Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

0编程基础,需要学ai编程需要先学什么

Answer

如果您没有编程基础但想学习 AI 编程,建议先学习以下 Python 相关内容:

  1. Python 基础:
    • 基本语法:了解变量命名、缩进等基本语法规则。
    • 数据类型:熟悉字符串、整数、浮点数、列表、元组、字典等基本数据类型。
    • 控制流:学习使用条件语句(if)、循环语句(for 和 while)控制程序执行流程。
  2. 函数:
    • 定义和调用函数:学会定义自己的函数以及调用现有函数。
    • 参数和返回值:理解函数接收参数和返回结果的方式。
    • 作用域和命名空间:掌握局部变量和全局变量的概念及工作方式。
  3. 模块和包:
    • 导入模块:学习导入 Python 标准库中的模块或第三方库。
    • 使用包:理解如何安装和使用 Python 包扩展程序功能。
  4. 面向对象编程(OOP):
    • 类和对象:了解类的定义和实例化等基本概念。
    • 属性和方法:学习为类定义属性和方法,并通过对象调用。
    • 继承和多态:了解类之间的继承关系及多态的实现。
  5. 异常处理:
    • 理解异常:明白什么是异常及在 Python 中的工作原理。
    • 异常处理:学会使用 try 和 except 语句处理程序可能发生的错误。
  6. 文件操作:
    • 文件读写:学习打开文件、读取文件内容和写入文件。
    • 文件与路径操作:理解如何用 Python 处理文件路径及列举目录下的文件。

此外,如果您有更具体的项目需求,比如开发 P2P 传输程序,还需要进行项目初始化与配置,例如安装 Rust 环境(可通过官网获取安装指南,使用 rustup 工具管理 Rust 版本),创建 Rust 项目并管理项目依赖。

Content generated by AI large model, please carefully verify (powered by aily)

References

写给不会代码的你:20分钟上手 Python + AI

[heading3]如果希望继续精进...在本份教程中,你会发现,在AI的帮助下,你本就可以完成很多基础的编程工作。但希望再深入一点,最好还是可以体系化的了解一下编程以及AI。至少熟悉以下内容:Python基础基本语法:了解Python的基本语法规则,比如变量命名、缩进等。数据类型:熟悉Python中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。控制流:学习如何使用条件语句(if)、循环语句(for和while)来控制程序的执行流程。函数定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。参数和返回值:理解函数如何接收参数和返回结果。作用域和命名空间:了解局部变量和全局变量的概念,以及它们是如何在Python中工作的。模块和包导入模块:学习如何导入Python标准库中的模块或者第三方库。使用包:理解如何安装和使用Python包来扩展程序的功能。面向对象编程(OOP)类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。

写给不会代码的你:20分钟上手 Python + AI

在本份教程中,你会发现,在AI的帮助下,你本就可以完成很多基础的编程工作。但希望再深入一点,最好还是可以体系化的了解一下编程以及AI。至少熟悉以下内容:Python基础基本语法:了解Python的基本语法规则,比如变量命名、缩进等。数据类型:熟悉Python中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。控制流:学习如何使用条件语句(if)、循环语句(for和while)来控制程序的执行流程。函数定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。参数和返回值:理解函数如何接收参数和返回结果。作用域和命名空间:了解局部变量和全局变量的概念,以及它们是如何在Python中工作的。模块和包导入模块:学习如何导入Python标准库中的模块或者第三方库。使用包:理解如何安装和使用Python包来扩展程序的功能。面向对象编程(OOP)类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。

齐码蓝:你(或孩子)还需要学编程吗?AI编程Master GPTs

