有哪些?Agent?AI网站

Answer

大模型的实际应用包括以下方面:

  1. 在影刀 RPA+AI Power 中的应用:
    • 集成丰富的 AI 组件及各种技能组件,拓展 AI 服务的能力边界,打造 AI Agent。例如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现 AI 自动化操作。
    • 提供网页分享、对话助理、API 集成等无缝多样的使用方式,方便企业在不同业务场景下灵活选择接入方式,让内部员工、外部客户便捷地与 AI 交互。
    • 为企业提供教学培训、技术答疑、场景共创等贴身的服务支持,帮助企业把产品用起来,把 AI 落地下去。
  2. 在 Ranger 相关介绍中的应用:
    • Agent 被认为是大模型未来的主要发展方向。
    • 中间的“智能体”就是大模型,通过为其增加工具、记忆、行动、规划四个能力来实现。目前行业里主要用到的是 langchain 框架,在 prompt 层和工具层完成相关设计。
  3. 在大圣的相关介绍中的应用:
    • 大模型的产品类型主要有 Copilot 和 Agent 两种。
    • Copilot 是辅助驾驶员,在帮助用户解决问题时起辅助作用,更多地依赖于人类的指导和提示来完成任务,功能局限于给定框架内,处理流程依赖于人类确定的静态流程,主要用于处理简单、特定的任务,开发重点在于 Prompt Engineering。
    • Agent 是主驾驶,智能体,可以根据任务目标进行自主思考和行动,具有更高的自主性和决策能力,解决问题的流程是由 AI 自主确定的动态流程,能够处理复杂、大型的任务,在 LLM 薄弱阶段使用工具或 API 增强,开发重点在于 Flow Engineering。
Content generated by AI large model, please carefully verify (powered by aily)

References

详解:影刀RPA + AI Power

大模型只能接收特定类型的输入内容,并按要求输出结果,但无法直接代替用户自动执行操作,这就极大限制了AI的能力,在实际的业务场景中仍需要大量的人工配合才能发挥作用。AI Power集成了丰富的AI组件及各种技能组件,可以极大地拓展AI服务的能力边界,打造AI Agent。比如搜索引擎组件可以让AI接入互联网获取实时信息,RPA组件可以直接调用影刀RPA客户端应用,从而实现AI自动化操作等。[heading2]无缝多样的使用方式[content]嵌入方式:网页分享、对话助理、API集成等企业有非常多分散的系统,对外的官网、客服群,内部的OA、CRM、ERP等,业务数据全都分散在这一个个信息孤岛上,很难用一套方案打通所有系统。AI Power提供网页使用、API对接、影刀RPA内置指令等多种调用方式,方便企业在不同的业务场景下灵活选择最适合的接入方式,让内部员工、外部客户等便捷地与AI交互。[heading2]贴身的企业级服务支持[content]服务内容:提供教学培训、技术答疑、场景共创等方面的贴身服务大模型类的AI对大部分企业来说都是新东西,企业既缺少对应的开发经历,也缺少相关的人才储备,从0开始非常困难,也容易走弯路。影刀AI Power拥有完整的产品运营、客户成功、技术支持团队,为每个客户提供贴身服务,帮助企业把产品用起来,把AI落地下去,找到最佳实践,助力业务成功。

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

agent算是从年前到现在,比较火的一个概念了,也被很多人认为是大模型的未来的一个主要发展方向。首先我们看这个很经典的一张图看起来还是蛮复杂的,然后市面上的很多描述agent的文章写的也比较复杂,说智能体是啥智能的最小单元,相较于copilot,是可以给他设定一个目标后主动完成任务的等等。当然这些说法都没错,但是我觉得还是有些不好理解的。所以我们依然先从原理着手去理解下,agent是个什么东西。首先这张图里,中间的“智能体”,其实就是llm,或者说大模型。四个箭头,分别是我们为llm增加的四个能力。工具、记忆、行动、规划。那么这个是怎么新增的呢?目前行业里主要用到的是一个叫langchain的框架,这个框架可以简单理解为,他把llm和llm之间,以及llm和工具之间,通过代码或prompt的形式,进行了串接。这个其实也像是在rag的基础上再进了一步。因为我们知道rag其实是给了大模型一个浏览器工具来使用嘛,那agent,其实就是给了大模型更多的工具。比如像是长期记忆,其实就是给了大模型一个数据库工具让其往里记录重要信息。规划和行动,其实就是在大模型的prompt层做的些逻辑,比如让其将目标进行每一步的拆解,拆解完成后,每一步去输出不同的固定格式action指令,给到工具作为输入。当然langchain或者说agent还不止这些,也会有很多其他的代码逻辑体现在其中,不过其主要的主干逻辑,其实还是在prompt层和工具层,完成的设计。

