Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

谈谈你对AI/AIGC的理解

Answer

AI(人工智能)是指让计算机模拟人类智能的技术。机器学习是人工智能的重要组成部分,包括监督学习、无监督学习和强化学习等方式。监督学习基于有标签的训练数据,学习输入与输出的映射关系;无监督学习则在无标签数据中自主发现规律,例如聚类。强化学习从反馈中学习以最大化奖励或最小化损失。深度学习参照人脑构建神经网络,其中 Transformer 模型基于自注意力机制处理序列数据,比 RNN 更适合处理长距离依赖。

AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,能生成文字、图像、视频等。它在内容创作、广告、媒体等领域广泛应用。

AIGC、UGC(用户生成内容)和 PGC(专业人士或机构生成内容)是不同的内容生成方式。AIGC 由人工智能生成,可快速大规模生成内容;UGC 由用户生成,内容丰富多样反映用户想法;PGC 由专业团队或机构生成,内容质量高专业性强。

Content generated by AI large model, please carefully verify (powered by aily)

References

十七问解读生成式人工智能

"大家好!这篇文章收集了社区小伙伴们向我提出的日常问题以及我的一些答复,算是一个全面的汇总。鉴于文章的科普性质和广泛的受众,我将通过问答的形式,尽量使用浅显易懂的语言来介绍一些基本概念,希望大家能有所收获。"[heading1]问题一、AIGC是什么?[content]AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。这种技术能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。AIGC在内容创作、广告、媒体等领域有着广泛的应用。1.文字生成:使用大型语言模型(如GPT系列模型)生成文章、故事、对话等内容。2.图像生成:使用Stable Diffusion、DALL-E等模型生成艺术作品、照片等。3.视频生成:使用Runway、KLING等模型生成动画、短视频等。[heading1]问题二、AIGC、UGC、PGC的关系是什么?[content]AIGC、UGC和PGC都是内容生成的不同方式,这三种内容生成方式的主要区别在于内容的创作者和生成方式。1.AIGC(AI-Generated Content):由人工智能生成的内容。AI通过学习大量的数据,能够自动生成文本、图像、视频等内容。AIGC的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。2.UGC(User-Generated Content):由用户生成的内容。用户通过社交媒体、博客、论坛等平台发布自己的内容,如文章、评论、照片、视频等。UGC的优势在于内容丰富多样,能够反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。3.PGC(Professionally-Generated Content):由专业人士或机构生成的内容。专业团队或机构根据特定的标准和流程创作高质量的内容,如新闻报道、影视作品、专业文章等。PGC的优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
你觉得作为一个普通人,应该怎样更高效的使用AI,并且保持跟上AI快速迭代的节奏?
作为普通人,要更高效地使用 AI 并跟上其快速迭代的节奏,可以参考以下策略: 1. 提前布局职业生涯:审视自身所处行业和岗位,预估 5 10 年后被 AI 取代的程度。若风险高,即刻学习新技能并向更有前景的领域转型;若风险低,思考如何在 AI 辅助下将工作做到极致。 2. 投入 AI 浪潮:敢于使用和研究 AI,将其融入业务,哪怕从简单应用开始,实践中发现新机会点。 3. 强化不可替代的人类技能:如创意、沟通、领导、跨领域知识、独特专长等。 4. 建立个人品牌和网络:通过分享专业见解、持续学习输出内容,在业界建立口碑,积累人脉和声望。 5. 拥抱创业和多元收入:利用 AI 降低的创业门槛,发展副业或项目,探索多种可能性,经营多元身份提升抗风险能力。 6. 保持健康的身心:学会调适心态,持续锻炼身体,以良好的身心状态应对挑战。 此外,在 AI 时代,持续学习能力与适应力是最重要的个人能力之一。要培养自己成为终身学习者,保持好奇心,定期涉猎新领域的知识或课程,锻炼自学能力,勇于打破舒适区。同时,要在心理上拥抱变化,将其视为机遇而非威胁,培养心理韧性,以积极的心态应对不确定性。 在监管方面,英国采用了基于原则的框架,其监管体制具有创新、适度、可信、适应、清晰和协作等特点,旨在促进创新的同时平衡风险与机遇,加强在 AI 领域的全球领导地位。
2025-03-09
tripo ai是啥