根据你提供的信息,我可以给出更具体的指导,例如项目初始化、环境配置、库的选择等。你我想写一个P2P传输的程序,会有Discovery Server和Relay Server,Discover Server是用于端到端的IP握手,Relay Server是为了提供传输cache和分块传输管道,考虑数据分布式的完整CAP问题,端到端会用一个跟文件系统优化相关的大小,将各文件分块并记录其hash值用于判断数据传输完整性;Discovery Server和Relay Server可以支持多点分布式去中心化,实现P2P传输,传输信道同时考虑TCP、UDP、QUIC、Socket和RPC传输,数据的读写考虑实用DMA或RDMA技术;AI编程Master对话ID:[cfd7f546e8ecae3b5f8b2d2c83f8a9a3]你计划开发的P2P传输程序设计思路十分先进,充分考虑了现代网络传输中的多项关键技术和挑战,包括分布式系统设计、数据完整性校验、去中心化架构以及高效的数据传输技术。下面是针对你的项目设计的一些建议和思路:[heading3]项目初始化与配置[heading4]Rust环境配置[content]首先,确保你的开发环境已经安装了Rust。你可以通过官网[https://www.rust-lang.org/](https://www.rust-lang.org/)获取安装指南。使用rustup工具来管理Rust版本是个不错的选择,它可以帮助你安装Rust编译器和Cargo包管理器。[heading4]项目结构[content]使用cargo new<project_name>创建新的Rust项目,这将会为你的项目生成一个基本的文件结构和Cargo.toml文件,后者用于管理项目依赖。

Others are asking
没有编程基础可以学习ai吗
没有编程基础也可以学习 AI,但会面临一定的挑战。以下是一些建议: 1. 学习基础知识: 数学基础:包括线性代数、概率论、优化理论等。 了解 AI 的基本概念、发展历程、主要技术分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 选择学习路径: 偏向技术研究方向:学习监督学习、无监督学习、强化学习等机器学习基础,以及神经网络、卷积网络、递归网络、注意力机制等深度学习知识。 偏向应用方向:掌握 Python、C++等编程基础,学习监督学习、无监督学习等机器学习基础,熟悉 TensorFlow、PyTorch 等深度学习框架。 3. 工具和平台: 可以从 Python、JavaScript 等编程语言开始学习。 尝试使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向初学者的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 4. 学习方式: 阅读入门文章和相关书籍。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习。 特别推荐李宏毅老师的课程。 5. 实践和尝试: 掌握提示词的技巧,上手容易且很有用。 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 需要注意的是,无论是技术研究还是应用实践,数学基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-04
我想要做一个ai工具,针对电子元器件行业,我来提供专业术语翻译的知识库和固定描述语句翻译方法,希望上传中文PDF后,可以下载一个翻译好的PDF,0编程基础应该怎么做呢
对于您这种没有编程基础但想要制作针对电子元器件行业的 AI 工具来实现中文 PDF 上传并下载翻译好的 PDF 的需求,以下是一些建议: 首先,您需要学习一些基本的 AI 概念和技术知识,了解自然语言处理(NLP)的基本原理。 其次,可以考虑使用现有的无代码或低代码 AI 开发平台。这些平台通常具有可视化的界面和易于操作的工具,能够帮助您在不编写代码的情况下构建简单的 AI 应用。 然后,针对您的专业术语翻译需求,需要对电子元器件行业的术语进行系统整理和分类,建立一个清晰的术语库。 同时,确定固定描述语句的翻译规则和方法,并将其转化为可在 AI 工具中应用的逻辑。 在实施过程中,要不断测试和优化您的工具,以确保翻译的准确性和质量。 总之,虽然没有编程基础会增加一定的难度,但通过合理利用现有资源和持续学习,您是有可能实现这个目标的。
2025-01-04
0编程基础学ai编程
