Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我是CAE仿真工程师,AI如何帮助我

Answer

作为一名CAE(计算机辅助工程)仿真工程师,AI技术可以显著提升你的工作效率、仿真精度和创新能力。以下是一些具体应用和方法,展示AI如何在不同方面帮助你:

1. 优化和自动化设计流程

a. 设计优化

  • 基于机器学习的优化:使用机器学习模型(如遗传算法、贝叶斯优化)自动优化设计参数,提高设计性能和效率。
  • 拓扑优化:利用深度学习和生成对抗网络(GAN)进行结构拓扑优化,生成轻量化、高性能的设计。

b. 自动化建模

  • 自动网格划分:利用AI自动进行网格划分,减少手动操作时间,优化网格质量。
  • 几何建模:使用AI工具自动生成和修改几何模型,提高建模效率和精度。

2. 加速仿真计算

a. 代理模型(Surrogate Models)

  • 快速仿真预测:训练机器学习模型(如神经网络、随机森林)作为仿真的代理模型,快速预测仿真结果,减少计算时间。
  • 高维数据处理:利用降维技术(如主成分分析、t-SNE)简化高维仿真数据,提高计算效率。

b. 数据驱动仿真

  • 仿真加速:使用深度学习模型加速复杂的仿真计算,如流体动力学(CFD)和有限元分析(FEA),实现实时仿真。
  • 多尺度仿真:利用AI进行多尺度仿真,结合不同尺度的仿真结果,提高整体仿真精度和效率。

3. 仿真结果分析和可视化

a. 数据分析

  • 自动数据处理:使用AI工具自动清洗、整理和分析仿真数据,识别关键特征和模式。
  • 异常检测:利用机器学习算法检测仿真结果中的异常,帮助快速发现和解决问题。

b. 可视化

  • 增强现实(AR)和虚拟现实(VR):使用AR/VR技术可视化仿真结果,提供沉浸式的分析和演示体验。
  • 交互式可视化工具:使用AI增强的数据可视化工具,动态展示仿真数据和分析结果,提升数据理解和决策能力。

4. 故障预测和维护

a. 预测性维护

  • 故障预测:利用机器学习模型预测设备故障,提前采取维护措施,减少停机时间和维修成本。
  • 健康监测:使用AI分析传感器数据,实时监测设备健康状态,预防潜在故障。

b. 故障分析

  • 根因分析:通过AI技术进行故障根因分析,快速定位故障原因,优化维护策略。
  • 剩余寿命预测:使用深度学习模型预测设备剩余寿命,制定合理的维护计划。

5. 自动化报告生成和文档管理

a. 报告生成

  • 自动生成报告:利用自然语言处理(NLP)技术,从仿真数据中自动生成报告,减少手动编写时间。
  • 定制化报告:根据不同受众需求,生成定制化的分析报告和可视化图表。

b. 文档管理

  • 智能搜索:使用AI工具对文档进行智能搜索和分类,提高信息检索效率。
  • 知识管理:构建基于AI的知识管理系统,自动整理和提取有价值的信息,促进知识共享和积累。

6. 虚拟实验和数字孪生

a. 数字孪生

  • 实时仿真:构建设备或系统的数字孪生,利用AI实时仿真和监控其运行状态,优化性能和维护策略。
  • 虚拟实验:通过数字孪生进行虚拟实验,验证设计方案和预测实际运行效果,减少物理实验成本。

b. 情景模拟

  • 多场景分析:利用AI进行多场景仿真分析,评估不同工况和设计方案的性能表现。
  • 应急预案模拟:模拟紧急情况和应急预案,优化应急响应策略,提高系统安全性和可靠性。

实践中的应用示例

1. 风力涡轮机优化

使用深度学习模型优化风力涡轮机的叶片设计,提高能效和结构强度,减少风洞实验次数。

2. 汽车碰撞仿真

利用AI加速汽车碰撞仿真计算,通过代理模型快速预测不同设计方案的安全性能,缩短设计周期。

3. 航空发动机健康监测

采用机器学习模型分析航空发动机传感器数据,实时监测健康状态,预测故障,制定维护计划,提升安全性和可靠性。

工具和平台

  • ANSYS:提供AI驱动的优化和仿真加速功能,支持多物理场仿真。
  • COMSOL Multiphysics:集成AI工具,用于优化设计和加速仿真计算。
  • Siemens Simcenter:支持AI驱动的设计优化、仿真分析和故障预测。
  • MATLAB 和 Simulink:提供丰富的机器学习和深度学习工具,用于数据分析和仿真建模。

