Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

谈谈对人工智能的看法

Answer

以下是关于对人工智能的一些看法:

从吴恩达的观点来看:

  • 存在对人工智能放大人类负面影响的担忧,可在技术层级如通过 RLHF 解决类似于社会歧视等问题。
  • 担心人工智能导致失业,但实际每个工作组成部分不单一,人可与人工智能协同,如放射科医生岗位虽曾被看低但未失业。
  • 对于人工智能导致人类毁灭的观点,其论点缺乏具体性和现实依据。人类有控制比自身强大事物的经验,未完全控制的事物如飞机仍有价值且安全。同时,AI 可成为解决气候变化和大流行病等问题的关键。

从【好文推荐】来看:

  • 作为 AI 行业的投资人,挑选了认为被经常提及的三个问题进行讨论,包括这轮 AI 有无被证明的杀手级应用、大模型是否拿走绝大部分利润、机会属于大厂还是创业公司等。

从奥特曼的访谈来看:

  • 对通用人工智能(AGI)的定义因人而异。
  • 认为一个系统能显著加快全球科学发现速度是极其了不起的,大多数经济增长源自科学和技术进步。
  • 即便看到系统有新颖的科学直觉也将不可思议。
Content generated by AI large model, please carefully verify (powered by aily)

References

学习笔记:Generative AI for Everyone吴恩达

担忧一:是否会放大人类的负面影响在技术层级上解决类似于社会歧视等问题,如RLHF担忧二:导致失业人工智能会优化效率,但实际每个工作的组成部分不是单一的,人可以和人工智能更好的协同。吴恩达举例了,16年行业看低,放射科医生岗位的案例。但实际放射科医生没有失业,因为解读X光照片事实证明比当时看起来更困难,而且放射科医生工作的多部分组成,解读X光照片仅仅是一个部分。最终,能比较明确的是,会人工智能的人会取代不会人工智能的人担忧三:人类毁灭人工智能可能导致许多问题,但当出现人工智能会有毁灭性影响的观点,并评估论点现实性,吴恩达老师发现都不具体,也没有具体说明人类如何灭绝。人类有丰富的经验来控制比个体强大的事物,像公司与国家许多没有完全控制的事物,像飞机,还是有价值并且安全的如果关注其他的像气候变化和大流行病,AI可以成为解决的关键

【好文推荐】议古论今:聊聊现在AI应用层创业者面对的三个问题

作者:HongGC发表时间:2024-3-25原链接:https://mp.weixin.qq.com/s/JPyfpVUgqI8hxZE-z-zBbg作为AI行业的投资人,日常能接触到很多AI行业的创业者,能深刻感受到目前AI应用层创业者经常被质疑的问题。所以我们就挑选了我们认为经常被提及的三个问题,谈谈我们对这些问题的看法。本文通过梳理过去50年IT产业的发展和创业历史,站在现在对未来进行推理,推理过程难免有误差,仅代表个人观点,所以更加欢迎大家一起共同讨论和纠正错误。写下来更重要的目的是未来有机会进行回顾和反思,相信收获会更大。三个问题:这轮AI很热闹,但到现在还没有被证明的杀手级应用(Killer App),那么这次AI是不是伪需求,是不是“狼来了”大模型能力这么强,未来会不会拿走AI产业绝大部分的利润?正像今天的底层芯片公司(Nvidia)获得了本轮的绝大部分收益。这次AI带来的机会是大厂的机会,还是创业公司的机会?