以下是一些关于 0 编程基础学习 AI 编程的资源和分享: 10 月 28 日 20:00 开始(回放链接:),分享了通往 AGI 之路增量小游戏(https://muykeee.github.io/waytoagiincremental/)、转生之我是野菩萨(https://muykeee.github.io/wildpusaincremental/),分享人是麦橘。 10 月 29 日 20:00 开始(,分享人是梦飞。 10 月 30 日 20:00 开始(回放链接),分享了、AI 拍立得:小程序:Pailido,分享人是银海。 10 月 31 日 20:00 开始(回放链接),分享了 0 基础做小游戏分享:猪猪🐷撞南墙,分享人是南墙。 此外,雪梅 May 在其 AI 学习日记中也有相关记录,如 DAY64 2024.11.3 的 AI 编程共学 2 cursor 入门,以及 DAY65 2024.11.9 的 AI 编程共学 3 AI 拍立得。 麦橘 0 基础跨界 AI 编程共学中提到了利用 AI 编程制作小游戏的相关内容,包括多种创意游戏的尝试、游戏体验的优化、增量游戏的制作、肉鸽游戏模式的介绍、特定主题游戏的开发以及游戏中图案的修改等方面。
2025-01-04
如何使用cursor开展编程开发
以下是关于如何使用 Cursor 开展编程开发的详细指导: 技术架构: 采用前后端分离架构。 后端基于 Coze 工作流构建业务逻辑。 前端为 Chrome 浏览器插件,提供轻量级交互界面。 工作流搭建: 核心组件配置:包括插件大模型、工作流总览、大模型节点提示词、输出节点 markdown 排版(注意 markdown 里图片的渲染格式),注意输出图片的变量用的是 contentUrl。 可视化界面、chrome 插件开发: 最重要的是架构思维,要懂得如何向 AI 描述想要的东西。 获取授权令牌(Token),掌握工作流调用方法。 查看 coze 的 api 开发文档,查看执行工作流的实例,需要两个关键参数:令牌密钥和工作流开发代码。 在这里获取工作流的开发文档、个人令牌和工作流 id。 让 cursor 根据相关内容写一个调用 coze 工作流的服务,可以用 python 测试,也可写成 chrome 插件。 注意声明入参为 article_url,让 cursor 注意中文编码,不然会报错。 Cursor 实践: 下载和安装:打开 Cursor 的官网,点击 download 进行下载和安装,不用魔法上网也可访问。 实现简单需求:安装后打开,可通过 commd+L 调起 AI 对话,输入需求或想实现的效果。 整体页面左侧是代码文件、右侧是提示对话框。可提前创建文件,点击对话框代码块旁的“Apply”“Accept”将代码保存在左侧文件里。 最右侧图可查看功能是否成功,还可在此基础上继续修改,如希望拖动、颜色更美观、显示分钟等,在对话框表达需求,点击“Apply”→“Accept”、保存文件、验证测试。 Tips 小结: 在对话框里不断追问,完善需求。 对话时可@本地代码文件进行问答,得到更精准答案。 可本地存需求说明文档,让其随时查阅。 遇到报错或不理解的地方,截图或复制在对话框询问,要求对细节操作解答,直到验证成功。 不要恐惧代码,从简单小需求练手,使用熟悉后配合会更顺畅。 Cursor 官方介绍: Cursor 旨在让您极其高效,是使用 AI 进行编码的最佳方式。 从您的代码库中获得最佳答案,或参考特定文件或文档,一键使用模型中的代码。 Cursor 通过预测您的下一个编辑,让您轻松完成更改。
2025-01-02
国内主流AI辅助编程工具,比较优缺点
以下是国内主流的 AI 辅助编程工具及其优缺点: GitHub Copilot: 优点:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 缺点:暂未明确。 通义灵码: 优点:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 缺点:暂未明确。 CodeWhisperer: 优点:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 缺点:暂未明确。 CodeGeeX: 优点:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码,提升开发效率。 缺点:暂未明确。 Cody: 优点:代码搜索平台 Sourcegraph 推出,借助 Sourcegraph 强大的代码语义索引和分析能力,了解开发者的整个代码库,不止是代码片段。 缺点:暂未明确。 CodeFuse: 优点:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 缺点:暂未明确。 Codeium: 优点:由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释来帮助软件开发人员,提高编程效率和准确性。 