Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

CO-STAR框架

Answer

CO-STAR 框架是一个获奖的提示词框架,由 Sheila Teo 开发。在新加坡首届 GPT-4 Prompt Engineering 大赛中使用该框架并获得冠军。

CO-STAR 框架涵盖以下要素:

  1. 上下文(Context):提供必要的背景信息,帮助大型语言模型(LLM)理解对话或请求的环境和条件。没有足够的上下文,LLM 可能会误解问题或给出不相关的信息。明确的上下文有助于确保 LLM 的回答既准确又相关。例如,如果文章是为一个特定的行业会议撰写,那么上下文中应该包含会议的主题、参与者的背景信息以及任何相关的行业趋势。
  2. 目标(Objective):明确说明希望从 LLM 那里得到的具体结果或行动。清晰的目标可以帮助 LLM 集中精力解决问题,并减少无关的回答。例如,如果目标是撰写一篇文章,那么应具体说明文章的目的(比如介绍新技术、分析市场趋势等)以及期望达到的效果(比如提高品牌知名度、激发行业讨论等)。
  3. 风格(Style):指明文本的整体风格,包括使用的词汇选择、句式结构以及可能的参照对象。不同的风格适合不同的场合。例如,对于一篇科学论文,可能需要使用正式的语言和客观的语气;而对于博客文章,则可以采用更轻松、更具个人色彩的写作风格。
  4. 语气(Tone):设定文本的情感基调,确保它符合预期的氛围。正确的语气可以帮助建立与读者之间的联系,并传达出适当的态度。例如,在撰写一篇面向潜在投资者的商业计划书时,可能需要采用正式、专业且具有说服力的语气;而在写一篇面向年轻人的产品评测时,则可能采用更加轻松和幽默的语气。
  5. 受众(Audience):明确回答或文本的目标读者是谁。了解受众有助于调整语言复杂度、术语使用以及整体信息传递的方式。例如,如果目标读者是专业人士,可以使用行业术语和复杂的概念;如果是面向大众,就需要简化语言并避免过于专业化的术语。
  6. 回复(Response):指定最终输出的形式和结构。正确的格式可以使信息更容易被理解和消化。例如,如果需要一份详细的分析报告,可能需要按照标准报告格式来组织信息,包括摘要、方法论、数据、结论等部分;而如果是一个简单的问答,直接以列表形式呈现答案即可。
Content generated by AI large model, please carefully verify (powered by aily)

References

【全方位解析】企业如何通过提示词工程优化AI输出,提升市场竞争力

其中:(C)上下文(Context)也就是Background,讨论的背景信息,让大语言模型聚焦在我们讨论的具体场景下。避免偏离主线瞎扯。如:公司正在研发一个新产品,为公司会议准备简报(O)目标(Objective)希望大语言模型要做的事,清晰明确的目标,传统的SMART原则能帮我们梳理。如:生成一份关于市场趋势的报告(S)风格(Style)大语言模型的语言风格。它有点像其他框架中的角色(Role),希望激发那个角色的训练数据。如:希望资深商业顾问的风格写(T)语气(Tone)指定大语言模型回复时的态度。符合我们期望的情绪和情感,比如严肃的,言简意赅的等如:正式且严谨(A)受众(Audience)指定目标受众。可以理解为对上面上下文的一个补充。我们希望大语言模型给出,我们能听懂的行话。如:企业高管(R)答复/回应(Response)返回的格式,列表形式,会话形式,Markdown格式等等。如生成一份包含图表和数据的报告结构化提示词,帮我们更好梳理需要大语言模型解决的问题。随着学习的深入,掌握了提示词的基本技巧以后,我们开始思考,如何把它们应用在更复杂的分析决策中。

安迪:写给职场人的 AI 办公手册——如何与 AI 高效对话

CO-STAR是一个获奖的提示词框架,由**Sheila Teo**开发**。**作者在新加坡首届GPT-4 Prompt Engineering大赛中使用CO-STAR框架,获得冠军。新加坡首届GPT-4提示工程(Prompt Engineering)大赛,由新加坡政府科技署(GovTech**)组织,汇聚了超过400位优秀的参与者。CO-STAR框架涵盖以下要素:**Context(上下文)、Objective(目标)、Style(风格)、Tone(语气)、Audience(受众)、Response(回复)**。Context(上下文)定义:提供必要的背景信息,帮助大型语言模型(LLM)理解对话或请求的环境和条件。重要性:没有足够的上下文,LLM可能会误解问题或给出不相关的信息。明确的上下文有助于确保LLM的回答既准确又相关。示例:如果文章是为一个特定的行业会议撰写,那么上下文中应该包含会议的主题、参与者的背景信息以及任何相关的行业趋势。Objective(目标)定义:明确说明希望从LLM那里得到的具体结果或行动。重要性:清晰的目标可以帮助LLM集中精力解决问题,并减少无关的回答。示例:如果目标是撰写一篇文章,那么应具体说明文章的目的(比如介绍新技术、分析市场趋势等)以及期望达到的效果(比如提高品牌知名度、激发行业讨论等)。Style(风格)

安迪:写给职场人的 AI 办公手册——如何与 AI 高效对话

