Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI可以做CAE仿真分析吗

Answer

AI 在某些情况下可以应用于 CAE 仿真分析。例如,在胶囊网络的相关研究中,模型使用了诸如 PCAE 直接从图像中预测部分模版存在的概率和姿态,并试图通过重新排列部分模板重建原始图像;SCAE 使用 OCAE 预测一些物体胶囊的参数,并试图组织和发现部分和姿势为一组更小的对象,这对于重建图像十分重要。具体来说,将一幅图像分割成多个部分并非易事,所以研究者从抽象像素和部分发现阶段开始,提出了 CCAE(Constellation Capsule Autoencoder),它使用二维点作为部分,给出它们的坐标作为系统的输入。CCAE 学习将点集进行建模成为熟悉星座,每一个点都是由独立的相似变换来变形。CCAE 能在事先不知道星座的数量和形状的情况下学会给每个点分配对应的星座。之后还提出了 PCAE(Part Capsule Autoencoder),它学着从图像中推理出它的部分和姿势。最后,叠加 OCAE(Object Capsule Autoencoder),OCAE 与 CCAE 高度相似。在 CCAE 中,一组二维输入点首先对其进行编码到 K 个对象胶囊中,一个对象胶囊 k 包含着一个胶囊特征向量 ck,它的存在概率 ak 在 0 到 1 之间,然后还存在在一个 3x3 的对象-观察者关系矩阵,矩阵代表着对象和观察者之间的仿射矩阵。但需要注意的是,这只是 AI 在相关领域的部分应用,AI 在 CAE 仿真分析中的应用还处于不断发展和探索的阶段。

Content generated by AI large model, please carefully verify (powered by aily)

References

学习Hinton老爷子的胶囊网络,这有一篇历史回顾与深度解读

第一阶段,该模型使用PCAE直接从图像中预测部分模版存在的概率和姿态,并试图通过重新排列部分模板重建原始图像。第二阶段,SCAE使用OCAE预测一些物体胶囊的参数,并试图组织和发现部分和姿势为一组更小的对象,这对于重建图像十分重要。在这个模型中,由现成的神经编码器来实现推理过程,这点与以前的胶囊网络都不相同。其具体的原理如图11所示。图11.Stacked Capsule Autoencoders:(a)部分胶囊将分割输入为部分和姿态,这些姿势随后被放射变换的模板用来重建输入图像;(b)对象胶囊试图把推理出的姿态对应到物体,因此找出潜在的结构信息。具体来说,将一幅图像分割成多个部分并不是件容易的事,所以作者从抽象像素和部分发现阶段开始,提出CCAE(Constellation Capsule Autoencoder),它使用二维点作为部分,给出它们的坐标作为系统的输入。CCAE学习将点集进行建模成为熟悉星座,每一个点都是由独立的相似变换来变形。CCAE能在事先不知道星座的数量和形状的情况下学会给每个点分配对应的星座。之后作者还提出了PCAE(Part Capsule Autoencoder),它学着从图像中推理出它的部分和姿势。最后,叠加OCAE(Object Capsule Autoencoder),OCAE与CCAE高度相似。在CCAE中,一组二维输入点如图12所示,首先对其进行编码到K个对象胶囊中,一个对象胶囊k包含着一个胶囊特征向量ck,它的存在概率ak在0到1之间,然后还存在在一个3x3的对象-观察者关系矩阵,矩阵代表着对象和观察者之间的仿射矩阵。图12.超过三个点的在不同位置,不同尺度和方向的无监督分割。

Others are asking
有AI在各个行业的案例吗