总结

AI技术在CAE仿真工程中具有广泛的应用前景,可以显著提升设计优化、仿真计算、数据分析和故障预测等方面的效率和精度。通过合理应用AI工具,你可以更快速地实现高效仿真和优化,推动工程设计和创新的发展。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:有没有关于 AI 生成 CAD 图相关的资料

在学习和研究AI生成CAD图的过程中,了解相关的基础知识和技术细节是非常重要的。通过阅读学术论文、参加在线课程、观看教程视频和交流学习,您可以逐步掌握AI在CAD领域的应用和实现。随着AI技术的不断发展,AI在CAD设计中的应用将会越来越广泛,为设计师和工程师提供更多的辅助和支持。内容由AI大模型生成,请仔细甄别

问:有没有用来画CAD图的AI工具

是的,存在一些AI工具和插件可以辅助或自动生成CAD图,特别是在设计和工程领域。以下是一些可以辅助创建CAD图的AI工具:1.CADtools 12:这是一个Adobe Illustrator(AI)插件,它为AI添加了92个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。2.Autodesk Fusion 360:Fusion 360是Autodesk开发的一款集成了AI功能的云端3D CAD/CAM软件,能够帮助用户创建复杂的几何形状和优化设计。3.nTopology:nTopology是一款基于AI的设计软件,它可以帮助用户创建复杂的CAD模型,包括拓扑优化、几何复杂度和轻量化设计等。4.ParaMatters CogniCAD:CogniCAD是一款基于AI的CAD软件,可以根据用户输入的设计目标和约束条件自动生成3D模型,适用于拓扑优化、结构设计和材料分布等领域。5.生成设计工具:一些主流CAD软件,如Autodesk系列、SolidWorks等,提供了基于AI的生成设计工具,这些工具可以根据用户输入的设计目标和约束条件自动产生多种设计方案。这些工具通常需要一定的CAD知识和技能才能有效使用。对于CAD初学者,建议先学习基本的3D建模技巧,然后尝试使用这些AI工具来提高设计效率。内容由AI大模型生成,请仔细甄别

沃尔夫勒姆:人工智能能解决科学问题吗?

So can AI—as we’ve been discussing it here—be expected to do this?It doesn’t seem likely.AI is typically something trained on existing human material,intended to extrapolate directly from that.It’s not something built to “go out into the wilds of the ruliad”,far from anything already connected to humans.那么,正如我们在这里讨论的那样,人工智能可以做到这一点吗?看来不太可能。人工智能通常是根据现有的人类材料进行训练的,旨在直接从中推断。它不是为了“进入鲁利亚德的荒野”而建造的,远离任何已经与人类相关的东西。