大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库

目前大模型的产品类型,主要有两种:Copilot:翻译成副驾驶,助手。在帮助用户解决问题时起辅助作用,例如github copilot是帮助程序员编程的助手Agent:更像一个主驾驶,智能体,可以根据任务目标进行自主思考和行动,具有更强的独立性和执行复杂任务的能力我们从核心功能、流程决策、应用范围和开发重点几个方面对比Copilot和Agent:1.核心功能Copilot:更像是一个辅助驾驶员,更多地依赖于人类的指导和提示来完成任务。Copilot在处理任务时,通常是在人为设定的范围内操作,比如基于特定的提示生成答案。它的功能很大程度上局限于在给定框架内工作。Agent:像一个初级的主驾驶,具有更高的自主性和决策能力。能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。2.流程决策Copilot:在处理流程方面,Copilot往往依赖于Human确定的流程,这个流程是静态的。它的参与更多是在局部环节,而不是整个流程的设计和执行。Agent:Agent解决问题的流程是由AI自主确定的,这个流程是动态的。它不仅可以自行规划任务的各个步骤,还能够根据执行过程中的反馈动态调整流程。3.应用范围Copilot:主要用于处理一些简单的、特定的任务,更多是作为一个工具或者助手存在,需要人类的引导和监督。Agent:能够处理复杂的、大型的任务,并在LLM薄弱的阶段使用工具或者API等进行增强。4.开发重点Copilot:主要依赖于LLM的性能,Copilot的开发重点在于Prompt Engineering。Agent:同样依赖于LLM的性能,但Agent的开发重点在于Flow Engineering,也就是在假定LLM足够强大的基础上,把外围的流程和框架系统化,坐等一个强劲的LLM核心。

Others are asking
有能设计微信小程序的AI吗
目前有能设计微信小程序的 AI 相关技术和方法。例如,可以利用 ChatGPT 来实现微信小程序的搭建,前半部分先简单介绍注册小程序的流程,后半部分介绍开发上线的步骤。另外,还有通过 Coze 免费打造自己的微信 AI 机器人的方法,其核心能力包括支持用户发送“关键字”自助获取分享的“AI 相关资料链接”,能回答 AI 相关知识(优先以“我的知识库”中的内容回答,不足时调用 AI 大模型回复并附上作者链接),能发布在微信公众号上作为“微信客服助手”。要实现这样的 Bot,需要准备的内容有:根据 Bot 的目的和核心能力编写 prompt 提示词;整理“关键字”与“AI 相关资料链接”的对应关系;创建自己的知识库;创建工作流来控制 AI 按要求处理信息;准备好微信公众号以便发布机器人。
2025-02-07
Excel有什么好的AI
以下是一些与 Excel 相关的 AI 工具和功能: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了包括 Excel 在内的多种办公软件,用户通过聊天形式告知需求,Copilot 自动完成任务,如数据分析、格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户能通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。 在金融服务业中,生成式 AI 除了能帮助回答财务问题,还能改进金融服务团队的内部流程,简化日常工作流程。例如,在预测方面,生成式 AI 能帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,发现模式并为预测建议输入;在报告方面,能自动创建文本、图表、图形等内容,并根据不同示例调整报告;在会计和税务方面,能帮助综合、总结并就税法和潜在扣除项提出可能答案;在采购和应付账款方面,能帮助自动生成和调整合同、采购订单和发票以及提醒。 此外,飞书多维表格在处理数据方面也有优势,能解决一些 Excel 中高级门槛的数据处理功能,如自带 AI 插件,可通过自然语言提取网址和电话、生成 AI 标签等。总之,Excel 和多维表格都能帮助整理数据、做计算和图表,具体使用哪种取决于您的需求。