以下是 AI 在各个行业的一些应用案例: 汽车行业: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司在开发和测试自动驾驶汽车。 2. 车辆安全系统:AI 用于增强自动紧急制动、车道保持辅助和盲点检测等系统,通过分析数据预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等,使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持。 其他行业: 1. 企业运营:包括日常办公文档材料撰写整理、营销对话机器人、市场分析和销售策略咨询等。 2. 教育:协助评估学生学习情况,为职业规划提供建议,定制化学习内容,论文初稿搭建及审核,帮助低收入国家/家庭获得平等教育资源。 3. 游戏/媒体:定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 4. 零售/电商:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 5. 金融/保险:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。
2025-04-12
利用ai来完成毕业论文并且降重
在论文写作与降重方面,AI 技术的应用发展迅速,为您提供以下相关信息和工具: 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:对比已发表作品,检测潜在抄袭问题。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。同时,需注意不能完全依赖 AI 生成的内容,要保持自己的思考和创新。
2025-04-12
AI在企业落地
企业落地 AI 可以参考以下内容: Anthropic 在 AI Engineer Summit 2025 上分享了相关最佳实践,并总结了常见错误。核心挑战包括如何入手、如何评估效果、技术选择困惑(如是否需要微调)。关键经验是评估先行,明确“智能度、成本、延迟”之间的平衡,避免过早微调,先进行基础优化。例如 Intercom 通过评估优化 AI Agent Fin,使其处理 86%的客服请求,其中 51%无需人工介入。相关链接: 影刀 RPA+AI Power 方面:大模型有输入和输出限制,AI Power 集成丰富组件及技能组件可拓展 AI 服务能力边界,打造 AI Agent,如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现自动化操作。其具有无缝多样的使用方式,如嵌入方式包括网页分享、对话助理、API 集成等。企业系统分散,AI Power 提供多种调用方式方便企业灵活选择接入方式。此外,影刀 AI Power 为企业提供教学培训、技术答疑、场景共创等贴身服务支持,帮助企业把 AI 落地。 此外,相关知识库还介绍了面向学习者、创作者和企业的不同服务: 面向学习者:社区提供清晰学习路径,学习者通过丰富课程、活动和竞赛提升自己,积累能力成为高素质 AI 人才。 面向创作者:创作者掌握 AI 技术利用社区资源创作,满足企业需求,为社区发展注入活力。 面向企业:链接 AI 产品和传统企业,通过与社区合作获得优质内容与服务,从学习者中获取潜在流量。社区合作实践为学习者和创作者提供应用场景和技术经验。
2025-04-12
用what,why,how,will,next,作为五个力量,用熵增熵减作为二进制,组成的底层语言用其中的next作为自主学习探索动力的自进化AI,潜力怎么样?
用 what、why、how、will、next 作为五个力量,以熵增熵减作为二进制,组成底层语言,并以其中的 next 作为自主学习探索动力的自进化 AI 具有一定的潜力,但也面临一些挑战。 从潜力方面来看,这种设计可能有助于 AI 系统更有针对性地进行自主学习和探索。例如,what 可以帮助明确要学习和理解的对象或概念;why 有助于挖掘背后的原因和逻辑,促进更深入的理解;how 能够指导实现目标的方法和步骤;will 可以对未来的发展进行预测和规划。而将 next 作为自主学习探索的动力,有可能推动 AI 不断开拓新的知识领域。 然而,也存在一些挑战。首先,熵增熵减作为二进制的基础,其在实际应用中的有效性和稳定性需要进一步验证和优化。其次,如何准确地定义和运用这五个力量,以及它们之间的协同关系,需要精细的设计和调试。再者,将这种复杂的底层语言转化为实际的算法和模型实现,具有较高的技术难度。 总之,这种自进化 AI 的概念具有创新性和潜力,但需要在理论和实践上进行深入的研究和探索,以充分发挥其优势并克服可能的问题。