定义:指明文本的整体风格,包括使用的词汇选择、句式结构以及可能的参照对象。重要性:不同的风格适合不同的场合。例如,一种风格可能适合学术论文,而另一种则更适合社交媒体帖子。示例:对于一篇科学论文,可能需要使用正式的语言和客观的语气;而对于博客文章,则可以采用更轻松、更具个人色彩的写作风格。Tone(语气)定义:设定文本的情感基调,确保它符合预期的氛围。重要性:正确的语气可以帮助建立与读者之间的联系,并传达出适当的态度。示例:在撰写一篇面向潜在投资者的商业计划书时,可能需要采用正式、专业且具有说服力的语气;而在写一篇面向年轻人的产品评测时,则可能采用更加轻松和幽默的语气。Audience(受众)定义:明确回答或文本的目标读者是谁。重要性:了解受众有助于调整语言复杂度、术语使用以及整体信息传递的方式。示例:如果目标读者是专业人士,可以使用行业术语和复杂的概念;如果是面向大众,就需要简化语言并避免过于专业化的术语。Response(回复)定义:指定最终输出的形式和结构。重要性:正确的格式可以使信息更容易被理解和消化。示例:如果需要一份详细的分析报告,可能需要按照标准报告格式来组织信息,包括摘要、方法论、数据、结论等部分;而如果是一个简单的问答,直接以列表形式呈现答案即可。

Others are asking
comfyui 学习教程
以下是一些关于 ComfyUI 的学习资源和推荐学习路径: 学习资料网站: ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户。网站:https://www.comfyuidoc.com/zh/ 优设网:有详细的入门教程,介绍了 ComfyUI 的特点、安装方法及生成图像等内容。教程地址:https://www.uisdc.com/comfyui3 知乎:有用户分享的部署教程和使用说明,适合有一定基础并希望进一步了解的用户。教程地址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:有一系列涵盖从新手入门到精通各个阶段的视频教程。教程地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 共学快闪内容:包括 Stuart 风格迁移、红泥小火炉基础课程、大雨换背景图等众多课程和工作流相关内容。 推荐学习路径: 入门视频教程:学习三个 NENLY 出品的免费视频课程,包括“ComfyUI 入门教程”(https://www.bilibili.com/video/BV1D7421N7xN)、“ComfyUI 自定义节点的秘密”(https://www.bilibili.com/video/BV1pZ421b7t7)、“拆解 ComfyUI 工作流”(https://www.bilibili.com/video/BV1ab42187er/)。 理论宝典教程:学习 ZHO 出品的免费理论视频课程。 文生图实操:学习完上述视频课程后,可使用文生图工作流实际出图实操,工作流地址:https://openart.ai/workflows/lailai/textgeneratesimagesmvpworkflow/ChYNJiXHkZrjyvg1yL9f 内容由 AI 大模型生成,请仔细甄别。
2025-01-06
Stable Diffusion、comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其想象成集成了 stable diffusion 功能的 substance designer。它具有以下特点: 优势: 对显存要求相对较低,启动和出图速度快。 生成自由度更高。 可以和 webui 共享环境和模型。 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 丰富(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 其生图原理如下: 基础模型:ComfyUI 使用预训练的扩散模型作为核心,通常是 Stable Diffusion 模型,包括 SD1.5、SD2.0、SDXL、SD3、FLUX 等。 文本编码:当用户输入文本提示时,ComfyUI 首先使用 CLIP 文本编码器将文本转换为向量表示,以捕捉文本的语义信息。 Pixel Space 和 Latent Space: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于“图像输入”模块或直接从文本提示生成的随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点执行采样过程,通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程,在 ComfyUI 中通常通过调度器控制,如 Normal、Karras 等,可通过“采样器”节点选择不同调度器控制处理噪声和逐步去噪回归到最终图像。 时间步数:在生成图像时,扩散模型会进行多个去噪步,通过控制步数影响图像生成的精细度和质量。 官方链接:https://github.com/comfyanonymous/ComfyUI (内容由 AI 大模型生成,请仔细甄别)