Tripo AI 是 VAST 发布的在线 3D 建模平台。 它能够利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,基于一个数十亿参数级别的 3D 大模型,实现快速的 2D 到 3D 转换,并提供 AI 驱动的精准度和细节。 其具有以下特点: 注册/登录:通过输入邮箱地址接收验证码或使用谷歌账户可完成注册登录,登录后能看到用户名及拥有的点数。 界面:界面简洁,上方是工具导航栏,中间是公共作品展示区,底部是生成模型的工作区域,包括输入框和创建按钮。 页面:包含 Create 页面(创作主战场,可参考他人提示词)、My Models 页面(个人作品库)、Favorite 页面(私人收藏列表)。 此外,Tripo API 与 ComfyUI 集成良好,还拥有热门的 3D 创作者/开发者社区,最终目标是在即将到来的 3D 时代让每个人都成为超级创作者。
2025-03-09
可灵ai是什么
可灵 AI 是一款视频生成类的产品,其网址为 klingai.kuaishou.com,所属公司为快手。在第 34 期“Video Battle 视频挑战赛 The Moment”中,由可灵 AI 出题,主题为“The Moment”,要求以该主题进行创作,工具要求使用可灵 AI,视频需带可灵水印。参赛有诸多限制和要求,如提交时间为 12 月 31 日 21:00 前,参赛文件格式为 16:9、不长于 10 秒、30FPS 以上且不含剪辑,作业方式不限等。奖项设置包括金奖 5000 元 + 5800 灵感值、银奖 3000 元 + 2700(2200 + 500)灵感值、铜奖 2000 元 + 1000 灵感值、入围 500 元×40、人气奖 2500 元×4 以及其他意外散落的灵感值。
2025-03-09
AI一键生成海报
以下是关于 AI 一键生成海报的相关内容: 即梦生图 2.1 版本能够根据简单的提示词智能理解创意需求,一键生成融合图片内容与中英文文本的海报。应用场景广泛,包括 LOGO 设计、表情包生成、节日与节气海报制作等。 例如,在 LOGO 设计中,提示词可以是“皮克斯风格,五彩缤纷风格,文字‘烧拍’,超高清”;在表情包生成中,提示词可以是“卡通风格,表情包,可爱的小熊猫,四宫格分别是文字是‘多读书’‘多看报’‘少吃零食’‘多睡觉’”;在节日与节气海报制作中,如冬至海报,提示词可以是“水墨画风格,冬至海报,汤圆,梅花,雪,海报右上角大字草书字体‘冬至’,中间下方文字‘瑞雪兆丰年’,超高清”。 此外,在一些活动中,如 AI 市集,AI 不仅能调酒、占卜,还能自动生成海报。例如,有摊主开发的 AI 能在提供鸡尾酒配方的同时生成海报。 在女神节海报设计方面,可以利用即梦 AI 工具,操作简单,只需 3 步:打开即梦 AI 选择“图片生成”功能,模型选择图片 2.1 并输入提示词,点击生成即可。同时还提供了多个海报案例的提示词,如案例一的提示词为“女神节主题,3D 设计,梦幻氛围,明亮春天场景,花田,数字 38,天空‘女神节’,五彩缤纷的蝴蝶,晴朗的蓝天,茂密的绿色草地,盛开的花朵,柔和光线”;案例二的提示词为“粉色主题,梦幻氛围,数字 38,心形气球,花卉装饰,玫瑰花,漂浮的花瓣,柔和的云朵,美丽的湖面倒影,奇幻风格,柔和的色调,庆祝场景”;案例三的提示词为“妇女节,3D 设计,粉色主题,大号装饰数字 38,爱心,郁金香花朵,柔和光照,背景城市天际线,精致花卉装饰,优雅节日氛围,金色文字,春天氛围,细致鲜艳”。
2025-03-09
AI高效沟通的黄金法则
以下是关于 AI 高效沟通的一些黄金法则: 1. 像教实习生:别指望它读心术,要给明确“操作手册”。 2. 像拼乐高:复杂任务拆成小模块,逐个击破。 3. 像打乒乓球:有来有往多回合,好答案都是改出来的。 在与 AI 对话前,先花 30 秒填写以下 checklist: 我说清自己身份了吗? 任务目标够具体吗? 特殊要求列全了吗? 要什么格式交代了吗? 留好修改的余地了吗? 此外,还有以下策略有助于实现高效沟通: 将复杂任务分解为更简单的子任务,复杂任务通常比简单任务更容易出错,可将其重新定义为一系列简单任务的工作流程,每个任务的输出作为下一个任务的输入。 使用意图分类识别用户查询中最相关的指令,根据用户意图选择最相关的指令集。 对于需要很长对话的应用,总结或过滤之前的对话内容,避免超出模型的上下文窗口大小限制。 将长文档分段总结,并递归构建完整摘要,逐步总结长文档的内容。 给予模型“思考”时间,指导模型在得出结论之前先尝试给出自己的解决方案,避免受到用户提供的错误解决方案的干扰。使用“内心独白”或一系列查询来隐藏模型的推理过程,避免在某些应用场景中泄露答案。询问模型是否在之前的回答中遗漏了什么,确保信息的完整性。 以中考英语辅导为例,在与 AI 沟通时,遵循上述原则和方法,比如明确给出题目、指令,解答问题并给出依据,有助于提高辅导效果。
2025-03-09
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-09
AIGC大模型是什么?