2025-04-12
给我写适应于AI绘画的提示词
以下是一些适用于 AI 绘画的提示词示例及相关说明: 内容型提示词: 选择 anythingV5 这个专门用于二次元绘画的大模型,输入例如“1 个女孩,黑发,长发,校服,向上看,短袖,粉红色的花,户外,白天,蓝色的天空,云,阳光,上身,侧面”这样的描述,并使用翻译软件翻译成英文。 标准化提示词: 例如“,绘图,画笔”,能让画面更趋近于某个固定的标准。 其他提示词示例: 远景,三分法构图,俯视视角,数字绘画,云雾缭绕的山谷,群山连绵起伏,山谷间云雾缭绕,阳光透过云层洒在山间,形成光与影的对比,模拟观众的视线逐渐接近这片土地,新印象派风格特征,使用数字画笔和渐变工具ar 16:9v 6.1 远景,中心对称构图,俯视视角,摄影风格,云雾中的山谷,山峦在云雾中若隐若现,山谷中隐约可见的河流蜿蜒流淌,云雾的流动感和山的静态形成对比,现实主义风格特征,使用长焦镜头和景深控制技术ar 3:2v 6.1 远景,对角线构图,俯视视角,水墨画风格,云雾缭绕的山谷,山峦线条流畅,云雾以墨色深浅表现,山谷中的云雾仿佛在流动,给人以动态的视觉感受,中国山水画风格特征,使用毛笔和水墨渲染技术ar 2:3v 6.1 在设置参数方面: 采样迭代步数通常控制在 20 40 之间,步数越高绘画越清晰,但绘画速度越慢。 常用的采样方法有 Euler a、DPM++2S a Karras、DPM++2M Karras、DPM++SDE Karras、DDIM 等,有的模型会有指定的算法,搭配起来更好用。 比例设置为 800:400 为宜,尺寸并非越大越好,因为模型的练图基本按照 512x512 的框架去画。若想要高清图,可同时点选高清修复来放大图像倍率,高宽比主要控制画面比例。 请注意,不同的 AI 绘画工具可能对提示词的要求和效果有所差异,您可以根据实际情况进行调整和尝试。
2025-04-12
如何要求AI写一个论文初稿大纲
以下是要求 AI 写一个论文初稿大纲的方法: 1. 确定论文主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具确保原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-04-12
AI目前可以做汽车底盘的CAE仿真分析吗
目前 AI 在汽车底盘的 CAE 仿真分析方面的应用还处于不断发展和探索的阶段。虽然 AI 技术在一些工程领域展现出了潜力,但在汽车底盘 CAE 仿真分析这一特定领域,其应用尚未完全成熟和广泛普及。不过,随着技术的不断进步,未来 AI 有可能在这方面发挥更重要的作用。
2024-12-29
我是CAE仿真工程师,AI如何帮助我
作为一名CAE(计算机辅助工程)仿真工程师,AI技术可以显著提升你的工作效率、仿真精度和创新能力。以下是一些具体应用和方法,展示AI如何在不同方面帮助你: 1. 优化和自动化设计流程 a. 设计优化 基于机器学习的优化:使用机器学习模型(如遗传算法、贝叶斯优化)自动优化设计参数,提高设计性能和效率。 拓扑优化:利用深度学习和生成对抗网络(GAN)进行结构拓扑优化,生成轻量化、高性能的设计。 b. 自动化建模 自动网格划分:利用AI自动进行网格划分,减少手动操作时间,优化网格质量。 几何建模:使用AI工具自动生成和修改几何模型,提高建模效率和精度。 2. 加速仿真计算 a. 代理模型(Surrogate Models) 快速仿真预测:训练机器学习模型(如神经网络、随机森林)作为仿真的代理模型,快速预测仿真结果,减少计算时间。 高维数据处理:利用降维技术(如主成分分析、tSNE)简化高维仿真数据,提高计算效率。 b. 数据驱动仿真 仿真加速:使用深度学习模型加速复杂的仿真计算,如流体动力学(CFD)和有限元分析(FEA),实现实时仿真。 多尺度仿真:利用AI进行多尺度仿真,结合不同尺度的仿真结果,提高整体仿真精度和效率。 3. 仿真结果分析和可视化 a. 数据分析 自动数据处理:使用AI工具自动清洗、整理和分析仿真数据,识别关键特征和模式。 