2025-01-06
comfyui手册
以下是关于 ComfyUI 的相关学习资料和安装部署指南: 学习资料: 1. ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验用户,网址:https://www.comfyuidoc.com/zh/ 。 2. 优设网:有详细的 ComfyUI 入门教程,适合初学者,网址:https://www.uisdc.com/comfyui3 。 3. 知乎:有用户分享 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,网址:https://zhuanlan.zhihu.com/p/662041596 。 4. Bilibili:提供一系列涵盖从新手入门到精通阶段的视频教程,网址:https://www.bilibili.com/video/BV14r4y1d7r8/ 。 安装部署指南: 1. 作者“白马少年”于 2023 年 9 月 3 日 19:00 发布的【ComfyUI】本地部署 ComfyUI 上手指南,原文网址:https://mp.weixin.qq.com/s/7ZO9AXvzjwohyNOXTe1x8A 。 先讲解本地部署和初步使用方法,ComfyUI 下载的 github 链接:https://github.com/comfyanonymous/ComfyUIinstalling,也可去作者网盘下载一键启动压缩包。下载完后,将文件解压到一个没有中文的路径下。 2. 完全从 0 开始安装的介绍: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够空间,最低 100G 起步(包括模型)。 注:mac 系统、AMD 显卡、低显卡的情况也可安装使用,但功能不全,出错率偏高,严重影响使用体验,建议升级设备或者采用云服务器玩耍。 下载并更新 Nvidia 显卡驱动下载地址:https://www.nvidia.cn/ geforce/drivers/ 。 下载并安装所需环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-03
Microsoft 365 Copilot是收费软件吗
Microsoft 365 Copilot 需订阅 Microsoft 365 才能使用,微软将于 12 月 1 日在中国大陆免费提供 Copilot 功能给企业和教育机构。Copilot AI 模型支持联网获取数据。
2025-01-03
coze上的智能体发布到微信公众号后,支持语音聊天吗
Coze 上的智能体发布到微信公众号后,支持语音聊天。 chatgptonwechat(简称 CoW)项目是基于大模型的智能对话机器人,支持微信公众号、企业微信应用、飞书、钉钉接入,可选择多种模型,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业 AI 应用。 登录宝塔面板后,在宝塔面板当中可视化控制云服务器,部署 docker 容器,启动 CoW 项目与微信取得关联。具体操作包括点击“Docker”中的“编排模板”或“项目模板”中的“添加”按钮,复制编译好的内容,在“容器编排”中“添加容器编排”等步骤。成功将 Bot 接入微信中后,点击容器可以看到运行的服务,需要手动刷新查看相关日志。 需要注意的是,之前 Coze AI 平台不支持直接与个人微信和微信群进行功能对接,但国内版正式发布 API 接口功能后,直接对接个人微信甚至微信群已成为可能。
2025-01-03
有关于copilot studio 的教程吗
以下是关于 Copilot Studio 的相关信息: Copilot Studio 是微软推出的一项功能,具有以下特点和应用: 1. Copilot Personal:在 GPT4o 的加持下,能了解您玩游戏等情况。 2. Team Copilot:新升级后可在 Microsoft Teams、Microsoft Loop、Microsoft Planner 等协作平台使用,包括会议主持人、团队合作者、项目经理等角色的功能。 3. Copilot Studio 非常震撼,能让电脑上的行为实现自动化,例如处理订单的全过程。此功能将于今年年底正式推出。 此外,Copilot Studio 也是一些 Agent 构建平台之一,与其他平台如 Coze、文心智能体、MindOS 的 Agent 平台、斑头雁、钉钉 AI 超级助理等各有特点。您可以根据自身需求选择适合的平台。 同时,在 2024 年 5 月 22 日的历史更新中,也有关于微软推出 Copilot Studio 等的相关报道。
2025-01-03
I am new to Ai, I want to learn about, however I don’t know how to start to create a tailor AI that can suit for my background and can help me to increase my work productivity. Can you show me how I can learn ai from beginning step by step?