缺点:暂未明确。 需要注意的是,每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 此外,Cursor 作为一款 AI 编程助手,具有以下核心功能和优势: 核心功能: 全语言支持,包括但不限于 Python、JavaScript、Java、C++、Go 和 Rust 等。 能够快速构建完整的项目框架。 在 IDE 环境中实时提供代码建议、自动补全和错误修正等功能。 支持多项目管理。 能够理解和分析技术文档,并基于文档内容生成相应的代码实现。 优势: 开发效率显著提升,能在短时间内完成功能性演示项目。 降低入门门槛,加速初学者学习过程。 跨语言开发支持,方便开发者切换语言。 减少重复性工作,让开发者集中精力于创造性任务。 实时学习新技术,更新知识库。
2024-12-30
你的知识库中有关于AI编程的部分吗
我的知识库中有关于 AI 编程的部分,主要包括以下内容: 1. 从工程视角出发,提到用一个提示词就能写游戏,现在的 AI 编程(如 CURSOR)能做出开源小游戏,可拿来使用、交流并研究内容、优化改造。还提到李继刚老师“read in prompt out”的名言,写 prompt 是基础,后面会讲如何用 agent 串联起来玩。 2. 产品经理虽不会写代码,但用 GPT 能快速做出小插件,不到一分钟就做出统计网页字数的插件。AIPO 项目不限制项目大小,只要动手操作,有想法写个小方案就可做线下路演。还提到 GP4O 等大语言模型可多模态识别,能用于识面相且准确率高。 3. 之前社区测试中有关夫妻相的有趣提示词测试,还指出有 midjourney 提示词、股市卡片、解压缩等众多内容。此外有最佳实践、方法论、论文精读,提到刘海写伪提示词等技巧,吴文达老师讲 prompt 较好,还有 open i 官方提示,博主列出的 6 大策略吃透有助于写提示词。 4. 在一份教程中提到,在 AI 的帮助下,可以完成很多基础的编程工作。若希望再深入,至少要熟悉 Python 基础(包括基本语法、数据类型、控制流、函数、模块和包、面向对象编程、异常处理、文件操作)。 5. 介绍了工程平台,在 cos 主页有新手教程文档,可据此构建智能体。工作流偏向节点调用,可通过 prompt 构建提示词并优化。还能调用多种插件,可添加图像流、触发器和知识库,知识库可上传多种格式内容及在线链接以沉淀知识。 6. 介绍了 Nimbus 智能交互相关内容,包括有趣的智能体、插件商城、扣子案例、模型社区并答疑。 7. 说明了 AI 编程课前准备及相关工具、账号注册,如注册阿里云账号、安装无影、注册 GitHub 账号等。
2024-12-29
学ai先学什么
对于新手学习 AI,建议您从以下几个方面入手: 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念。 了解人工智能的主要分支,如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果您不会代码,对于 AI 可以尝试了解以下作为基础: 1. AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于中学生学习 AI,建议: 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-13
学习AI先学习什么
学习 AI 可以按照以下步骤进行: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 在医疗保健领域,为了让 AI 产生真正的改变,应投资创建一个模型生态系统,让“专家”AI 像优秀的医生和药物开发者那样学习。成为顶尖人才通常从多年的密集信息输入开始,通过正规学校教育和学徒实践,从最出色的实践者那里学习。对于 AI 来说,应通过使用彼此堆叠的模型来训练,而不是仅依靠大量数据和生成模型。例如,先训练生物学模型,再添加特定于医疗保健或药物设计的数据点。预医学生的课程从基础开始,设计新疗法的科学家也需要多年学习和指导,这种学习方式有助于培养处理细微差别决策的直觉。
2024-12-11
我是小白。请给我学习指南,我应该先学什么,后学什么,需要安装哪些AI工具或者收藏哪些网站。我需要简介明了的新手指南,要具体,有可操作性,同时要完整,希望涵盖我学习的全过程。