2025-02-07
推荐一个做PP T的ai工具
以下是为您推荐的一些做 PPT 的 AI 工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,用户可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,拥有强大的团队,能敏锐把握市场机遇,已确立市场领先地位。
2025-02-07
Ai和教育
以下是一些关于“AI+教育”的案例和应用场景: 学习方面:可用 AI 做播客笔记,有助于学习知识和提升语言能力。 教学方面:借助 Claude 和 Gamma.app 等工具帮助学生做好组会准备。 调研方面:使用特定的 prompt 能在短时间内帮同学完成调研报告,也可用 ChatGPT 辅助调研。 书籍推荐:推荐三本神经科学书籍,为学习和运用 AI 提供学科基础。 教师赋能:MQ 老师投稿的“AI 赋能教师全场景”,为教师提供交流沟通的资源。 未来趋势:探讨如果教育跟不上 AI 可能出现的情况。 化学研究:使用大型语言模型进行自主化学研究。 AI 在教育领域的应用还在不断拓展,能为学生提供个性化学习体验,为教师提供更多教学支持。
2025-02-07
会议记录用什么AI
以下是一些可用于会议记录的 AI 工具: 1. 团队会议总结工具: 2. 专注于销售通话记录和辅导的 AI 助手 MeetRecord: 公司概述:MeetRecord 是一家利用人工智能技术为高绩效销售团队提供对话智能解决方案的软件公司。 核心功能:包括 AI 驱动的笔记记录、个性化辅导计划、交易智能和推荐、CRM 自动化、多语言支持等。 使用场景:适用于需要高效管理和分析会议内容的企业,特别是在大型会议、项目管理和团队协作中。 融资、市场及竞争情况:2024 年 6 月完成 PreA 轮融资,规模较小,员工人数在 15 人以下,主要竞争对手包括美国的远程协作平台提供商 Multi,在 G2 平台上获得 4.8 的高评分。体验链接:https://www.meetrecord.com 3. 免费的会议语音转文字工具(有使用时间限制): 更多会议记录工具请访问网站:https://waytoagi.com/sites/category/29 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-07
如何做一个AI智能体,能具备某个人的思考能力和方法,比如马斯克,金枪大叔或者毛泽东。
要创建一个具备像马斯克等人思考能力和方法的 AI 智能体并非易事,以下是一些相关的要点和思路: xAI 的使命在于探索宇宙本质与智能体。从宇宙尺度看,意识进化存在狭窄窗口,计算机若不能解决至少一个基本问题,不能称之为 AGI。 对于使命陈述,短期内致力于更好地理解深度学习技术,工作中应始终记住构建与理解并重,追求科学是基础。 主要目标是创建能帮助更好理解宇宙的聪明智能体,相关数学研究可能为对基本物理或其他现实的思考开辟新方式,带来有趣视角,对现有问题产生启发,但目前多为推测性,尚无具体结论。 但需要注意的是,完全复制某个人的思考能力和方法在当前技术水平下是极具挑战性的,甚至可能无法实现。
2025-02-07
什么是AI Agent,我作为程序员该学习什么?能获得额外收入
您提供的内容与“什么是 AI Agent 以及程序员学习相关内容能否获得额外收入”的问题无关。AI Agent 是指具有自主决策和行动能力的智能体,能够在特定环境中感知、学习、推理和执行任务。作为程序员,如果您想学习与 AI Agent 相关的知识,建议您掌握以下方面: 1. 机器学习和深度学习的基础知识,包括常见的算法和模型。 2. 自然语言处理技术,以便能够理解和处理与智能体交互的语言信息。 3. 强化学习,这对于训练智能体做出最优决策非常重要。 4. 编程技能,熟练掌握 Python 等编程语言。 至于能否获得额外收入,这取决于多种因素,如您所开发的 AI Agent 应用的市场需求、您的技术水平和创新能力等。如果您能够开发出具有实用价值和创新性的 AI Agent 应用,并找到合适的商业机会,是有可能获得额外收入的。
2025-02-07
请问什么是agent?