AIGC 大模型是一个较为复杂的概念,下面为您详细解释: 首先,生成式 AI 生成的内容称为 AIGC。 相关技术名词包括: 1. AI 即人工智能。 2. 机器学习是指电脑通过找规律进行学习,包括监督学习、无监督学习和强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似的组。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习是一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习和强化学习。 4. 生成式 AI 能够生成文本、图片、音频、视频等内容形式。 5. LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不属于大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑方面,2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-05
aigc是什么
AIGC 即 AI generated content,又称为生成式 AI,意为人工智能生成内容。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成各种类型的内容,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。其应用领域广泛,包括内容创作、广告、媒体等。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域。 能进行 AIGC 的产品项目众多,能进行 AIGC 的媒介也很多,包括且不限于: 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言等。 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了生成质量很高的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。 AIGC、UGC(普通用户生产)和 PGC(专业用户生产)都是内容生成的不同方式,主要区别在于内容的创作者和生成方式。AIGC 由人工智能生成内容,优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景。UGC 由用户生成内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于互动性强的平台。PGC 由专业人士或机构生成内容,优势在于内容质量高、专业性强,适用于需要高质量内容的平台。 目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。AIGC 应用可能引发内生风险、数据隐私问题和知识产权风险,需要进一步加强监管和伦理约束。
2025-03-03
aigc是什么
AIGC 即 AI generated content,又称为生成式 AI,意为人工智能生成内容。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成各种类型的内容,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。其应用领域广泛,包括内容创作、广告、媒体等。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域。 能进行 AIGC 的产品项目众多,能进行 AIGC 的媒介也很多,包括且不限于: 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。 AIGC、UGC(普通用户生产)和 PGC(专业用户生产)都是内容生成的不同方式,这三种内容生成方式的主要区别在于内容的创作者和生成方式。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。UGC 的优势在于内容丰富多样,能够反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 的优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。AIGC 应用可能引发内生风险、数据隐私问题和知识产权风险,相关法律和规定对 AIGC 的透明性、数据收集和处理、知识产权归属等提出了要求。然而,著作权归属、数据隐私等问题尚需更多法律明确规定。此外,AIGC 的滥用可能导致虚假信息传播、侵犯隐私等问题,因此需要进一步加强监管和伦理约束。