访谈:奥特曼|关于 GPT-5、Sora、Ilya、Q*、AGI、外星人等等一切

我的意思是,对AGI ——也就是通用人工智能的定义,每个人都有各自的理解。也许你对它的看法和我不太一样。但在我看来,这个因素应该被包括在内。Lex Fridman也可能会出现一些重大的、具有戏剧性的时刻。在你看来,AGI做出哪些事情会给你留下深刻印象?当你独自一人与系统在房间里对话时。Sam Altman这对我个人而言至关重要。我不确定这是否是正确的定义,但我相信,只要一个系统能够显著加快全球科学发现的速度,那就是一件极其了不起的事情。我深信,大多数真正的经济增长都源自科学和技术的进步。Lex Fridman我同意你的看法,这也是为什么我不太喜欢最近几年那些对科学持怀疑态度的现象。Sam Altman绝对的。Lex Fridman但实际上,科学发现的速度是可以衡量的。不过,即便仅仅是看到一个系统拥有真正新颖的、科学的直觉,那也将是不可思议的。Sam Altman嗯,对。Lex Fridman你很可能会成为第一个打造出能在其他人之前与之交流的AGI的人。你打算和它聊些什么呢?Sam Altman

Others are asking
人工智能的相关岗位
以下是关于人工智能相关岗位的一些信息: 在企业中建构人工智能方面,智能音箱的工作流程包括探测触发词或唤醒词、语音识别、意图识别、执行相关程序,但智能音箱面临着对每个用户需求单独编程导致公司需花费大量资金教育客户的困境。自动驾驶汽车方面,检测包括使用监督学习、多种传感器和技术,运动规划包括输出驾驶路径和速度。 人工智能团队的角色示例有:软件工程师,负责智能音箱中的软件编程工作,在团队中占比 50%以上;机器学习工程师,创建映射或算法,搜集和处理数据;机器学习研究员,负责开发前沿技术;应用机器学习科学家,解决面临的问题;数据科学家,检测和分析数据;数据工程师,整理数据;AI 产品经理,决定用 AI 做什么以及其可行性和价值。 在【已结束】AI 创客松中,参与同学的擅长领域和岗位包括:AI 2C 项目负责人、技术实践者、AI 算法开发、产品经理、程序员、产品体验设计师、咨询顾问/服务设计师等,他们在不同方向有着各自的优势和想法,如产品落地服务、多 Agent 处理任务流、宠物与 AI 结合、智能写作产品等。
2025-01-03
人工智能的定义
人工智能是一门研究如何使计算机表现出智能行为的科学。目前对其定义并不统一,以下是一些常见的定义: 从一般角度来看,人工智能是指通过分析环境并采取行动(具有一定程度的自主性)以实现特定目标来展示其智能行为的系统。基于人工智能的系统可以完全依赖于软件,在虚拟世界中运行(例如语音助手、图像分析软件、搜索引擎、语音和人脸识别系统)或者也可以嵌入硬件设备中(例如高级机器人、自动驾驶汽车、无人机或物联网应用程序)。 2021 年《AI 法案》提案第 3 条对人工智能的定义为:“AI 系统指采用附录 1 中所列的一种或多种技术和方法开发的软件,该软件能生成影响交互环境的输出(如内容、预测、建议或决策),以实现人为指定的特定目标。”其中,附录 1 列举的技术方法主要包括:机器学习方法(包括监督、无监督、强化和深度学习);基于逻辑和知识的方法(包括知识表示、归纳编程、知识库、影响和演绎引擎、符号推理和专家系统);统计方法,贝叶斯估计,以及搜索和优化方法。 最初,查尔斯·巴贝奇发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽更先进,但仍遵循受控计算理念。然而,对于像从照片判断人的年龄这类任务,我们无法明确解法,无法编写明确程序让计算机完成,这类任务正是人工智能感兴趣的。 需要注意的是,“人工智能”的概念自 1956 年于美国的达特茅斯学会上被提出后,其所涵盖的理论范围及技术方法随着时代的发展在不断扩展。相比于《2018 年人工智能战略》,2021 年《AI 法案》提案对于人工智能的定义采取更加宽泛的界定标准。在 2022 年《AI 法案》妥协版本中,欧盟理事会及欧洲议会认为“AI 系统”的定义范围应适当缩窄,并侧重强调机器学习的方法。