Agent(智能体)是一种能够在环境中自主感知、思考并采取行动的实体。可以把它想象成一个具有特定目标和行为能力的智能角色,能根据环境变化做出相应的决策和反应。 在不同的场景中,Agent 有不同的具体表现和应用。比如: 从产品角度来看,Agent 可以是一个历史新闻探索向导,有着知识渊博、温暖亲切、富有同情心的性格,主导新闻解析和历史背景分析,还可以为其设计背景故事来使其角色更加生动。 在结合大型语言模型(LLM)的情况下,LLM Agent 能够利用大型语言模型的自然语言处理能力,理解用户的输入,并在此基础上进行智能决策和行动。它由规划、记忆、工具和行动等部分组成。规划负责将复杂任务分解成可执行的子任务,并评估执行策略;记忆包括短期记忆和长期记忆,分别用于存储对话上下文和用户特征及业务数据;工具是感知环境、执行决策的辅助手段,如 API 调用、插件扩展等;行动则是将规划和记忆转换为具体输出的过程,包括与外部环境的互动或工具调用。 在人工智能领域,Agent 智能代理能够自动执行任务,比如搜索信息、监控系统状态或与用户交互。
2025-02-07
我想要搭建一个能够帮我阅读并总结提炼,同时能在我提出问题时,随时在我给他提供的知识库中检索的AI Agent,如何用Coze搭建?
搭建能够阅读、总结提炼并在给定知识库中检索的 AI Agent 可以使用 Coze 按照以下步骤进行: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 关于一些其他问题: 1. 如何判断自己的任务/Prompt 是否需要拆解为工作流? 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常先从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。一般对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 2. 只用了一段 Prompt 的 Agent,还算 AI Agent 吗? 算。详见
2025-02-06
如何实现稳定的ai agent
要实现稳定的 AI agent ,可以从以下几个方面考虑: 1. 提示词工程与工具调用能力的配合:设计出一套与知识图谱相结合的工具调用逻辑,稳定人设。通过缩小 max_length 防止 LLM 长篇大论,每次输入到上下文窗口中的记忆只返回最近几轮的对话,并利用查询知识图谱的信息来实现永久记忆。 2. 工具设计:将与知识图谱交互这一大的任务,细分为查询、创建、修改、删除实体或关系、获取实体的所有关系、获取所有实体名称列表等多个工具,组成一个工具包供 LLM 调用。 3. 构建数字人灵魂: 写一个像人一样的 Agent ,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建都是挑战。 解决灵魂部分如何驱动躯壳部分的问题,将灵魂部分的所有接口定义出来,躯壳部分通过 API 调用。 注意实时性,由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,要解决网络耗时和模型推理耗时问题。 考虑多元跨模态,根据实际需求添加其他感官的交互。 处理拟人化场景,如插话、转移话题等情况。 4. 工作流的设计模式:可以运用吴恩达教授提出的设计模式,如 Reflection 模式,设计工作流先检索知识库的活动内容,再通过 LLM 大模型区块进行数据修正,最终输出符合意图的结果。
2025-02-06
有哪些开源或免费的AI模型管理平台,可以配置模型,管理Agent的
以下是一些开源或免费的 AI 模型管理平台及相关模型: 1. 智谱·AI: Chat 模型: ChatGLM6Bint4:ChatGLM6B 的 Int4 版本,最低只需 6GB 显存即可部署,最低只需 7GB 显存即可启动微调(、魔搭社区、始智社区、启智社区获取。 ChatGLM6Bint8:ChatGLM6B 的 Int8 版本,上下文 token 数为 2K。可在、魔搭社区、始智社区、启智社区获取。 AgentLM7B:提出了一种 AgentTuning 的方法,开源了包含 1866 个高质量交互、6 个多样化的真实场景任务的 Agent 数据集 AgentInstruct,基于上述方法和数据集,利用 Llama2 微调而成,上下文 token 数为 4K。代码链接为。 AgentLM13B:上下文 token 数为 4K,模型权重下载链接为。 AgentLM70B:上下文 token 数为 8K,模型权重下载链接为。 下载模型:智谱 AI 提供的所有开源模型均可以在以下平台进行下载:。 2. 通义千问: 本地部署 Qwen2.51M 模型:使用以下命令启动服务,根据硬件配置进行设置。参数说明: tensorparallelsize:设置为使用的 GPU 数量。