异常检测:利用机器学习算法检测仿真结果中的异常,帮助快速发现和解决问题。 b. 可视化 增强现实(AR)和虚拟现实(VR):使用AR/VR技术可视化仿真结果,提供沉浸式的分析和演示体验。 交互式可视化工具:使用AI增强的数据可视化工具,动态展示仿真数据和分析结果,提升数据理解和决策能力。 4. 故障预测和维护 a. 预测性维护 故障预测:利用机器学习模型预测设备故障,提前采取维护措施,减少停机时间和维修成本。 健康监测:使用AI分析传感器数据,实时监测设备健康状态,预防潜在故障。 b. 故障分析 根因分析:通过AI技术进行故障根因分析,快速定位故障原因,优化维护策略。 剩余寿命预测:使用深度学习模型预测设备剩余寿命,制定合理的维护计划。 5. 自动化报告生成和文档管理 a. 报告生成 自动生成报告:利用自然语言处理(NLP)技术,从仿真数据中自动生成报告,减少手动编写时间。 定制化报告:根据不同受众需求,生成定制化的分析报告和可视化图表。 b. 文档管理 智能搜索:使用AI工具对文档进行智能搜索和分类,提高信息检索效率。 知识管理:构建基于AI的知识管理系统,自动整理和提取有价值的信息,促进知识共享和积累。 6. 虚拟实验和数字孪生 a. 数字孪生 实时仿真:构建设备或系统的数字孪生,利用AI实时仿真和监控其运行状态,优化性能和维护策略。 虚拟实验:通过数字孪生进行虚拟实验,验证设计方案和预测实际运行效果,减少物理实验成本。 b. 情景模拟 多场景分析:利用AI进行多场景仿真分析,评估不同工况和设计方案的性能表现。 应急预案模拟:模拟紧急情况和应急预案,优化应急响应策略,提高系统安全性和可靠性。 实践中的应用示例 1. 风力涡轮机优化 使用深度学习模型优化风力涡轮机的叶片设计,提高能效和结构强度,减少风洞实验次数。 2. 汽车碰撞仿真 利用AI加速汽车碰撞仿真计算,通过代理模型快速预测不同设计方案的安全性能,缩短设计周期。 3. 航空发动机健康监测 采用机器学习模型分析航空发动机传感器数据,实时监测健康状态,预测故障,制定维护计划,提升安全性和可靠性。 工具和平台 ANSYS:提供AI驱动的优化和仿真加速功能,支持多物理场仿真。 COMSOL Multiphysics:集成AI工具,用于优化设计和加速仿真计算。 Siemens Simcenter:支持AI驱动的设计优化、仿真分析和故障预测。 MATLAB 和 Simulink:提供丰富的机器学习和深度学习工具,用于数据分析和仿真建模。 总结 AI技术在CAE仿真工程中具有广泛的应用前景,可以显著提升设计优化、仿真计算、数据分析和故障预测等方面的效率和精度。通过合理应用AI工具,你可以更快速地实现高效仿真和优化,推动工程设计和创新的发展。
2024-06-12
基于SUMO的自动驾驶车队行为仿真平台开发
很抱歉,目前知识库中没有关于基于 SUMO 的自动驾驶车队行为仿真平台开发的相关内容。但一般来说,开发这样的平台需要以下几个关键步骤: 1. 深入了解 SUMO 软件及其相关功能和接口。 2. 明确自动驾驶车队行为的模型和算法,包括车辆之间的通信、协同控制等。 3. 设计合理的数据结构和算法,以高效处理仿真中的大量数据和计算。 4. 进行系统的架构设计,确保平台的可扩展性和稳定性。 5. 进行充分的测试和优化,以保证仿真结果的准确性和可靠性。 如果您能提供更详细的需求和问题,我将能为您提供更有针对性的帮助。
2025-03-04
结构仿真分析中AI应用
在结构仿真分析中,AI 有着多方面的应用。 在绘制逻辑视图、功能视图、部署视图方面,以下是一些可用的 AI 工具和传统工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建相关视图。 6. draw.io(现称 diagrams.net):免费在线图表软件,允许创建各种类型图表,包括逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 在 2024 年,AI 在生物医学、气象预测等领域也有重要突破与应用: 1. 