2025-01-02
人工智能的历史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但这种方法因无法大规模拓展应用场景,且从专家提取知识、表现及保持知识库准确性复杂且成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 例如在创建国际象棋计算机对弈程序时,方法不断变化。 此外,人工智能和机器学习在金融服务行业应用已超十年,促成了诸多改进。大型语言模型通过生成式人工智能代表重大飞跃,正改变多个领域。 最初查尔斯·巴贝奇发明计算机,遵循受控计算理念。但有些任务如根据照片判断人的年龄无法明确编程,这类任务正是人工智能感兴趣的。如今金融、医学和艺术等领域正从人工智能中受益。
2025-01-02
什么是人工智能
人工智能(Artificial Intelligence)是一门研究如何使计算机表现出智能行为的科学,例如做一些人类所擅长的事情。 最初,查尔斯·巴贝奇发明了计算机,用于按照明确的程序进行数字运算。现代计算机虽更先进,但仍遵循相同的受控计算理念。若知道实现目标的每一步骤及顺序,就能编写程序让计算机执行。 然而,像“根据照片判断一个人的年龄”这类任务,我们不清楚大脑完成此任务的具体步骤,无法明确编程,这类任务正是人工智能感兴趣的。 AI 分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等;AGI 能做任何人类可以做的事。 人工智能术语包括: 机械学习:学习输入输出,从 A 到 B 的映射。是让电脑在不被编程的情况下自己学习的研究领域。 数据科学:分析数据集,从数据中获取结论与提示,输出结果往往是幻灯片、结论、PPT 等。 神经网络/深度学习:有输入层、输出层、中间层(隐藏层)。
2025-01-02
人工智能伦理建设的基本内容
人工智能伦理建设的基本内容包括以下方面: 欧洲议会和欧盟理事会规定了人工智能的统一规则,并修正了一系列相关条例。回顾委员会任命的独立人工智能高级别专家组 2019 年制定的《值得信赖的人工智能的伦理准则》,其中包含七项不具约束力的人工智能伦理原则: 人类主体和监督:人工智能系统的开发和使用应为人服务,尊重人的尊严和个人自主权,其运行可由人类适当控制和监督。 技术稳健性和安全性:开发和使用方式应在出现问题时保持稳健,抵御试图改变其使用或性能的行为,减少意外伤害。 隐私和数据治理:符合现有隐私和数据保护规则,处理的数据应具备高质量和完整性。 透明度:开发和使用方式应允许适当的可追溯性和可解释性,让人类知晓交流或互动情况,并告知部署者系统的能力和局限性以及受影响者的权利。 多样性、非歧视和公平:开发和使用方式应包括不同参与者,促进平等获取、性别平等和文化多样性,避免歧视性影响和不公平偏见。 社会和环境福祉:有助于设计符合《宪章》和欧盟基础价值观的连贯、可信和以人为本的人工智能。 问责制。 人工智能能带来广泛的经济、环境和社会效益,如改进预测、优化运营等,但也可能根据应用、使用情况和技术发展水平产生风险,对受欧盟法律保护的公共利益和基本权利造成损害。 鉴于人工智能的重大影响和建立信任的必要性,其发展必须符合欧盟价值观、基本权利和自由,应以人为本,最终提高人类福祉。 为确保公众利益的高水平保护,应为所有高风险人工智能系统制定统一规则,这些规则应与《宪章》一致,非歧视,符合国际贸易承诺,并考虑相关准则。
2025-01-02
举例说明,医疗人工智能应用的风险及其法理防范