7B 模型最多支持 4 个 GPU,14B 模型最多支持 8 个 GPU。 maxmodellen:定义最大输入序列长度。如果遇到内存不足问题,请减少此值。 maxnumbatchedtokens:设置 Chunked Prefill 的块大小。较小的值可以减少激活内存使用,但可能会减慢推理速度。推荐值为 131072,以获得最佳性能。 maxnumseqs:限制并发处理的序列数量。如果遇到问题,请参考相关内容。 与模型交互:可以使用以下方法与部署的模型进行交互:选项 1.使用 Curl;选项 2.使用 Python。对于更高级的使用方式,可以探索如之类的框架。QwenAgent 使模型能够读取 PDF 文件或获得更多功能。
2025-02-06
Agent搭建平台都有哪些
以下是一些常见的 Agent 搭建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建各类问答 Bot,集成丰富插件工具,拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景表现出色。 此外,国内外还有多个平台可以在几分钟内完成 Agent 创建,比如国内版扣子 coze.cn、海外版 Coze coze.com、百度 AppBuilder、阿里通义千问、智谱 AI 等。使用扣子 coze.cn 等平台创建智能体 Agent 的过程被创作者形象地比喻为“捏 Bot”,最简单的 Bot 往往可以在 1 分钟内捏完。 随着 AI 的发展,大家对 AI 的诉求变得具体,简单的 ChatBot 弊端凸显,基于 LLWeng 对于 Agent 的结构设计,Coze、Dify 等平台在应用探索上有进展。年初吴恩达基于 Agent 应用、场景、需求等做了 4 个分类,但这些平台都有固有局限,对于专业 IT 人士不够自由,对普通用户在复杂业务场景有诸多限制。
2025-02-06
大模型的基础知识
大模型的基础知识包括以下方面: 知识类型: 内置知识:又可细分为常识知识、专业知识和语言知识。常识知识涵盖日常生活中的事实和逻辑规则;专业知识涉及特定领域的详细信息;语言知识包含语法规则、句型结构、语境含义及文化背景等。 模型架构: encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 encoderdecoder:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 Google 的 T5。 decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此架构。 大模型的特点: 预训练数据量大,往往来自互联网,包括论文、代码和公开网页等,通常用 TB 级别的数据进行预训练。 参数众多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 数字化与 embedding:为让计算机理解 Token 之间的联系,需将 Token 表示成稠密矩阵向量,即 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”主要指用于表达 token 之间关系的参数多,如 GPT3 拥有 1750 亿参数。
2025-02-07
未来类似deepseek这种推理大模型普及,结构化提示词是不是会成为过时的知识
未来类似 DeepSeek 这种推理大模型普及,结构化提示词不会成为过时的知识。 虽然未来模型可能在某些情况下无需提示词,仅通过简单对话就能理解用户意图,但基础的如何与模型对话的认知仍需具备,这就涉及提示词。例如李继刚老师的结构化提示词能让模型给出更优质、完整的答案。操作过程中有很多有意思的提示词,如“酷老师”“抬杠高手”等,近期提示词有升级,李继刚老师将其玩到新高度,cloud 等大语言模型可直接显示编译结果内容。输入特定提示词可生成卡片,小创业项目可利用并改变提示词形成独到见解或小应用。 从工程视角看,AI 提示词在游戏创作及优化中也有应用。此外,提示工程的本质是提供足够的信息来明确指定要求,即使模型在理解上下文方面变得更好,能够清晰地陈述目标始终很重要,仍需要明确预期结果的能力和技巧。未来可能会更多地利用提示工程来让模型为我们生成、调整提示词,对于没有太多提示工程经验的人来说,提示词生成器可以帮助他们。未来的提示可能更像是一种自省,模型会尝试理解用户真正在思考什么、需要什么。 在 R1 时代,使用 AI 提示词的关键在于提供足够的背景信息,而非复杂的结构。简单大白话仍然有效,但信息量不足则难以得到理想结果。示例和框架可帮助理清思路,但最终影响在于用户的思考和表达。利用乔哈里视窗分析信息需求,避免过度指令化,让 AI 自由思考,从而激发更高的创意和效果。“有用的不是技巧,而是你的思考!”