Others are asking
请问如何将AI与WPS结合
以下是关于将 AI 与 WPS 结合的一些信息: WPS Office 中的一些功能,如智能排版、语法检查等,利用 AI 技术帮助用户快速完成文档处理工作,提高办公效率。 金山软件宣布 WPS AI,将把大模型(LLM)能力嵌入四大组件:表格、文字、演示、PDF,支持桌面电脑和移动设备。 WPS 的文档翻译功能可以利用 AI 技术快速翻译办公文档,如 Word、Excel、PPT 等,方便用户进行跨国业务交流。
2025-03-04
请问如何将AI与办公结合
将 AI 与办公结合可以从以下几个方面考虑: 1. 提高工作效率:AI 可以帮助处理单调重复的任务,如数据输入、文档填写和信息检索等,让员工有更多时间从事专业工作。 2. 智能推荐与规划:例如,利用 AI 为办公提供最佳的工作流程规划、资源分配建议等。 3. 风险识别与应对:通过 AI 识别办公中的潜在风险,并提供相应的解决方案。 4. 教育领域结合:提前收集教育领域的需求,针对性地开发产品和服务。包括办公提效的具体场景、家校沟通、个性化教育、心理疏导、备课体系、作业批改、出题建议、学生行为分析等。 5. 技术应用:如使用飞书的多维表格、蚂蚁的智能体、Coze 的智能体等提高办公协作效率。 6. 创新应用:例如利用 AI 进行咖啡、奶茶等的调配(需相应资质)。 同时,相关法律法规如《促进创新的人工智能监管方法》也指出,要在支持创新的同时提供监管框架,确保风险得到识别和处理,以实现 AI 在办公领域的健康发展。
2025-03-04
我是一名视频博主,我想知道我的视频如何测试它的流量是否会好,以及ai怎么能够辅助我完成高质量的视频脚本
以下是关于您作为视频博主测试视频流量以及利用 AI 辅助完成高质量视频脚本的相关内容: 测试视频流量: 目前没有直接针对测试视频流量是否会好的特定方法,但您可以通过以下方式进行预估和分析: 1. 参考同类热门视频的数据和特点,了解大致的流量表现范围。 2. 观察视频发布初期的点击量、播放时长、点赞、评论、分享等数据的增长趋势。 利用 AI 辅助完成高质量视频脚本: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。您可以把想写的选题告诉 ChatGPT,数十秒时间它就能生成一条完整的视频脚本,包括具体场景和转场画面。虽然在创意上可能不够出色,但对于非专业人士入手视频创作有一定帮助。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。您还可以让 ChatGPT 为您在海量背景音乐中筛选适合视频情绪的 BGM。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-03-04
有可以在微信端调用的AI智能体吗?
目前有以下几种在微信端调用 AI 智能体的方式: 1. 通过 chatgptonwechat(简称 CoW)项目: 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。 点击“Docker”中的“项目模板”中的“添加”按钮,按照相关步骤进行操作。 项目模板代码示例如下:将编译好的内容复制进来。 在容器中创建容器,选择容器编排,填入模板和名称,确定。 点击容器后,可以看到运行的是两个服务。 点击“wcandyaibot”后面的日志按钮,用提前预备好的微信进行扫码。手动刷新查看是否成功,若看到“WeChat login success”,则接入成功。 2. 智普工作流: 新用户有 1 元及 5 元的资源包可供购买。 工作流具备文章、文件、网页总结,生成图片、视频和文字版日报等功能,通过意图识别跳转节点,使用了多个 agent。 在控制台的自动体中心,右键创建智能体,可选择对话型或文本型,创建后在空旷画布的左下角添加节点,节点包括 agent、LM、工具、代码、数据提取、分支判断和问答等,agent 通过跳入跳出条件与其他节点交互,LM 通过工作流连线执行功能。 文档可在 vtoagi.com 首页的 banner 获取,飞书群也可获取。 接入微信时,准备了云服务器和本地电脑两种版本,可按需选择。 需要注意的是,不同的方式可能存在一定的技术门槛和配置要求。
2025-03-04
用AI帮我写报告及ppt