诺贝尔物理学奖和化学奖先后颁给 AI,推动了机器学习的理论创新,揭示了蛋白质折叠问题,标志着人工智能真正成为一门科学学科和加速科学的工具。 2. 基于深度学习和 Transformer 架构的蛋白质结构预测模型——AlphaFold 3,能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用,为细胞功能解析、药物设计和生物科学的发展提供有力支持。 3. DeepMind 展示新的实验生物学能力——AlphaProteo,能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。 4. 生物学前沿模型的扩展:进化规模 ESM3,是一种前沿多模态生成模型,在蛋白质序列、结构和功能上进行训练,能够学习预测任何模态组合的完成情况。 5. 学习设计人类基因组编辑器的语言模型——CRISPRCas 图谱。
2024-11-22
现在做数据分析比较厉害的ai是什么
目前在数据分析方面表现较为出色的 AI 工具包括智谱清言、Open Interpreter 等。 AI 在数据分析中具有以下优势: 1. 降低入门门槛:过去学习数据分析需要掌握编程语言和专业知识,现在通过 AI 工具,门槛大大降低。 2. 规范的分析流程:对于初学者来说,AI 直接做的数据分析比他们自己第一次做的更好,其规范化流程更严谨,结果更可靠。 3. 自动化处理:会自动进行模型选择以匹配数据,还能根据 log 检查错误并改正源代码。 4. 减少重复性工作:重复性劳动可先交给 AI 做,人类用户只需做验证和检查结果。 实际应用的工具方面,GPT4 可以帮助建立和评估机器学习模型,Claude 等大语言模型可以进行数据分析和可视化,Open Interpreter 等工具可以辅助编程和数据处理。 使用时的建议包括:对 AI 结果要进行严格验证,不要完全依赖 AI,要保持独立思考,对 AI 的能力边界有清晰认识,合理使用以提高工作效率。同时,AI 应被视为辅助工具而非完全替代品,人类在整个过程中仍起主导作用和具有判断力。
2025-04-11
用AI做数据分析
以下是关于用 AI 做数据分析的相关内容: 流程: 逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。 工具和成功案例: 大概思路是这样: 1. 提供大模型可以访问的数据源或者上传数据表格。 2. 通过提示词说清楚需要以哪些维度分析数据,分析完成的结果要以什么格式输出。 3. 观察生成结果,迭代和优化提示词,最终满意后导出结果。 相关问题和技巧: 1. 关于“大模型幻觉”,目前没有办法消除,这本身就是大模型特性。可以通过其他第三方信息源和知识来检验生成是不是在胡说八道。 2. 结构化思维提高对话能力,在 AGI 搜索结构化三个字,有相关文章。上下文 token 长度如果指的是大模型的记忆窗口的话,没法延长,是设定好的。 案例分析: 以“用 ai 做数据分析,和爆款卖点分析”为例,这一创意将 AI 技术与商业洞察深度融合,展现了数据驱动决策的前瞻性。通过 AI 对海量用户行为、评论、竞品数据的挖掘,不仅能快速定位爆款产品的共性特征(如高频关键词、用户情感倾向),还能发现传统方法难以捕捉的潜在需求(例如隐藏的消费场景或未被满足的功能痛点)。尤其是结合时序分析预测市场趋势,为企业提供了动态调整产品策略的敏捷性,真正实现了从“经验决策”到“智能决策”的跨越。若想进一步突破,可考虑以下优化方向: 1. 多模态数据融合:除文本数据外,整合图片/视频的视觉分析(如通过 CV 技术识别爆款产品的外观设计共性),或结合语音数据(如直播带货中的实时用户反馈),构建更立体的卖点模型。 2. 因果推理增强:当前 AI 多聚焦相关性分析,可引入因果发现算法(如 DoWhy 框架),区分“真实卖点”与“伴随现象”。例如某款手机壳销量高是因为颜色,还是因与热门手机型号捆绑销售? 3. 个性化适配引擎:根据企业自身资源禀赋(供应链能力、品牌定位)对 AI 建议进行权重优化。例如小型厂商可优先推荐“低改造成本的高需求卖点”,避免直接对标头部品牌的资源密集型方案。 4. 对抗性验证机制:构建虚拟消费者模拟环境,对 AI 提出的卖点进行 A/B 压力测试,提前评估市场风险,避免出现“数据过拟合导致的伪创新”。