以下是为您提供的从零基础开始学习 AI 并创建适合您背景、能提高工作效率的定制 AI 的逐步指南: 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 技术应用 如果您对生成式人工智能还不甚了解,当务之急是迅速掌握其基本概念和潜在影响。您无需成为技术专家,深入每个技术细节,重点应放在理解这项技术如何革新我们的工作方式,如何重塑行业格局。这种宏观的理解将帮助您在变革中找准定位,抓住机遇。 深入了解市场上现有的人工智能产品和工具,并积极尝试将它们应用到实际工作中。这种实践性的学习不仅能帮助您快速适应新技术,还能让您洞察到 AI 在实际工作中的优势和局限性。通过亲身体验,您将更好地理解如何将 AI 工具与您的专业知识和创造力相结合,从而在工作中创造更大的价值。 7. 精准控制生成式人工智能 当您深入了解了人工智能的背景并实际运用了这些产品后,您将迈入一个新的阶段:学习如何精准控制生成式人工智能,使之成为您工作的得力助手,显著提升您的工作效率和产出质量。在这个阶段,您将重点学习提示词技术。这项技能将帮助您编写更加清晰、精确的指令,从而更好地引导 AI 工具产生您所需要的结果。掌握了这项技能,您就能够更加灵活地运用 AI 工具,使其真正成为您工作中的得力助手。 8. 探索构建智能体(AI Agents) 您可以探索如何构建智能体(AI Agents)。这些智能体有潜力彻底革新您的工作方式。试想一下,拥有多个虚拟伙伴和助手与您共同工作的场景。每个智能体都可以被赋予特定的角色和任务,它们可以协同工作,大大提高您的工作效率和创新能力。 在实际应用中,为您提供几条准则: 如果您不确定如何为您的 AI 网站设计徽标,可以使用 AI 徽标生成器。网上有许多不同的 AI 徽标生成器可供选择,例如 Logomaster.ai、Free Logo Design、Logo AI、Looka logo maker(原名 Logojoy)、Brandmark、DesignEvo、Tailor Brands、Designhill 等。 为您的 AI 网站新徽标起草设计概要,包括项目名称、客户、日期、目的、目标受众和品牌属性等方面。 希望以上内容对您有所帮助,祝您在学习 AI 的道路上取得成功!
