目前市面上有许多好用的生成式人工智能,以下为您列举部分:
此外,还有 Google 的 BERT 和 LaMDA、Facebook 的 OPT-175B 和 BlenderBot 等。同时,有数百公司正在构建通用聊天机器人,如 Replika 和 Anima 等。但需要注意的是,这些模型的训练通常需要大量数据和计算能力,大多数公司难以从头开始训练自己的此类模型。
生成式人工智能已经可以做很多事情。它能够生成文本和图像,涵盖博客文章、程序代码、诗歌和艺术品(甚至[赢得竞赛,有争议)](https://www.washingtonpost.com/technology/2022/09/02/midjourney-artificial-intelligence-state-fair-colorado/))。该软件使用复杂的机器学习模型根据先前的单词序列预测下一个单词,或根据描述先前图像的单词预测下一个图像。法学硕士于2017年在Google Brain开始提供,最初用于翻译单词,同时保留上下文。从那时起,大型语言和文本到图像模型在领先的科技公司中激增,包括Google(BERT和LaMDA)、Facebook(OPT-175B、BlenderBot)和OpenAI(微软是主要投资者的非营利组织(GPT-3用于文本,DALL-E2用于图像,Whisper用于语音)。Midjourney(帮助赢得艺术竞赛)等在线社区和HuggingFace等开源提供商也创建了生成模型。这些模型在很大程度上仅限于大型科技公司,因为训练它们需要大量数据和计算能力。例如,GPT-3最初使用45 TB的数据进行训练,并使用1750亿个参数或系数进行预测;GPT-3的单次训练花费了1200万美元。中国模型无道2.0拥有1.75万亿个参数。大多数公司没有数据中心能力或云计算预算来从头开始训练自己的此类模型。
许多初创公司正考虑使用生成性AI来创建你可以互动的可信角色,这部分是因为这个市场在游戏之外具有如此广泛的适用性,比如虚拟助手或接待员。创建可信角色的努力可以追溯到AI研究的初期。实际上,经典的“图灵测试”对人工智能的定义就是人类应该无法区分与AI还是人类的聊天对话。目前,有数百家公司正在构建通用聊天机器人,其中许多由类似GPT-3的语言模型驱动。较少数公司正在特意尝试为娱乐目的构建聊天机器人,例如[Replika](https://replika.com/)和[Anima](https://myanima.ai/),他们正在尝试建立虚拟朋友。与虚拟女友约会的概念,就像在电影《她》中所探索的那样,可能比你想象得更接近现实。我们现在正在看到这些聊天机器人平台的下一代迭代,如[Charisma.ai](https://charisma.ai/)、[Convai.com](https://convai.com/)或[Inworld.ai](https://inworld.ai/),它们旨在为具有情感和自主权的完全渲染的3D角色提供动力,并提供工具,以便创作者给这些角色设定目标。如果这些角色要适应游戏或在推动情节向前发展中担任叙述角色,这一点是重要的,而不仅仅是装饰。[heading3]一体化平台[content]目前,最成功的生成性AI工具之一是[Runwayml.com](https://runwayml.com/),因为它在一个单一的软件包中汇集了一系列广泛的创作者工具。目前,尚没有这样的平台服务于视频游戏,我们认为这是一个被忽视的机会。我们非常愿意投资于具备以下特征的解决方案:覆盖整个生产流程的完整生成性AI工具套件(代码、资产生成、纹理、音频、描述等)与流行的游戏引擎(如Unreal和Unity)紧密集成专为适应典型的游戏生产流程而设计
生成式AI应用当前有三个核心用例与强大的产品市场契合度:搜索、合成和生成。Menlo Ventures投资组合公司如[Sana](https://menlovc.com/portfolio/sana-labs/)*(企业搜索)、[Eve](https://menlovc.com/portfolio/eve/)*(法律研究副驾驶)和[Typeface](https://menlovc.com/portfolio/typeface/)*(内容生成AI)在这些类别中都是早期突破性的代表,其中心是LLMs的少样本推理能力。但是生成式人工智能的承诺远远超越了这第一波核心使用案例。能为您阅读和写作的人工智能很棒,但更令人兴奋的是能够代表您思考和行动的人工智能。为此,我们已经看到领先的应用程序构建商如[Anterior](https://www.anterior.com/)、[Sema4](https://sema4.ai/)和[Cognition](https://www.cognition.ai/)正在建立解决方案,来处理之前只能由大量人力来解决的工作流程。借助多步逻辑、外部内存以及访问第三方工具和API等新型构建块,下一波智能体正在拓展AI能力的边界,实现端到端流程自动化。在我们深入探讨人工智能体领域的过程中,我们将概述Menlo对新兴市场的论点——首先定义什么是智能体以及什么使它们成为可能。我们将追溯[现代人工智能技术栈](https://menlovc.com/perspective/the-modern-ai-stack-design-principles-for-the-future-of-enterprise-ai-architectures/)从少量样本指令到检索增强型生成(RAG)再到完备的智能体系统的架构演化过程,然后探讨这一范式转变对应用和基础设施层面的影响。