医疗人工智能应用存在以下风险: 1. 可能对受欧盟法律保护的公共利益和基本权利造成损害,包括身体、心理、社会或经济方面的损害。 2. 在决定是否给予、拒绝、减少、取消或收回医疗保健服务等福利时,可能对人们的生计产生重大影响,并侵犯基本权利,如社会保护权、不受歧视权、人的尊严权或有效补救权。 3. 用于评估自然人信用分数或信用度的人工智能系统可能导致对个人或群体的歧视,并延续历史上的歧视模式或造成新形式的歧视性影响。 法理防范措施包括: 1. 为所有高风险人工智能系统制定统一的规则,这些规则应与《宪章》保持一致,是非歧视性的,并符合欧盟的国际贸易承诺,同时考虑相关的伦理准则。 2. 明确价值链上相关经营者的作用和具体义务,促进对法规的遵从,确保法律的确定性。 3. 在特定条件下,明确高风险人工智能系统提供者的责任和义务。 需要注意的是,欧盟法律规定的用于检测提供金融服务过程中的欺诈行为以及用于计算信贷机构和保险企业资本要求的尽职审慎目的的人工智能系统,以及用于自然人健康和人寿保险风险评估和定价的人工智能系统,在符合一定条件时不视为高风险系统。
2025-01-02
谈谈医疗人工智能的风险及其法律防范,举一个具体例子,如影响肿瘤外科内科
医疗人工智能在带来诸多益处的同时,也存在新的风险。以下为您举例说明其风险及法律防范: 以自动化医疗分诊系统为例,其具有适应性和自主性。适应性方面,它能基于对医疗数据集、患者记录和实时健康数据的分析来预测患者病情;自主性方面,它能为医疗专业人员或直接为患者生成有关症状可能原因的信息,并推荐潜在的干预和治疗措施。 然而,这也带来了一些风险和监管问题。比如,若该系统提供了错误的医疗建议,导致患者出现负面健康结果,责任归属不明确,影响患者获得赔偿。 在法律防范方面,需要明确此类系统的责任界定,制定相关法律法规,确保患者在因错误建议受到损害时能够获得有效的救济。同时,应加强对医疗人工智能系统的监管和评估,确保其准确性和可靠性。
2025-01-02
谈谈人工智能伦理建设的内容、体系
人工智能伦理建设的内容和体系包括以下方面: 在国际层面,例如美国国会的相关法案,提出要为联邦人工智能研究、开发和示范活动提供跨机构协调,制定自愿共识标准和指南,开展教育和培训活动等。 在国家层面,以中国为例,《国家人工智能产业综合标准化体系建设指南(征求意见稿)》中,行业应用标准方面,涵盖智能制造、智能家居、智慧城市、科学智算等重点领域,规范了各领域的技术要求和应用场景。安全/治理标准方面,包括全生命周期的安全要求,如基础安全、数据与模型安全等,以及治理要求,如伦理风险评估、公平性与可解释性等伦理治理技术要求与评测方法、伦理审查等标准。 在欧盟层面,规定人工智能应符合欧盟价值观、基本权利和自由,是以人为本的技术,最终目的是提高人类福祉。为确保公众利益的保护,应为高风险人工智能系统制定统一规则,且规则应与相关宪章和原则保持一致,并符合国际贸易承诺。同时指出人工智能能带来广泛效益,但也可能根据应用和发展水平产生风险和损害。
2025-01-02
谈谈你对AI/AIGC的理解
AI(人工智能)是指让计算机模拟人类智能的技术。机器学习是人工智能的重要组成部分,包括监督学习、无监督学习和强化学习等方式。监督学习基于有标签的训练数据,学习输入与输出的映射关系;无监督学习则在无标签数据中自主发现规律,例如聚类。强化学习从反馈中学习以最大化奖励或最小化损失。深度学习参照人脑构建神经网络,其中 Transformer 模型基于自注意力机制处理序列数据,比 RNN 更适合处理长距离依赖。 AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,能生成文字、图像、视频等。它在内容创作、广告、媒体等领域广泛应用。 AIGC、UGC(用户生成内容)和 PGC(专业人士或机构生成内容)是不同的内容生成方式。AIGC 由人工智能生成,可快速大规模生成内容;UGC 由用户生成,内容丰富多样反映用户想法;PGC 由专业团队或机构生成,内容质量高专业性强。
2024-12-29
请根据提供的AI工具网址,搜索常用的AI工具,实际操作AI工具,记录使用过程中的感受和发现,提交一份体验报告,描述工具的使用过程和个人感受,并就AI相关的热点话题,AI伦理、AI与就业等简要发表自己的看法。