2024-12-27
costar 框架
COSTAR 框架是一个获奖的提示词框架,由 Sheila Teo 开发。作者在新加坡首届 GPT4 Prompt Engineering 大赛中使用该框架并获得冠军。此框架由新加坡政府科技署(GovTech)组织的大赛中产生,汇聚了超过 400 位优秀的参与者。 COSTAR 框架涵盖以下要素: 1. Context(上下文):提供必要的背景信息,帮助大型语言模型(LLM)理解对话或请求的环境和条件。没有足够的上下文,LLM 可能会误解问题或给出不相关的信息。明确的上下文有助于确保 LLM 的回答既准确又相关。例如,如果文章是为一个特定的行业会议撰写,那么上下文中应该包含会议的主题、参与者的背景信息以及任何相关的行业趋势。 2. Objective(目标):明确说明希望从 LLM 那里得到的具体结果或行动。清晰的目标可以帮助 LLM 集中精力解决问题,并减少无关的回答。例如,如果目标是撰写一篇文章,那么应具体说明文章的目的(比如介绍新技术、分析市场趋势等)以及期望达到的效果(比如提高品牌知名度、激发行业讨论等)。 3. Style(风格):明确您期望的写作风格。您可以指定一个特定的著名人物或某个行业专家的写作风格,如商业分析师或 CEO。这将指导 LLM 以一种符合您需求的方式和词汇选择进行回应。 4. Tone(语气):设置回应的情感调。设定适当的语气,确保 LLM 的回应能够与预期的情感或情绪背景相协调。可能的语气包括正式、幽默、富有同情心等。 5. Audience(受众):识别目标受众。针对特定受众定制 LLM 的回应,无论是领域内的专家、初学者还是儿童,都能确保内容在特定上下文中适当且容易理解。 6. Response(回复):规定输出的格式。确定输出格式是为了确保 LLM 按照您的具体需求进行输出,便于执行下游任务。常见的格式包括列表、JSON 格式的数据、专业报告等。对于大部分需要程序化处理 LLM 输出的应用来说,JSON 格式是理想的选择。 在使用大语言模型时,有效的提示构建至关重要。COSTAR 框架,由新加坡政府科技局数据科学与 AI 团队创立,是一个实用的提示构建工具。它考虑了所有影响大语言模型响应效果和相关性的关键因素,帮助您获得更优的反馈。 应用 COSTAR 框架时: 1. (C)上下文:为任务提供背景信息。通过为大语言模型(LLM)提供详细的背景信息,可以帮助它精确理解讨论的具体场景,确保提供的反馈具有相关性。 2. (O)目标:明确您要求大语言模型完成的任务。清晰地界定任务目标,可以使大语言模型更专注地调整其回应,以实现这一具体目标。 3. (S)风格:明确您期望的写作风格。您可以指定一个特定的著名人物或某个行业专家的写作风格,如商业分析师或 CEO。 4. (T)语气:设置回应的情感调。设定适当的语气,确保大语言模型的回应能够与预期的情感或情绪背景相协调。 5. (A)受众:识别目标受众。针对特定受众定制大语言模型的回应,无论是领域内的专家、初学者还是儿童,都能确保内容在特定上下文中适当且容易理解。 6. (R)响应:规定输出的格式。确定输出格式是为了确保大语言模型按照您的具体需求进行输出,便于执行下游任务。常见的格式包括列表、JSON 格式的数据、专业报告等。对于大部分需要程序化处理大语言模型输出的应用来说,JSON 格式是理想的选择。
2024-12-23
目前的 rag 框架都有哪些
目前常用的 RAG 框架有 LangChain。 LangChain 是一个为简化大模型应用开发而设计的开源框架。它具有以下特点: 1. 提供一套模块化的工具和库,便于开发者轻松集成和操作多种大模型。 2. 设计注重简化开发流程,能让开发者将更多精力投入到创造应用的核心价值上。 3. 支持广泛的模型,具备良好的可扩展性,以适应不断变化的业务需求。 4. 作为得到社区广泛支持的开源项目,拥有活跃的贡献者和持续的更新。 5. 提供了全面的文档和示例代码,有助于新用户快速掌握。 6. 在设计时充分考虑了应用的安全性和用户数据的隐私保护。 7. 是一个多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-01-07
微调训练框架的选择