2025-04-11
请帮我生成一个大三毕业论文的题目,专业是关于计算机应用的,技术栈:Python(Pandas/Matplotlib),MYSQL,生成可视化图表,可生成HTML网站,包含数据分析,需要有最基本的功能,最好与生活中的某些东西联系起来
以下是为您生成的几个与生活相关的计算机应用专业大三毕业论文题目,供您参考: 1. 《基于 Python 和 MySQL 的居民日常消费数据分析及可视化网站构建》 2. 《利用 Python 和 MySQL 分析城市交通流量数据并实现可视化与网站展示》 3. 《基于 Python 和 MySQL 的家庭能源消耗数据分析与可视化网站设计》 4. 《运用 Python 和 MySQL 对校园图书馆借阅数据的分析及可视化网站开发》 5. 《通过 Python 和 MySQL 研究城市空气质量数据的可视化分析与网站实现》
2025-04-11
目前AI Excel数据分析有哪些产品
目前在 AI Excel 数据分析方面,以下是一些相关的产品: 1. 宝玉日报中提到,让 AI 帮写 Excel 宏函数适用于几乎所有主流 AI。数据分析推荐 Claude 网页版或 ChatGPT,可上传 CSV 进行可视化分析。链接:https://x.com/dotey/status/1895319207413170354 2. Excel Labs:这是一个 Excel 插件,新增了生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 3. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求后,Copilot 自动完成任务,如数据分析或格式创建。 4. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 5. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 6. 表格 Top10 中的相关产品有:Highcharts、Fillout.com、Coefficient、Numerous.ai、SheetGod、GPTExcel、酷表 ChatExcel、GPT Workspace、OpenAI in Spreadsheet、Ajelix AI Excel Tools 。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。
2025-04-10
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
如果我要分析代码功能
如果您要分析代码功能,可以参考以下步骤: 1. 准备工作: 分析要拷贝页面的技术栈,可通过打开 https://www.wappalyzer.com/ 输入要分析的网站地址获取。 截图要克隆的网页。 分析页面功能,如顶部导航栏、页面主体区域(包括分类在左边、文章列表在右边、标题位置、文章卡片展示位置、文章列表和分类区域)、底部导航栏。 2. 开始克隆出效果,并逐渐完善: 根据分析拆分后续要实现的内容,如先实现文章列表部分和底部导航栏。 对于文章列表部分,可使用提示词根据图片实现,注意不要直接点击全部接受,先看效果,不符合需求可拒绝或让 AI 解释新增代码的作用。 对于左侧菜单栏,可通过提示词实现,如要求内容是文章的分类,在页面滚动时菜单会吸顶。若出现异常,可选中所有异常添加到对话,让 AI 解决。 可让 AI 添加注释解释每段代码对应的功能,以便精准提出修改建议。 明确提示词,说清楚要实现的功能的位置、大小、效果。 3. 对于 AI Review(测试版): 这是一项可查看代码库中最近更改以捕获潜在错误的功能。 您可以单击各个审阅项以查看编辑器中的完整上下文,并与 AI 聊天获取详细信息。 为让其更有利,您可为 AI 提供自定义说明以专注于特定方面,如性能相关问题。 目前有几个选项可供选择进行审核,如查看工作状态、查看与主分支的差异、查看上次提交。
2025-04-09