以下为使用 AI 工具生成报告及 PPT 的相关内容: 熊猫 Jay 的思路和指南: 背景:因企业内部要求编写文章做培训并公开分享,旨在帮助不同水平的用户通过 AI 工具更高效制作 PPT。 介绍 5 款受欢迎的 AI PPT 工具:MindShow、爱设计、闪击、Process ON、WPS AI。 卓 sir 的制作经历: 出于对 AI 提效的好奇,在短时间内用 AI 完成了电子商务组队的 PPT 汇报作业。 用到的 AI 工具只有 3 个。 Process ON 的使用方法: 网址:https://www.processon.com/ 输入大纲和要点: 导入大纲和要点:有手动复制和导入方式两种,导入方式需将大纲内容复制到本地 txt 文件并改为.md 后缀,通过 Xmind 软件导入到 Process ON 中。 输入主题自动生成大纲和要求:新增思维导图,输入主题点击 AI 帮我创作。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版后下载。若喜欢使用且没有会员,可在某宝买一天会员。
2025-03-04
ai agent
AI 智能体在多个领域有着广泛的应用和发展。 在品牌卖点提炼中,AI 智能体可以发挥作用。AI 在逻辑推理、数据分析、内容理解和输出方面有优势,但在应用前需明确其能力边界,例如它对公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、核心渠道、核心购买人群、营销手段、期望的新渠道结果等了解程度接近于 0。因此,更适合将其构建为引导型的助手,在寻找卖点过程中提供思考维度和灵感。 Menlo Ventures 认为生成式 AI 应用有搜索、合成和生成三个核心用例与强大的产品市场契合度,其中心是少样本推理能力。但生成式人工智能的潜力不止于此,领先的应用程序构建商正在建立解决方案处理大量人力工作流程。借助新型构建块,下一波智能体正在拓展 AI 能力边界,实现端到端流程自动化。未来的完全自主智能体可能拥有多构建块,而当前的 LLM 应用和智能体尚未达到此水平。例如流行的 RAG 架构不是智能体式的,而将 LLM 置于应用程序控制流中让其动态决定行动等时智能体才出现。Menlo 确定了决策智能体、轨道智能体和通用人工智能体三种智能体类型,并探讨了五种参考架构和每种类型的示例。
2025-03-04
AI目前可以做汽车底盘的CAE仿真分析吗
目前 AI 在汽车底盘的 CAE 仿真分析方面的应用还处于不断发展和探索的阶段。虽然 AI 技术在一些工程领域展现出了潜力,但在汽车底盘 CAE 仿真分析这一特定领域,其应用尚未完全成熟和广泛普及。不过,随着技术的不断进步,未来 AI 有可能在这方面发挥更重要的作用。
2024-12-29
AI可以做CAE仿真分析吗
AI 在某些情况下可以应用于 CAE 仿真分析。例如,在胶囊网络的相关研究中,模型使用了诸如 PCAE 直接从图像中预测部分模版存在的概率和姿态,并试图通过重新排列部分模板重建原始图像;SCAE 使用 OCAE 预测一些物体胶囊的参数,并试图组织和发现部分和姿势为一组更小的对象,这对于重建图像十分重要。具体来说,将一幅图像分割成多个部分并非易事,所以研究者从抽象像素和部分发现阶段开始,提出了 CCAE(Constellation Capsule Autoencoder),它使用二维点作为部分,给出它们的坐标作为系统的输入。CCAE 学习将点集进行建模成为熟悉星座,每一个点都是由独立的相似变换来变形。CCAE 能在事先不知道星座的数量和形状的情况下学会给每个点分配对应的星座。之后还提出了 PCAE(Part Capsule Autoencoder),它学着从图像中推理出它的部分和姿势。最后,叠加 OCAE(Object Capsule Autoencoder),OCAE 与 CCAE 高度相似。在 CCAE 中,一组二维输入点首先对其进行编码到 K 个对象胶囊中,一个对象胶囊 k 包含着一个胶囊特征向量 ck,它的存在概率 ak 在 0 到 1 之间,然后还存在在一个 3x3 的对象观察者关系矩阵,矩阵代表着对象和观察者之间的仿射矩阵。但需要注意的是,这只是 AI 在相关领域的部分应用,AI 在 CAE 仿真分析中的应用还处于不断发展和探索的阶段。
2024-12-29
结构仿真分析中AI应用