以下是关于微调训练框架选择的相关内容: 在 Stable Diffusion 中: 首先,config 文件夹中有两个配置文件 config_file.toml 和 sample_prompt.toml,分别存储着训练超参数与训练中的验证 prompt。 config_file.toml 文件主要包含了 model_arguments、optimizer_arguments、dataset_arguments、training_arguments、sample_prompt_arguments 以及 saving_arguments 六个维度的参数信息。 v2 和 v_parameterization:两者同时设置为 true 时,开启 Stable Diffusion V2 版本的训练。 pretrained_model_name_or_path:读取本地 Stable Diffusion 预训练模型用于微调训练。 optimizer_type:有七种优化器可以选择。不进行选择时默认启动 AdamW 优化器;显存不太充足时,可选择 AdamW8bit 优化器,但会有轻微性能损失;Lion 优化器是较新的版本,性能优异,但学习率需设置较小,比如为 AdamW 优化器下的 1/3。 learning_rate:单卡推荐设置 2e6,多卡推荐设置 1e7。 除了上述的训练环境参数传入,还需将配置好的 config_file.toml 和 sample_prompt.txt 参数传入训练脚本中。 当设置 1024 分辨率+FP16 精度+xformers 加速时,SD 模型进行 Batch Size=1 的微调训练需要约 17.1G 的显存,进行 Batch Size=4 的微调训练需要约 26.7G 的显存,所以最好配置一个 24G 以上的显卡。 微调训练完成后,模型权重会保存在之前设置的 output_dir 路径下。可以使用 Stable Diffusion WebUI 作为框架加载模型进行 AI 绘画,需将训练好的模型放入/models/Stablediffusion 文件夹下。 在 OpenAI 中: 使用 OpenAI CLI 开始微调工作,需指定从哪个 BASE_MODEL 开始(ada、babbage、curie 或 davinci),还可使用后缀参数自定义微调模型的名称。 运行命令后会上传文件、创建微调作业并流式传输事件直到作业完成。 每个微调工作都从一个默认为 curie 的基本模型开始,模型的选择会影响性能和成本。 开始微调作业后,可能需要几分钟或几小时才能完成,工作完成后会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。
2025-01-06
微调训练框架的选择
以下是关于微调训练框架选择的相关内容: 对于 Stable Diffusion 的微调训练: 1. 配置文件: 在 config 文件夹中有 config_file.toml 和 sample_prompt.toml 两个配置文件,分别存储着训练超参数与训练中的验证 prompt。 config_file.toml 文件包含 model_arguments、optimizer_arguments、dataset_arguments、training_arguments、sample_prompt_arguments 以及 saving_arguments 六个维度的参数信息。 例如,v2 和 v_parameterization 同时设置为 true 时开启 Stable Diffusion V2 版本的训练;pretrained_model_name_or_path 用于读取本地 Stable Diffusion 预训练模型用于微调训练;optimizer_type 可选择多种优化器,如 AdamW(默认)、AdamW8bit(显存不足时可选,会有轻微性能损失)、Lion(最新版本,性能优异但学习率需设置较小)等;学习率方面,单卡推荐设置 2e6,多卡推荐设置 1e7。 2. 训练启动: 将配置好的 config_file.toml 和 sample_prompt.txt 参数传入训练脚本中。 在命令行输入相应命令即可开始训练,训练脚本启动后会打印出 log 方便查看训练过程节奏。 1024 分辨率+FP16 精度+xformers 加速时,SD 模型进行 Batch Size=1 的微调训练约需 17.1G 显存,Batch Size=4 的微调训练约需 26.7G 显存,因此最好配置 24G 以上显卡。 3. 模型使用: 微调训练完成后,模型权重保存在之前设置的 output_dir 路径下。 