以下是一份关于常用 AI 工具的体验报告: 一、AI 工具使用过程和感受 1. 超级简历优化助手 使用过程:用户上传简历,工具分析内容并提供优化建议。 个人感受:对于求职者来说,能够针对性地提升简历质量,提高求职成功率,操作简单易懂。 2. 酷家乐等设计软件 使用过程:用户上传户型图,软件通过 AI 生成多种室内设计方案。 个人感受:为室内设计提供了便捷和丰富的创意,节省了设计时间和精力。 3. Amper Music 使用过程:用户提出需求,工具生成旋律和编曲。 个人感受:对音乐创作者有很大的辅助作用,激发创作灵感。 4. 松果倾诉智能助手 使用过程:通过文字或语音与用户交流,提供情感咨询。 个人感受:在情感支持方面提供了及时的帮助和建议。 5. 小佩宠物智能设备 使用过程:实时监测宠物的活动、饮食等状况,提供健康预警。 个人感受:让宠物主人能更方便地关注宠物健康。 6. 马蜂窝智能行程规划 使用过程:根据用户输入的目的地、时间等因素定制旅游路线。 个人感受:为旅行规划提供了个性化的方案,节省了规划时间。 7. 作业帮智能辅导 使用过程:根据学生的学习情况提供针对性的学习方案。 个人感受:有助于学生获得更贴合自身需求的学习辅导。 8. AI 游戏道具推荐系统 使用过程:在游戏中分析玩家风格和进度,推荐合适道具。 个人感受:提升了游戏体验,使玩家能更有效地获取所需道具。 9. AI 天气预报分时服务 使用过程:利用彩云天气提供每小时的天气预报。 个人感受:为出行和活动安排提供了更精准的参考。 10. AI 医疗病历分析平台 使用过程:分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 个人感受:有助于提高医疗诊断的准确性和效率。 11. AI 会议发言总结工具 使用过程:在会议中自动总结发言者的主要观点和重点内容。 个人感受:方便会议记录和回顾,提高工作效率。 12. AI 书法作品临摹辅助工具 使用过程:识别书法作品的笔画和结构,为用户提供临摹指导和评价。 个人感受:对书法爱好者的临摹学习有一定的帮助。 二、关于 AI 相关热点话题的看法 1. AI 伦理 随着 AI 技术的广泛应用,数据隐私、算法偏见等伦理问题日益凸显。需要建立健全的法律法规和伦理准则,确保 AI 的发展符合人类的价值观和利益。 2. AI 与就业 AI 的发展可能会导致一些传统岗位的减少,但同时也会创造新的就业机会,如 AI 开发、维护和管理等。重要的是通过教育和培训,提升劳动者的技能,以适应新的就业需求。 三、健身的 AI 产品 1. Keep:中国最大的健身平台,提供全面的健身解决方案,帮助用户实现健身目标。 2. Fiture:沸彻魔镜集硬件、丰富课程内容、明星教练和社区于一体。 3. Fitness AI:利用人工智能进行锻炼,增强力量和速度。 4. Planfit:健身房家庭训练与 AI 健身计划,AI 教练使用大量文本数据和 ChatGPT 实时提供指导。
2024-11-11
你对人工智能的看法
以下是关于对人工智能的一些看法: 商业和社会中的生成式人工智能方面: 存在对放大人类负面影响的担忧,可在技术层级上解决类似社会歧视等问题,如 RLHF。 担心导致失业,但实际每个工作的组成部分并非单一,人可与人工智能更好协同,如放射科医生岗位虽曾被看低但未失业。 存在人类毁灭的担忧,但相关观点不具体,未说明人类如何灭绝,人类有控制比个体强大事物的经验,未完全控制的事物如飞机仍有价值且安全,AI 还可能成为解决气候变化和大流行病等问题的关键。 从定义来看:“artificial intelligence”指基于机器的系统,能针对给定的人类定义目标,在真实或虚拟环境中进行预测、推荐或决策,使用机器和基于人的输入,并利用模型推理来制定信息或行动的选项。 现实看法:过度乐观与过度悲观都不可取。少量数据会导致 AI 表现不佳,高性能 AI 系统是黑盒模型,运行原理不清楚难以解释,为让大众接受 AI,AI 解释性研究是众多学者努力的方向,AI 会产生偏见与歧视。
2024-09-05