2025-03-02
人工智能生成内容(AIGC)感悟600字
以下是为您生成的 600 字左右关于人工智能生成内容(AIGC)的感悟: AIGC 作为当今科技领域的热门话题,正以惊人的速度改变着我们的生活和工作方式。 AIGC 强调的是利用人工智能技术生成各种内容,包括文本、图像、音频和视频等。它并非简单的技术堆砌,而是多种先进技术融合的成果。例如,Transformer 模型在语言处理和多模态领域的应用,为 AIGC 提供了强大的支撑。 从原理上看,AIGC 涉及多种生成算法,如 VAE、GAN、FlowModel 和 Diffusion Model 等。这些算法使得机器能够创造出具有一定质量和创意的内容。同时,还有像 IS 和 FID 这样的评价指标来衡量生成图片的质量。 在实际应用中,AIGC 展现出了巨大的潜力。它可以自动撰写新闻文章,为媒体行业带来效率的提升;能够生成艺术画作,为艺术创作注入新的活力;可以创作音乐,丰富音乐领域的多样性;还能制作视频游戏内容,为娱乐产业增添新的元素。 ChatGPT 作为 AIGC 在文本生成领域的杰出代表,充分展示了 AIGC 的强大能力。它通过预训练和大量的数据投喂,能够与用户进行流畅且相关的文本交流,仿佛在玩“文字接龙游戏”。 然而,AIGC 也面临一些挑战和问题。比如生成内容的准确性和可靠性需要进一步提高,版权和伦理问题也需要引起重视。但不可否认的是,AIGC 为我们开启了一扇充满无限可能的大门,让我们对未来充满期待。随着技术的不断进步和完善,相信 AIGC 将在更多领域发挥重要作用,为人类创造更多的价值。
2025-03-01
人工智能生成内容(AIGC)的突破、对齐及产业培育,感悟
以下是关于人工智能生成内容(AIGC)的突破、对齐及产业培育的感悟: 一、原理与概念 1. 人工智能(AI):是一种目标,让机器展现智慧,简称 AI。 2. 生成式人工智能(GenAI):目标是让机器产生复杂有结构的内容,简称 GenAI。 3. 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 4. 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因有很多层所以叫深度),神经网络可用于多种学习方式。 5. 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。 6. ChatGPT:是 AIGC 技术的一个应用实例,是美国 OpenAI 公司开发的基于大型语言模型的对话机器人,能根据用户输入生成连贯且相关的文本回复。 二、AIGC 的特点与应用 AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。其技术可用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 三、相关概念的关系与区别 AGI、GenAI、AIGC 几个概念有所区别与联系,具体可参考相关图示。更多概念可问 Kimi、通义千问、文心一言等大模型。 四、技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-03-01
AIGC是什么?
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,其应用包括但不限于以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目众多,能进行 AIGC 的媒介也很多,包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。 作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 AIGC 应用可能引发内生风险、数据隐私问题和知识产权风险。内生风险包括算法的不可解释性和不可问责性,以及代码开源可能带来的安全和伦理担忧。数据隐私方面,AIGC 工具可能导致数据泄露、匿名化不足、未经授权的数据共享等问题。应用风险涉及作品侵权、不当竞争等问题。相关法律和规定对 AIGC 的透明性、数据收集和处理、知识产权归属等提出了要求。然而,著作权归属、数据隐私等问题尚需更多法律明确规定。此外,AIGC 的滥用可能导致虚假信息传播、侵犯隐私等问题,因此需要进一步加强监管和伦理约束。
2025-03-01
谈谈医疗人工智能的风险及其法律防范,举一个具体例子,如影响肿瘤外科内科