2025-02-07
模型能力测评方法有哪些,比如ragas这种
以下是一些常见的模型能力测评方法: 1. 从模型角度(generation): 回答真实性:评估模型结果的真实性,减少模型幻觉。 回答相关度:衡量结果与问题的相关性,避免南辕北辙。 2. 从检索角度(retrieval): 召回率(recall):考查相关信息在返回的检索内容中的包含程度,越全越好。 准确率(precision):评估返回的检索内容中有用信息的占比,越多越好。 RAGAS 是一个用于 RAG 评估的知名开源库,您可以通过了解和使用。 RAG 具有一定的优势和局限性: 优势: 能够解决大语言模型技术中输出结果的不可预测性、知识的局限性、幻觉问题、数据安全性等问题。 可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。 可以和微调结合使用。 局限性: 适合打造专才,不适合打造通才,不适合为模型提供通用领域知识。 难以让模型保持稳定的风格或结构输出,降低 token 消耗等,需要使用微调技术解决。
2025-02-07
模型能力测评方法
以下是关于模型能力测评方法的相关内容: 测评机制: 测评目标:测评三家国产大模型,以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,包括智谱清言(https://chatglm.cn/main/detail)、文心一言 4.0(https://yiyan.baidu.com/)、Kimi Chat(https://kimi.moonshot.cn/chat/)。 能力考量:包括复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次: 第一轮:复杂提示词理解和执行,包括 Markdown+英文 title 提示词测试、Markdown+中文 title 提示词测试、中文 title+自然段落提示词测试。 第二轮:推理能力(CoT 表现),逐步推理任务,遍历 3 个不同类型任务和 4 个大模型。 第三轮:文本生成能力(写作要求执行),根据提示词生成文本任务,遍历 3 个不同类型任务和 4 个大模型。 第四轮:提示词设计能力(让模型设计提示词),按提示词要求生成提示词,逐步推理任务,遍历 3 个不同类型任务和 4 个大模型。 第五轮:长文本归纳总结能力(论文阅读),按提供的长文本(上传或在线)进行归纳总结,逐步推理任务,遍历 3 个不同类型任务和 4 个大模型。 测评过程: 用 5 组提示词分别测试模型的复杂提示词执行能力、推理能力、文本生成能力、用提示词设计提示词的能力、长文本归纳总结能力。每一轮中提示词和问题相同,观察国产三家模型的生成结果,并以 ChatGPT 4.0 生成的内容做对照参考。需要注意的是,本测评是主观需求主观视角,不具有权威性。
2025-02-07
多模态是什么?如何使用多模态模型构建 AI 智能体
多模态是指对同一概念的多维度理解,例如人类可以边看、边交谈,还能同时听着背景音乐和察觉危险,而仅靠语言来描述和理解世界是远远不够的。拥有多模态能力的模型可以更全面地学习世界,理解人类的行为和需求,提高任务解决能力,并克服单一模态的局限性,是让 AI 能在现实世界中运行极为重要的一环。 2023 年 9 月 GPT4v 的发布把大语言模型的竞赛带入了多模态模型(LMM Large Multimodal Models)的时代,如 ChatGPT 可以看图说话,还能通过内置的 DallE 3 直接画图;几个月后 Google 的 Gemini 正式推出,直接支持了文本、视频和声音多种模态。今年 5 月,OpenAI 完成了 GPT4 的实时听说和视频模态输入,发布了 GPT4o,向智能体方向迈进了一大步。 多模态大模型由解码器、backbone、Generator 等部件组成,左侧多模态理解,右侧生成输出。其架构基于大圆模型,能识别页面组件结构和位置绝对值信息,并与组件、文本映射。 在应用方面,多模态模型有着广泛的用途。例如 Stable Diffusion 模型可用于带货商品图生成、模特服装展示、海报生成、装修设计等。吉梦 AI 提供 AI 视频生成等能力,吐司是类似的在线生成平台,具备多种 AI 能力。 关于模型训练,需要大量图像数据和标签化处理。AI 视频生成原理主要基于特定架构,如基于 Sara 的整体架构,采用 diffusion Transformer 架构,以扩散模型通过随机造点、加噪和去噪得到连续图像帧,输入视频可看成若干帧图片,经处理后生成视频。Meta 的视频生成模型能生成视频和声音,可替换视频中的物体和人脸,其把 diffusion 架构换成纯 transformer 架构,基于 LLAMA3 训练,与 diffusion 在 CLIP 等方面有区别。 要使用多模态模型构建 AI 智能体,需要考虑实时性,保持模型能力不变的情况下缩小参数规模,升级架构来提升性能,最好让终端也参与进来分担一部分模型的计算量。同时,让科技变简单,设计出从未有过的硬件产品或重新设计现有的产品,以适应这种毫无机械感、完全类人化的交互方式。
2025-02-06
你是基于哪个模型训练出来的