以下是为您提供的 AI 学习新手指南: 一、学习顺序 1. 首先,您需要拥有一个大模型账号,并熟悉与它们对话的方式。推荐使用性能强大的 ChatGPT4,国产平替有: 2. 接着,阅读 OpenAI 的官方文档: 3. 对于阅读吃力的情况,推荐以下 3 个英文阅读的工具/方法: 浏览器插件“沉浸式翻译” 二、学习方法 1. 掌握提示词的技巧,提示词上手容易且很有用。 2. 进行实践和尝试:理论学习之后,通过实践巩固知识,尝试使用各种产品做出您的作品。 3. 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 4. 持续学习和跟进:AI 领域发展迅速,新成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。
2024-09-02
我刚打开飞书知识库,新手小白要怎么学习?我想对所有的Ai工具有着熟练的使用,先学习什么,再学习什么
对于新手学习 AI 并熟练使用相关工具,建议按以下步骤进行: 1. 掌握提示词技巧:提示词上手容易且很有用。 2. 实践和尝试: 理论学习后通过实践巩固知识,尝试使用各种产品制作作品。 参考飞书知识库中大家实践后的作品和文章分享,并积极分享自己的实践成果。 3. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的第一手体验。 4. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,了解最新发展。 加入 AI 相关社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 如果希望继续精进,还可以学习以下内容: 1. Python 相关: 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态。 异常处理:理解异常,学习使用 try 和 except 语句处理错误。 文件操作:学习文件读写、文件与路径操作。 2. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及关系。 历史发展:回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解线性回归、决策树、支持向量机(SVM)等常用算法。 无监督学习:熟悉聚类、降维等算法。 另外,学习 AI 还可以: 1. 了解 AI 基本概念: 阅读「」,熟悉 AI 术语和基础概念,包括主要分支及它们之间的联系。 浏览入门文章,了解 AI 历史、应用和发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入钻研。 学习 AI 是一个长期过程,需要耐心和持续努力,不要害怕犯错,每个挑战都是成长机会,随着时间推移,您将逐渐建立起自己的 AI 知识体系并取得成就。
2024-08-21
我先系统了解AIGC 行业
以下是关于 AIGC 行业的系统介绍: AIGC(Artificial Intelligence Generated Content,人工智能生成内容)的发展历程可以从内容生产方式的演变来了解。在互联网发展过程中,内容生产方式经历了从 PGC(ProfessionalGenerated Content,专业生成内容)到 UGC(UserGenerated Content,用户生成内容),再到 AIGC 的转变。 在 Web1.0 时代,互联网内容生产以 PGC 为主,由专家和专业机构生产高质量内容,如雅虎、IMDb 等。PGC 的优势在于专业性和易变现,但存在创作门槛高、产量不足等挑战。 随着互联网发展和用户需求多样化,Web 2.0 时代到来,用户参与内容创作,UGC 成为主流。UGC 内容多样、个性化,通过推荐系统满足用户需求,降低了专业门槛,促进了互联网的民主化和个性化内容创作。 在当前,国内 AIGC 行业主要在《网络安全法》《数据安全法》以及《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》共同监管。 此外,还有一些具体的应用案例,如 Collov 是来自美国硅谷的家居垂直行业 AIGC 工具,专注于利用人工智能技术来实现空间设计与家具营销二合一,打通供应链,为企业提高更低成本、更智能高效的空间设计与家具营销解决方案。它能够完成人类设计师以及高美感内容的视觉理解、推理和生成任务,并将生成技术服务于家装、工装、建筑、具身智能机器人、智能驾驶等多领域的商业场景,替代传统人工设计和采集流程。AI 技术的应用显著提高了设计和营销的效率,减少了对传统人工的依赖,增强了客户的交付满意度,提升了企业的市场竞争力。
2025-01-06
给我推荐一个快速读电子书的AI工具
以下为您推荐一些快速读电子书的 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 内容由 AI 大模型生成,请仔细甄别。
2025-01-06
如果用AI来画流程图、结构图的话,应该用哪款产品?