医疗人工智能在带来诸多益处的同时,也存在新的风险。以下为您举例说明其风险及法律防范: 以自动化医疗分诊系统为例,其具有适应性和自主性。适应性方面,它能基于对医疗数据集、患者记录和实时健康数据的分析来预测患者病情;自主性方面,它能为医疗专业人员或直接为患者生成有关症状可能原因的信息,并推荐潜在的干预和治疗措施。 然而,这也带来了一些风险和监管问题。比如,若该系统提供了错误的医疗建议,导致患者出现负面健康结果,责任归属不明确,影响患者获得赔偿。 在法律防范方面,需要明确此类系统的责任界定,制定相关法律法规,确保患者在因错误建议受到损害时能够获得有效的救济。同时,应加强对医疗人工智能系统的监管和评估,确保其准确性和可靠性。
2025-01-02
谈谈人工智能伦理建设的内容、体系
人工智能伦理建设的内容和体系包括以下方面: 在国际层面,例如美国国会的相关法案,提出要为联邦人工智能研究、开发和示范活动提供跨机构协调,制定自愿共识标准和指南,开展教育和培训活动等。 在国家层面,以中国为例,《国家人工智能产业综合标准化体系建设指南(征求意见稿)》中,行业应用标准方面,涵盖智能制造、智能家居、智慧城市、科学智算等重点领域,规范了各领域的技术要求和应用场景。安全/治理标准方面,包括全生命周期的安全要求,如基础安全、数据与模型安全等,以及治理要求,如伦理风险评估、公平性与可解释性等伦理治理技术要求与评测方法、伦理审查等标准。 在欧盟层面,规定人工智能应符合欧盟价值观、基本权利和自由,是以人为本的技术,最终目的是提高人类福祉。为确保公众利益的保护,应为高风险人工智能系统制定统一规则,且规则应与相关宪章和原则保持一致,并符合国际贸易承诺。同时指出人工智能能带来广泛效益,但也可能根据应用和发展水平产生风险和损害。
2025-01-02
谈谈对人工智能的看法
以下是关于对人工智能的一些看法: 从吴恩达的观点来看: 存在对人工智能放大人类负面影响的担忧,可在技术层级如通过 RLHF 解决类似于社会歧视等问题。 担心人工智能导致失业,但实际每个工作组成部分不单一,人可与人工智能协同,如放射科医生岗位虽曾被看低但未失业。 对于人工智能导致人类毁灭的观点,其论点缺乏具体性和现实依据。人类有控制比自身强大事物的经验,未完全控制的事物如飞机仍有价值且安全。同时,AI 可成为解决气候变化和大流行病等问题的关键。 从【好文推荐】来看: 作为 AI 行业的投资人,挑选了认为被经常提及的三个问题进行讨论,包括这轮 AI 有无被证明的杀手级应用、大模型是否拿走绝大部分利润、机会属于大厂还是创业公司等。 从奥特曼的访谈来看: 对通用人工智能(AGI)的定义因人而异。 认为一个系统能显著加快全球科学发现速度是极其了不起的,大多数经济增长源自科学和技术进步。 即便看到系统有新颖的科学直觉也将不可思议。
2024-09-05
所以我可以理解为CNN是一种图像分类识别的AI算法技术吗
卷积神经网络(CNN)是一种用于图像分类识别的 AI 算法技术。 ImageNet 成为深度神经网络革命的首选数据集,其中由 Hinton 领导的 AlexNet 就是基于卷积神经网络(CNN)。自 2012 年以来,在深度学习理论和数据集的支持下,深度神经网络算法大爆发,包括卷积神经网络(CNN)等。 连接主义的全面逆袭从 2012 年开始,欣顿教授和他的学生建立的 AlexNet 就是使用反向传播算法训练的卷积神经网络(CNN),其在图像识别方面击败了当时最先进的逻辑程序。 虽然 CNN 模型取得了显著成果并解决了许多问题,但也存在一些缺陷,如不能从整幅图像和部分图像识别出姿势、纹理和变化,池化操作导致模型不具备等变、丢失很多信息,需要更多训练数据来补偿损失,更适合像素扰动极大的图像分类,对某些不同视角的图像识别能力相对较差。因此,在 2011 年,Hinton 和他的同事们提出了胶囊网络(CapsNet)作为 CNN 模型的替代。
2025-03-07
deepseek的论文里面讲的混合专家模型怎么理解
混合专家(MoE)模型是一种在深度学习中提升计算效率的架构。以 DeepSeek 为例,其最新模型 V3 与 R1 采用了这种架构。 在 DeepSeek 的 V3 模型中,引入了多头潜注意力(MLA),将 KV 缓存压缩至新低,从而提升了计算性能。R1 模型则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。 DeepSeek 的 2360 亿参数的 DeepSeekV2 是 60 位专家混合开源模型,在数学、编码和推理方面表现出色,具有 236B 参数,21B 在生成过程中被激活,在 MTBench 上表现优异,中文能力强且性价比高。 您可以通过以下链接获取更详细的介绍:https://xiaohu.ai/p/7468 、https://zhuanlan.zhihu.com/p/21208287743 。
2025-02-19
deepseek为什么在古诗词理解上这么弱智?