以下是为您整合的相关内容: 在 Comfy UI 中训练 LoRA 模型:确保后面有一个空格,将 requirements_win.txt 文件(Windows 系统)或 requirements.txt 文件(非 Windows 系统)拖到命令提示符中,按 Enter 键安装依赖项。若使用虚拟环境,需先激活。图像应放在特定命名格式的文件夹中,data_path 需写入包含数据库文件夹的路径,Python 需要斜杠,节点会自动转换反斜杠,文件夹名称中的空格不是问题。第一行可从 checkpoint 文件夹中选择模型,据说训练需选择基本模型。 训练 Midjourney 的 prompt:V5 是在其 AI 超级集群上训练了 5 个月的第二个模型。基本参数包括:Aspect Ratios 可改变生成的纵横比;Chaos 可改变结果的多样性;No 用于负向提示;Quality 决定渲染质量时间;Seed 用于指定生成图像的起始点,相同种子和提示会产生相似结果;Stop 可在过程中途停止作业。 如何使用 AI 来做事:制作图像时,不同模型创建的图像有比较。这些系统存在内置偏见,可能存在法律和道德问题,目前不能创建真正的文本。
2025-02-06
能直接输出图片的AI网站
以下是一些能直接输出图片的 AI 网站: 1. Artguru AI Art Generator:在线平台,生成逼真图像,给设计师提供灵感,丰富创作过程。 2. Retrato:AI 工具,将图片转换为非凡肖像,拥有 500 多种风格选择,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具有细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,将上传的照片转换为芭比风格,效果超级好。 5. 无界 AI:一款可以在线 AI 生成图片的网站(类似 SD Online 一键出图版),网址为 https://www.wujieai.cc/ (新用户扫码注册可领取积分)。 此外,还有用于鉴别图片是否为 AI 生成的网站,如 ILLUMINARTY(https://app.illuminarty.ai/)。但需注意,AI 鉴别仍存在一些局限性。
2025-02-07
哪个网站 文案转视频最好用
以下是一些好用的文案转视频的网站和工具: 1. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频,它是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要注意是收费的。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 此外,更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。 通过 ChatGPT 生成文案,将其复制到支持 AI 文字转视频的工具内,也可实现短视频的自动生成。市面上一些手机剪辑软件也支持文字转视频,如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类工具区别于专业剪辑软件复杂的操作页面,让大众生产视频更轻松上手。
2025-02-06
国内最知名AI学习导航网站
以下是国内一些知名的 AI 学习导航网站: |排行|产品名|分类| |||| |46|toolsdar|导航网站| |20|AIbot ai 工具集|导航网站| 这些网站在不同月份的访问量和相对变化情况有所不同。您可以根据自身需求进一步了解和选择。
2025-02-06
在哪个网站可以部署deepseek更简单,无需代码,
以下是一些可以部署 DeepSeek 且相对简单、无需代码的网站: 1. 网址:https://www.deepseek.com/zh 。DeepSeek 很方便,国内能访问,网页登录很便捷,目前完全免费。点击开始对话,左边选择代码助手即可。 2. 网址:https://www.cursor.com/ 。使用 Cursor 可以不用下载上一步中的 Pycharm,通过对话获得代码即可。因为这里面用的是大语言模型 Claude3.5sonnet、GPT4o 等语言模型。
2025-02-06
ai制作的网站会被搜索引擎收录吗
AI 制作的网站有可能被搜索引擎收录,但这取决于多个因素。 搜索引擎收录网站通常会考虑网站的内容质量、结构、可访问性等方面。对于 AI 制作的网站,如果其内容具有价值、独特性,并且符合搜索引擎的算法和规则,同时网站的结构清晰、易于抓取和索引,那么就有被收录的机会。 目前有一些能联网检索的 AI 工具,例如 ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网,Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,Bing Copilot 作为 AI 助手可简化在线查询和浏览活动,还有 You.com 和 Neeva AI 等搜索引擎提供基于人工智能的定制搜索体验并保持用户数据私密性。 此外,也有一些关于 AI 产品的相关信息,如独立开发者 idoubi 艾逗笔的产品 ThinkAny 经过三个月发展已成为月访问量 60 万的全球化产品,OpenAI 为维护服务质量和安全性将限制来自当前不支持国家和地区的 API 流量。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-05
文字生成语音的免费网站
以下为一些文字生成语音的免费网站: XiaoHu.AI:通过 250,000 小时的中英双语数据训练,仅需 15 秒的声音即可完美克隆,包括音色和情感。基于 LLaMA 模型,支持从文本生成语音,或基于语音提示生成目标语音(保留情感特征)。 参数规模: Llasa1B:轻量级,适合资源受限硬件部署。链接: Llasa3B:更高性能,提供更复杂的语音生成。链接: 详细介绍:
2025-02-05