RAG(检索增强生成)工作流主要包括以下几个阶段:
RAG 的基本概念: RAG 是一种结合了检索和生成的技术,能让大模型在生成文本时利用额外的数据源,提高生成的质量和准确性。其基本流程为,首先给定用户输入(如问题或话题),RAG 从数据源中检索出相关文本片段(称为上下文),然后将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示指导模型生成期望输出(如答案或摘要),最后从大模型的输出中提取或格式化所需信息返回给用户。
在实际调试预览中,例如:
1.问题解析阶段:2.接收并预处理问题,通过嵌入模型(如Word2Vec、GloVe、BERT)将问题文本转化为向量。这一步确保问题向量能有效用于后续检索。3.知识库检索阶段:4.知识库中的文档同样向量化后,比较问题向量与文档向量,选择最相关的信息片段。抽取相关信息传递给下一步骤5.信息整合阶段:6.接收检索到的信息,与上下文构建形成融合、全面的信息文本。整合信息准备进入生成阶段。7.大模型生成回答:整合后的信息被转化为向量并输入到LLM(大语言模型)。模型逐词构建回答,最终输出给用户。四、RAG实例看理论有点懵是吗?为了更理解,我们来一起看看实例。这是调试预览中的对话示例。在回复中,可以看到这里有写11条引用,3条上下文,我们具体来看下,有什么处理。一、知识库检索部分1、把输入的问题,通过Embedding做了向量化2、使用qwen语言模型把问题做了优化、添加了接近的检索词3、知识库向量检索,抽取条件包含相似度0.854、通过检索一共抽取出了11个内容块(chunk)二、大模型对话部分(因为我刷新后丢失了记录,改成说了一句:你好,所以下边的问题,变成了你好)5、此处将①②一起传递给了LLM(大语言模型),最终得到了③AI的回答。
原创AI小智AI小智2023-12-11 08:10发表于湖北AI大模型能够处理广泛主题的文本生成,但模型知识只能基于它们训练时使用的公开数据。如果你想构建能够利用私有数据或实时数据进行推理的AI应用,你需要用特定的信息来增强模型的知识。将相关信息检索并插入到模型的输入中,即检索增强生成(Retrieval Augmented Generation,RAG)。在本文中,我们将介绍如何使用LangChain开发一个简单的RAG问答应用。我们将依次介绍典型的问答架构,讨论相关的LangChain组件,并展示如何跟踪和理解我们的应用。[heading3]RAG的基本概念[content]RAG是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。RAG的基本流程如下:首先,给定一个用户的输入,例如一个问题或一个话题,RAG会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。然后,RAG会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大模型,例如GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。最后,RAG会从大模型的输出中提取或格式化所需的信息,返回给用户。
原创AI小智AI小智2023-12-11 08:10发表于湖北AI大模型能够处理广泛主题的文本生成,但模型知识只能基于它们训练时使用的公开数据。如果你想构建能够利用私有数据或实时数据进行推理的AI应用,你需要用特定的信息来增强模型的知识。将相关信息检索并插入到模型的输入中,即检索增强生成(Retrieval Augmented Generation,RAG)。在本文中,我们将介绍如何使用LangChain开发一个简单的RAG问答应用。我们将依次介绍典型的问答架构,讨论相关的LangChain组件,并展示如何跟踪和理解我们的应用。[heading2]RAG的基本概念[content]RAG是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。RAG的基本流程如下:首先,给定一个用户的输入,例如一个问题或一个话题,RAG会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。然后,RAG会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大模型,例如GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。最后,RAG会从大模型的输出中提取或格式化所需的信息,返回给用户。