在结构仿真分析中,AI 有着多方面的应用。 在绘制逻辑视图、功能视图、部署视图方面,以下是一些可用的 AI 工具和传统工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建相关视图。 6. draw.io(现称 diagrams.net):免费在线图表软件,允许创建各种类型图表,包括逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 在 2024 年,AI 在生物医学、气象预测等领域也有重要突破与应用: 1. 诺贝尔物理学奖和化学奖先后颁给 AI,推动了机器学习的理论创新,揭示了蛋白质折叠问题,标志着人工智能真正成为一门科学学科和加速科学的工具。 2. 基于深度学习和 Transformer 架构的蛋白质结构预测模型——AlphaFold 3,能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用,为细胞功能解析、药物设计和生物科学的发展提供有力支持。 3. DeepMind 展示新的实验生物学能力——AlphaProteo,能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。 4. 生物学前沿模型的扩展:进化规模 ESM3,是一种前沿多模态生成模型,在蛋白质序列、结构和功能上进行训练,能够学习预测任何模态组合的完成情况。 5. 学习设计人类基因组编辑器的语言模型——CRISPRCas 图谱。
2024-11-22
假如你是一名测试工程师,要写一个关于《AI智能体输入输出验证》专利申请书,申请书的内容包括以下几点: 1、发明名称(一种xxxxxxxx算法/架构/设计/外观等等等等) 2、发明背景技术 3、具体的技术方案描述 4、本发明的有益效果
以下是为您生成的关于《AI 智能体输入输出验证》的专利申请书内容: 发明名称:一种基于 Coze 工作流的 AI 智能体输入输出验证算法 发明背景技术: 在当前的 AI 应用中,构建和测试智能体的功能至关重要。特别是在处理复杂的任务,如生成思维导图时,需要确保输入和输出的准确性和有效性。然而,现有的技术在配置子任务节点和验证其可用性方面存在不足,导致效率低下和结果不稳定。 具体的技术方案描述: 1. 对于生成思维导图的任务,首先确定处理方式为“单次”,因为一次精读任务仅需生成一张思维导图。 2. 在输入方面,<generateTreeMind>插件节点仅需设置{{query_text}}变量,格式为 string 字符串,通过引用“标题、导语、大纲”节点的{{enTreeMind}}变量来提供输入。 3. 在输出方面,观察输出区的众多字段,根据字段名称、「查看示例」中的示例说明或试运行来确定所需的字段。对于生成图片格式的思维导图,确定 pic 为所需的输出。 4. 完成任何一个节点的配置后,进行试运行测试。具体步骤包括:点击「测试该节点」,按格式要求输入待测试的内容(对于 array 等其他格式,自行对话 AI 或搜索网络确认格式要求),点击「展开运行结果」,检查输入、输出项是否有误。若有误,依次检查“测试输入内容”、“节点配置”以及优化“提示词”,以提升对生成内容的约束力。 本发明的有益效果: 1. 提高了 AI 智能体在处理生成思维导图等任务时输入输出配置的准确性和效率。 2. 通过明确的步骤和规范的测试流程,有效减少了错误和不确定性,提升了智能体的稳定性和可靠性。 3. 能够更好地满足用户在复杂任务中的需求,为相关领域的应用提供了更优质的解决方案。
2025-03-04
微软认证AI工程师
以下是关于微软认证 AI 工程师的相关信息: MQ 老师是知乎的 AI 讲师,考过了国家工信部、微软、讯飞三个初级人工智能工程师证书,在教育行业工作 15 年以上,过去半年一直在探索教育场景中的 AI 实践。 胡凯翔是微软、讯飞认证提示词工程师,曾担任破局俱乐部企业培训和 AI+教育行动营教练,共创有约 10 万字 AI+教育手册。 韦恩是微软提示词工程师,智能体创业者,WayToAGI 共建者,多平台 Agent 开发者,企业级 AI Agent 定制专家,荣获多家 AI 开发平台的比赛奖项,有 12 年程序开发背景,是多家企业的 AI 落地顾问。
2025-03-02
软件工程师如何从ai上获得帮助
软件工程师可以从以下几个方面在 AI 上获得帮助: 1. 辅助编程的 AI 工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,提供实时代码建议。 CodeGeeX:智谱 AI 推出的开源免费工具,基于大模型可快速生成代码。 Cody:Sourcegraph 推出,借助强大的代码语义索引和分析能力为开发者服务。 CodeFuse:蚂蚁集团支付宝团队提供的免费 AI 代码助手。 Codeium:由 AI 驱动,提供代码建议、重构提示和代码解释等帮助。 更多工具可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 生成性 AI 作为助手:模型在大量代码库上训练,在编码时给出建议,但要注意生成代码的正确性,在提高生产力的同时限制生成量以检查正确性。