以下是一些可以用于使用 AI 来画流程图、结构图的产品: 1. Lucidchart: 简介:强大的在线图表制作工具,集成了 AI 功能,可自动化绘制多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 2. Microsoft Visio: 简介:专业的图表绘制工具,适用于复杂的流程图等,AI 功能可帮助自动化布局和优化图表设计。 功能:集成 Office 365,方便与其他 Office 应用程序协同工作;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net: 简介:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能:支持本地和云存储(如 Google Drive、Dropbox);多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 4. Creately: 简介:在线绘图和协作平台,利用 AI 功能简化图表创建过程。 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用。 官网:https://creately.com/ 5. Whimsical: 简介:专注于用户体验和快速绘图的工具,适合创建多种示意图。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作。 官网:https://whimsical.com/ 6. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成。 官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:若需要团队协作,可邀请团队成员一起编辑。完成后导出并分享图表。 示例:假设需要创建一个项目管理流程图,可以按照以下步骤使用 Lucidchart: 1. 注册并登录:https://www.lucidchart.com/ 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-06
如何学习AI
以下是关于新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 对于中学生学习 AI 的补充建议: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-06
我想要学AI视频,我应该怎么做
以下是学习 AI 视频的一些建议和资源: 1. 入门教程: 您可以查看。 学习。 2. 交流群: 如需学习 AI 视频、参与 AI 视频挑战赛或参与 AI 视频提示词共创,可直接扫二维码或联系三思或小歪【备注:AI 视频学社】,但必须有 AI 视频账号才能进群,请勿随便申请好友。 3. 直播: AI 视频学社每周 1 次直播(周五直播),例如。 4. 实践建议: 从简单创作开始,如生成零散视频片段或图片进行混剪,选用现成音乐并根据节奏简单剪辑,顺道学习主流创意软件操作。 在成功产出简单作品后,尝试完成更完整的工作流,比如:选题→剧本→分镜描述→文生图→图生视频→配音配乐→剪辑后期。 此外,在 AI 视频学社,小伙伴们可以通过参与每周举办的比赛快速学习相关知识,每周有高手直播分享前沿知识,不定期组织线上或线下活动,大家一起学习最新软件和知识,学习图生视频、视频生视频等技巧。
2025-01-06
最近国内外 有什么新出的AI产品
以下是国内外新出的一些 AI 产品: 图像类产品: 国内: 可灵:由快手团队开发,用于生成高质量的图像和视频,图像质量高,最初采用内测邀请制,现向所有用户开放,价格相对较高,重度用户年费可达几千元,平均每月使用成本在 400 到 600 元,也有临时或轻度使用的免费点数和较便宜包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,生成图像质量高、细节丰富,操作界面简洁直观、用户友好度高,能与阿里其他产品和服务无缝整合,重点是现在免费,每天签到获取灵感值即可,但存在某些类型图像无法生成、处理非中文语言或国际化内容不够出色、处理多元文化内容可能存在偏差等局限性。 搜索类产品: 国内:大模型厂商推出的 ChatBot 产品(智谱清言、Kimi Chat、百小应、海螺 AI 等),搜索厂商或创业团队推出的 AI 搜索产品(360 AI 搜索、秘塔、博查 AI、Miku 等)。 海外:Perplexity、You、Phind 等。 中国公司和团队的出海产品:ThinkAny、GenSpark、Devv 等。 PPT 类产品: 国内:爱设计 PPT,背后有实力强大的团队,对市场需求有敏锐洞察力,把握住了 AI 与 PPT 结合的市场机遇,已确立市场领先地位,代表了当前国内 AI 辅助 PPT 制作的最高水平,能提高制作效率并保证高质量输出。