使用 Stable Diffusion WebUI 框架加载模型进行 AI 绘画,需将训练好的模型放入/models/Stablediffusion 文件夹下,并在 Stable Diffusion WebUI 中选用。 对于 OpenAI 的微调训练: 1. 准备训练数据后,使用 OpenAI CLI 开始微调工作。 2. 指明从哪个基本模型(ada、babbage、curie 或 davinci)开始,可使用后缀参数自定义微调模型名称。 3. 运行命令后会上传文件、创建微调作业并流式传输事件直到作业完成,通常需要几分钟,也可能因作业排队或数据集大小等因素需要数小时。 4. 每个微调工作都从默认为 curie 的基本模型开始,模型选择会影响性能和成本。 5. 开始微调作业后,可能需要排队等待,完成后会显示微调模型的名称。还可以列出现有作业、检索作业状态或取消作业。
2025-01-06
12种prompt框架
以下是 12 种 Prompt 框架: 1. Instruction(指令):说明希望 AI 执行的具体任务,例如翻译或写一段文字。 2. Context(背景信息):提供更多背景信息,引导模型做出更贴合需求的回复。 3. Input Data(输入数据):告知模型需要处理的数据。 4. Output Indicator(输出引导):告知模型输出的类型或风格。 5. Capacity and Role(能力和角色):明确 ChatGPT 应扮演的角色。 6. Insight(见解):提供请求背后的见解、背景和上下文。 7. Statement(声明):明确要求 ChatGPT 做什么。 8. Personality(个性):指定希望 ChatGPT 以何种风格、个性或方式回应。 9. Experiment(实验):请求 ChatGPT 回复多个示例。 10. Background(背景):说明背景,为 ChatGPT 提供充足信息。 11. Role(角色):指定希望 ChatGPT 扮演的角色。 12. Objectives(目标):说明希望实现的目标。 此外,还有一些其他相关的框架概念,如: 1. Key Result(关键结果):明确想要的具体效果,并试验和调整。 2. Evolve(试验并改进):包括改进输入、改进答案和重新生成等方法。 3. CONTEXT 上下文背景:为对话设定舞台。 4. OBJECTIVE 目的:描述目标。 5. ACTION 行动:解释所需的动作。 6. SCENARIO 方案:描述场景。 7. TASK 任务:描述任务。 8. ICIO 框架:相关链接 9. CRISPE 框架:相关链接 10. BROKE 框架:作者陈财猫,相关链接 11. PATFU 泡芙提示词框架:作者口袋君,包括 Problem(问题)、Aera(领域)、Task(任务)等。
2025-01-06
撰写一篇汽车领域人工智能自动驾驶应用系统方案,参照以下要求:(1) 选题应为课程相关的技术或者原理的应用。 (2) 重点撰写第2部分技术与服务,必须要使用到课程中所学到或者相关技术。 (3) 第6部分财务分析可根据情况适当缩减。 (4) 整体架构可以根据选题进行调整,可适当增加章节或者删减。 (5) 字体大小、标题等必须和模板相同。篇幅20页以上,不少于10000字,小四,宋体。 以下为一篇样稿,可参考其框架撰写 城市智能停车服务系统建设方案 目 录 1 项目背景 1 1.1 项目背景
以下是为您撰写的汽车领域人工智能自动驾驶应用系统方案的部分内容,您可以根据实际需求进行进一步的完善和补充: 一、项目背景 人工智能在汽车行业的应用已经十分广泛,正在深刻改变汽车的各个方面。自动驾驶技术利用 AI 进行图像识别、传感器数据分析和决策制定,使汽车能够自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司都在积极开发和测试自动驾驶汽车。车辆安全系统中,AI 用于增强自动紧急制动、车道保持辅助和盲点检测等功能,通过分析摄像头和传感器数据预防事故。个性化用户体验方面,AI 可根据驾驶员偏好调整车辆设置,包括座椅位置、音乐选择和导航系统。预测性维护通过分析车辆实时数据,预测潜在故障和维护需求,提高车辆可靠性和效率。在汽车制造中,AI 用于自动化生产线,优化生产流程和质量控制。汽车销售和市场分析中,AI 帮助分析市场趋势、消费者行为和销售数据,优化营销策略和产品定价。电动化和能源管理方面,AI 在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。