DeepSeek 在很多方面表现出色,并非像您认为的在古诗词理解上弱智。它具有以下优点: 1. 语气还原:能还原帝王的语气,相比其他模型输出更准确恰当,兼顾了古典文字和可读性。 2. 熟悉历史细节:可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原唐初的历史称谓,如“太极宫”“甘露殿”“掖庭局”“观音婢”“宫门鱼符”等,对“魏徵”等字词的使用也很讲究。 3. 输出具体且细节惊人:其输出充满具体而惊人的细节,行文的隐喻拿捏到位,如“狼毫蘸墨时发现指尖残留着未洗净的血痂”等句子,虽未直接写“愧疚与野心,挣扎与抱负”,但句句体现。
2025-02-18
如何理解Deepseek认知启发式的设计理念
DeepSeek 认知启发式的设计理念主要包括以下几个方面: 1. 将 Agent 封装成 Prompt,并将 Prompt 储存在文件中,以保证最低成本的人人可用,同时减轻调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,通过思考减轻 AI 味,增加可读性。 4. 参照大模型的 temperature 设计了阈值系统,但可能形式大于实质,后续可能根据反馈修改。 5. 用 XML 来进行更为规范的设定,而非 Lisp(有难度)和 Markdown(运行不太稳定)。 此外,DeepSeek 具有以下特点: AI 特性定位:支持多模态理解,包括文本/代码/数学公式混合输入;具备动态上下文,即对话式连续记忆(约 4K tokens 上下文窗口);具有任务适应性,可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道理,自动检测 prompt 中的任务类型、输出格式、知识范围,对位置权重(开头/结尾)、符号强调敏感。 在提示词系统方面: 基础指令框架包括四要素模板、格式控制语法等。格式控制语法中,强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号中>表示关键要求,!表示禁止项。 进阶控制技巧包含思维链引导、知识库调用、多模态输出。思维链引导中有分步标记法和苏格拉底式追问;知识库调用中有领域限定指令和文献引用模式。 HiDeepSeek 是为解决使用 AI 工具时答案思考过程不可见的问题而设计的工具,其核心目标是让 AI 像人类交流时那样展示思考过程,在技术层面通过特别规则实现,例如要求 AI 思考像人类一样自然。它能帮助用户更好地理解和使用 AI,让 AI 成为更好的助手。
2025-02-11
扣子工作流上传图片并让AI理解图片内容
扣子工作流可以实现上传图片并让 AI 理解图片内容。具体步骤如下: 1. 上传输入图片:将本地图片转换为在线 OSS 存储的 URL,以便在平台中进行调用。 2. 理解图片信息,提取图片中的文本内容信息:通过封装的图片理解大模型和图片 OCR 等插件来实现。 3. 场景提示词优化/图像风格化处理。 4. 返回文本/图像结果。 在搭建工作流时,主要关注以下几个步骤: 1. 点击工作流后面的“➕”来添加一个工作流。 2. 点击创建工作流。 3. 给工作流起名字和描述,名字只能用字母、数字和下划线,描述清晰以便区分。 4. 初始化的工作流:左边有各种可用的插件和搭建 Agent 的工具,可通过点击加号或直接拖拽使用。插件一般有对应的参数说明,初始化后会生成开始模块和结束模块,且只能以开始模块启动,结束模块终结工作流。 此外,扣子平台具有以下特点和功能: 1. 集成了丰富的插件工具,包括资讯阅读、旅游出行、效率办公、图片理解等 API 及多模态模型,支持内置插件和自定义插件。 2. 提供简单易用的知识库功能来管理和存储数据,支持多种格式的数据上传,包括文本格式、表格格式,也支持本地文件和在线网页内容及 API JSON 数据的上传。 3. 具有持久化的记忆能力,可记住用户对话的重要参数或内容。 4. 工作流功能灵活,可通过拖拉拽的方式搭建处理逻辑复杂且稳定性要求高的任务流。
2025-02-10
长文本理解能里较强的AI
以下是一些长文本理解能力较强的 AI 模型: 1. 智谱·AI 的 ChatGLM26B32k:这是第二代 ChatGLM 长上下文对话模型,在 ChatGLM26B 的基础上进一步强化了对于长文本的理解能力,能够更好地处理最多 32K 长度的上下文。在实际使用中,如果上下文长度基本在 8K 以内,推荐使用 ChatGLM26B;如果需要处理超过 8K 的上下文长度,推荐使用 ChatGLM26B32K。此外,还有 ChatGLM26B32kint4 版本,它是 ChatGLM26B32K 的 int4 版本。 2. 通义千问的 Qwen2.51M:推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速。首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息。其开源平台包括 Huggingface(https://huggingface.co/spaces/Qwen/Qwen2.51MDemo)和 Modelscope(https://www.modelscope.cn/studios/Qwen/Qwen2.51MDemo)。
2025-02-09