2025-01-06
微调所需要的算力计算公式
微调所需算力的计算较为复杂,会受到多种因素的影响。以下是一些相关的要点: 在一些教程中,如“大圣:全网最适合小白的 Llama3 部署和微调教程”,提到微调可能需要购买算力,预充值 50 元。 对于大型语言模型(LLM)的微调,由于模型规模大,更新每个权重可能需要很长时间的训练工作,还需考虑计算成本和服务麻烦。 调整用于微调的超参数通常可以产生产生更高质量输出的模型。例如,在某些情况中,可能需要配置以下内容: 模型:可选择“ada”、“babbage”、“curie”或“davinci”之一。 n_epochs:默认为 4,指训练模型的时期数。 batch_size:默认为训练集中示例数量的 0.2%,上限为 256。 learning_rate_multiplier:默认为 0.05、0.1 或 0.2,具体取决于 final batch_size。 compute_classification_metrics:默认为假,若为 True,在分类任务微调时在每个 epoch 结束时在验证集上计算特定分类指标。配置这些超参数可通过 OpenAI CLI 上的命令行标志传递。
2025-01-06
微调所需要的算力计算公式
微调所需算力的计算较为复杂,会受到多种因素的影响。以下为您提供一些相关信息: 在“大圣:全网最适合小白的 Llama3 部署和微调教程”中提到,微调可能需要预充值 50 元购买算力。 “9.生成式 AI Studio 简介”课程中指出,微调大型语言模型(LLM)时,由于模型规模大,更新每个权重可能需要很长时间的训练工作以及巨大的计算成本。 “微调(Finetuning)”部分提到,调整用于微调的超参数通常可以产生产生更高质量输出的模型。需要配置的超参数包括: model:要微调的基本模型的名称,可选择“ada”、“babbage”、“curie”或“davinci”之一。 n_epochs:默认为 4,指训练模型的时期数。 batch_size:默认为训练集中示例数量的 0.2%,上限为 256。 learning_rate_multiplier:默认为 0.05、0.1 或 0.2,具体取决于 final batch_size。 compute_classification_metrics:默认为假,若为 True,在分类任务微调时会在每个 epoch 结束时在验证集上计算特定指标。 需要注意的是,不同的模型和任务,其算力需求的计算方式可能会有所不同。
2025-01-06
微调所需要的算力计算公式
微调所需算力的计算涉及多个因素,目前没有一个固定的通用公式。但以下是一些相关的要点和参考: 在一些教程中,如“大圣:全网最适合小白的 Llama3 部署和微调教程”,提到微调可能需要预充值购买算力,费用约 50 元。 对于大型语言模型(LLM)的微调,由于模型规模大,更新每个权重可能需要很长时间的训练工作,计算成本较高。 在微调过程中,超参数的配置也会影响算力需求。例如,选择不同的基本模型(如“ada”、“babbage”、“curie”或“davinci”)、设置训练的时期数(n_epochs)、批量大小(batch_size)、学习率乘数(learning_rate_multiplier)等。批量大小通常为训练集中示例数量的 0.2%,上限为 256;学习率乘数默认为 0.05、0.1 或 0.2,具体取决于最终的批量大小。 需要注意的是,不同的模型和具体的微调任务,其算力需求会有所不同。
2025-01-06
根据小学生试卷答题情况,分析需要加强复习的知识点,用什么AI工具
以下是一些可用于根据小学生试卷答题情况分析需要加强复习知识点的 AI 工具及相关建议: 1. ChatGPT:可以帮助分析答题中的语言表达、逻辑推理等方面的问题,从而确定语文、数学等学科中需要加强的知识点。 2. 国内模型如豆包:能提供一定的分析和指导。 3. 通义:对于英语等学科的答题情况分析有帮助,例如语法、词汇等方面的问题。 在使用这些 AI 工具时,您可以将试卷内容输入给工具,并要求其分析答题中的错误和不足之处,从而找出需要加强复习的知识点。但需要注意的是,不能完全依赖 AI 的分析结果,还需要结合教师的专业判断和教学经验。
2025-01-05
我需要用AI画一幅清晨的,早晨的画,请给我一些提示,或者这个提示词