例如 GitHub Copilot 帮助提高了开发人员的生产力,估计增长在 2 倍或更少的范围内。 Sam Altman 的三点观察表明: 1. AI 模型的智能大致等于用于训练和运行它的资源的对数,预测这一规律的缩放定律在多个数量级上都准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,较低价格导致使用量大幅增加。 3. 社会经济上线性提升智力的价值具有超指数性质,这一结果导致看不到指数式投资在不久将来会停止的理由。 未来可能会推出人工智能代理,如软件工程师代理人,虽然存在一些不足,但仍可能产生重大影响。生成性 AI 作为程序员助手是最早应用之一,成果出色,但相对于图像生成,生产力提升相对较小,且要注意代码正确性。
2025-02-22
如何从0到1成为AI工程师
要从 0 到 1 成为 AI 工程师,您可以参考以下步骤: 1. 基础学习: 掌握计算机科学的基本概念,通过 CS50 课程和专门的 Python 资源学习 Python 编程技巧。 2. 机器学习基础: 学习基础的机器学习方法,建立扎实基础并培养处理数据的直觉。 巩固数学基础,包括微积分、线性代数和概率论。若能学习数值计算和优化则更好。 3. 深度学习技术: 选择优秀的深度学习课程,如 Yann Le Cun 的纽约大学讲座、fast.ai 或 deeplearning.ai 的深度学习专精课程深入学习。 4. MLOps 技能: 从 fullstackdeeplearning 学习 MLOps 技能。如有需要,可先通过 fullstackopen 学习软件工程的基本知识,包括 web 开发、分布式系统、DevOps 和关系数据库。 5. 专业发展: 寻找感兴趣的领域,通过构建和完善作品集来发展专业技能。可以从 Hugginface 的课程开始,深入挖掘兴趣方向,完成有趣的项目和论文并展示在 GitHub 上。 此外,您还可以关注以下资源和活动: 1. Reddit 上的 Claude Sonnet 3.5 代码编写提示词模板 V2 版本,其有详细解释和引导式思维链,包含代码审查、规划、输出、安全审查 4 个步骤。 2. 参加第二期「AI 实训营」,如“大咖带你快速上手通义灵码 AI 程序员”的共学直播,通过零基础互动练习、GitHub 部署实战等方式学习。 3. 学习 Code AI 应用开发,以证件照应用为例,了解其背景、现状和学习创建应用的过程,包括操作界面、业务逻辑和用户界面等。
2025-02-12
软件行业质量体系工程师可以用AI做什么
软件行业质量体系工程师可以利用 AI 实现以下转变和拓展工作: 1. 需求分析师可转变为 AI 洞察翻译官,未来能利用 AI 分析海量数据以揭示隐藏的用户需求,技能需向数据分析、用户心理学和商业洞察力转型。 2. 系统架构师可转变为创新架构策略师,未来设计能适应快速变化和 AI 集成的灵活架构,技能要向前沿技术跟踪、跨学科知识整合和创新思维转型。 3. 开发工程师可转变为 AI 协作编程专家,未来与 AI 结对编程,专注于创新性和复杂逻辑的实现,技能要向 AI 工具应用、算法优化和创造性问题解决转型。 4. 测试工程师可转变为质量战略专家,未来设计高级测试策略,处理 AI 无法覆盖的边缘情况,技能要向测试策略设计、用户体验评估和风险管理转型。 5. 运维工程师可转变为系统优化专家,未来专注于系统整体优化和异常情况处理,技能要向性能调优、安全加固和智能监控系统设计转型。 6. 项目经理可转变为价值流优化专家,未来专注于价值交付和团队协作效率的提升,技能要向精益管理、跨职能团队协调和持续改进转型。 此外,AI 在生成测试用例方面具有显著优势,能自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。AI 在医疗保健、金融服务、零售和电子商务、制造业、交通运输等行业也有广泛应用,例如医学影像分析、药物研发、风控和反欺诈、产品推荐、预测性维护等方面。
2025-02-11
软件质量工程师可以使用AI做什么
软件质量工程师可以利用 AI 实现以下几个方面的工作: 1. 生成测试用例:AI 能够自动化和智能化地生成高覆盖率的测试用例,从而减少人工编写测试用例的时间和成本,提高测试效率、增强测试覆盖率并发现潜在问题,提升软件质量和用户体验。 2. 转型为质量战略专家:设计高级测试策略,处理 AI 无法覆盖的边缘情况。技能转型方面,需要掌握测试策略设计、用户体验评估和风险管理。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-11