共享出行服务借助 AI 优化路线规划、车辆调度和定价策略,提升服务效率和用户满意度。语音助手和车载娱乐由 AI 驱动,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。车辆远程监控和诊断利用 AI 系统远程监控车辆状态,提供实时诊断和支持。 二、技术与服务 1. 自动驾驶技术 传感器融合:采用多种传感器,如激光雷达、摄像头、毫米波雷达等,收集车辆周围环境信息。利用 AI 算法对这些多源数据进行融合和分析,提高环境感知的准确性和可靠性。 深度学习决策:基于深度神经网络,训练车辆的决策模型。通过大量的真实驾驶数据,让模型学习如何在各种复杂场景下做出最优的驾驶决策,如加速、减速、转向等。 模拟训练:利用虚拟仿真环境进行大规模的自动驾驶训练。在模拟环境中,可以快速生成各种复杂和罕见的交通场景,加速模型的训练和优化。 2. 车辆安全系统 实时监测与预警:利用 AI 实时分析来自车辆传感器的数据,如车速、加速度、转向角度等,以及外部环境信息,如道路状况、天气条件等。当检测到潜在的危险情况时,及时向驾驶员发出预警。 自动紧急制动:基于 AI 的图像识别和距离检测技术,当判断车辆即将与前方障碍物发生碰撞且驾驶员未采取制动措施时,自动启动紧急制动系统,降低事故风险。 3. 个性化用户体验 偏好学习:通过收集驾驶员的日常操作数据,如座椅调整习惯、音乐播放喜好、常用导航路线等,利用机器学习算法分析和学习驾驶员的偏好模式。 智能推荐:根据学习到的偏好,为驾驶员提供个性化的推荐,如座椅自动调整、音乐推荐、导航路线规划等。 4. 预测性维护 数据采集与分析:安装各类传感器收集车辆的运行数据,如发动机转速、油温、轮胎压力等。利用 AI 算法对这些数据进行分析,挖掘潜在的故障模式和趋势。 故障预测模型:建立基于机器学习的故障预测模型,提前预测可能出现的故障,并及时通知驾驶员和维修人员,安排预防性维护。 5. 生产自动化 质量检测:利用机器视觉技术和 AI 算法,对生产线上的汽车零部件进行自动检测,识别缺陷和瑕疵,提高产品质量。 生产流程优化:通过分析生产数据,如设备运行状态、生产节拍等,利用 AI 优化生产流程,提高生产效率,降低生产成本。 三、财务分析(可根据情况适当缩减) 1. 初始投资 技术研发费用:包括自动驾驶算法开发、硬件设备采购、测试场地建设等方面的费用。 车辆改装和设备安装成本:为实现自动驾驶功能,对车辆进行改装和安装相关传感器、计算设备等的成本。 2. 运营成本 数据采集和处理费用:持续收集车辆运行数据和环境数据,并进行处理和分析的费用。 维护和升级成本:对自动驾驶系统进行定期维护、软件升级和硬件更换的费用。 3. 收益来源 车辆销售增值:配备自动驾驶和智能功能的汽车可以提高售价,增加销售收入。 服务订阅费用:为用户提供个性化服务、远程监控和诊断等服务的订阅收费。 4. 盈利预测 根据市场需求、成本控制和收益增长情况,进行短期和长期的盈利预测。 以上内容仅供参考,您可以根据具体的项目需求和实际情况进一步完善和细化各个部分。
2024-12-27
如何利用 AIGC 技术实现游戏产业的生产力革命,请结合相关技术的原理和框架图进行阐述
利用 AIGC 技术实现游戏产业的生产力革命主要体现在以下几个方面: 1. 降低开发成本:AIGC 技术能够极大程度地减少游戏开发过程中的人力、物力和时间投入。 2. 缩减制作周期:加快游戏的制作速度,使游戏能够更快地面向市场。 3. 提升游戏质量:例如生成新的高质量游戏内容,如地图、角色和场景,改进游戏的图像和声音效果等。 4. 带来新的交互体验:为玩家提供更加丰富和独特的游戏体验。 游戏人工智能技术的未来发展方向还包括: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所,但将游戏中的技术推广到现实世界应用仍面临诸多挑战,需要进一步研究和发展。 2. 为通用人工智能的孵化给予帮助:经多个复杂游戏训练后的“玩游戏”的人工智能体,将为通用人工智能的发展提供支持。 随着游戏中生成式人工智能革命的进展,它将彻底重塑用户生成内容(UGC),创造一个任何人都可以构建游戏的世界,并将游戏市场扩大到超出许多人的想象。在未来几年,深厚的技术知识或艺术掌握将不再是开发游戏所需的基本技能,创作者只会受到他们的精力、创造力和想象力的限制。生成式人工智能将通过使游戏创作民主化来改变和颠覆 UGC 游戏领域,让数百万人能够制作他们的第一款游戏,新一代游戏开发者将释放出一波游戏设计创造力浪潮,从而永远改变游戏行业。
2024-12-24