以下是一些用于绘制清晨场景的 AI 绘画提示词: 早晨的阳光洒在长城上,露出一线光辉。提示词:A photographic capture of the Great Wall in the morning light, adorned with red lanterns for the Spring Festival, revealing a gleam along its path. From a distant view, slowly zooming in to unveil its grandeur and festive spirit. Created Using: vibrant reds, traditional lanterns, early morning light, detailed texture of the wall, historical ambiance, wideangle lens, cinematic zoom, festive atmosphere ar 16:9 v 6.0 市民在公园里晨练,老人太极,孩子们在跑步。提示词:A lively park scene at dawn with citizens practicing Tai Chi and children running, all amidst Spring Festival decorations like red lanterns and paper cuttings. Medium shot with a horizontal pan to capture the energetic and festive atmosphere. Created Using: natural daylight, festive decorations, diverse age groups, motion blur for movement, community spirit, green park background with red accents, candid expressions, lively festive atmosphere ar 16:9 v 6.0 场景提示词:In the morning mist(在晨雪中)、full of sunlight(充满阳光) 此外,还有一些常见的与清晨相关的场景提示词,如:classroom(教室)、forest(森林)、ruins(废墟)、city(城市)、street scenery(街景)、meadow(草原草地)等。您可以根据自己的具体需求和创意,对这些提示词进行组合和调整。
2025-01-04
flux lora调参数,我训练出来的人物模型和数据集的人物图片不像,出现这种情况的原因都有哪些,应该调整哪些参数,我需要我的flux模型训练出来的模型是一致性还原性,和泛化性比较不错的,按照这个方向给我指导
以下是关于 flux lora 调参数以获得一致性、还原性和泛化性较好的人物模型的指导: 打标环节: 选择基础大模型,如“麦橘写实”,并为 lora 命名。 将照片导入,选择合适分辨率,可勾选“脸部加强训练”,然后进行预处理。手动裁剪图片比自动裁剪更可靠。 预处理后会出现脸部和整体文件夹,且每张照片自动打好 tag 标签。 可为整体添加统一标签,也可单独修改每张图片的标签。标签有助于 AI 理解图片,描述越详细,人物变化可能越多,泛化性可能越好。仔细检查每张图片的标签,其质量会影响人物 lora 的泛化性。 参数调整环节: 大部分参数是固定的,主要的几个按照人物参数配置一遍。后期根据生成结果再调整。 炼丹环节: 例如 18 张脸部图片,20 张整体图片,各训练 50 步,循环训练 10 次,并行步数为 1。训练总步数和时长会有所不同,loss 值可作为参考,但最终效果仍需通过测试判断。 此外,在 Lora 串联方面,多个 Lora 串联时左右顺序不影响结果,可复制并点对点连接。CLIP 层 1 和 2 的效果不同,加 Lora 时某些 Lora 可能更适合 2。Lora 可用于生成底模无法画出的内容。在运行中点击取消可打断正在渲染跑的图。图像放大可通过 up scale image using model 节点,选择放大模型,用 resize 节点调整尺寸,再用编码器和采样器处理。放大模型直接放大的图像效果不佳,需再次采样增加细节。添加飞桨缺失节点可通过拖入工作流查看标红节点,从管理器安装或从 GitHub 获取节点包放入文件管理系统。采样器和调度器参数设置建议参考模型作者推荐,并结合自己调试。Web UI 中 Lora 库有刷新按钮,将 Lora 丢到文件夹后多点几次刷新即可。
2025-01-04