Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AIGC提示词工程师怎么考

Answer

成为 AIGC 提示词工程师通常需要具备以下条件:

  1. 学历要求:本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。
  2. 工具熟悉度:熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验;熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。
  3. 项目经验:负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。
  4. 技术理解:了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Few-shot 等)。
  5. 数据分析能力:对数据驱动的决策有深入的理解,能够基于数据分析做出决策。
  6. 创新思维:具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。
  7. 行业关注:对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。
  8. 编程能力:具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成;具有一定的编程基础,熟练使用 Python、Git 等工具。

在面试过程中,以下方面是加分项:

  1. 需求拆解能力/产品需求嗅觉:考验需求拆解、控制 AI 稳定输出理想结果的能力。
  2. 懂技术:Prompt 设计离不开有 AIGC 开发经验,懂开发和底层原理才能写出更好的 Prompt。
  3. 有参与做过 AIGC 产品应用:例如用 Langchain 等框架去写,解决应用场景及其中的技术细节,包括商业化变现、解决 OpenAI 请求需要科学上网的问题、负载均衡/APIKey 管理等。
  4. 想法在用户需求认知前面:面试官给出行业场景(例如美妆),在无提示情况下,能畅享 AI 在该行业上赋能的功能场景,能联想到 To B 或 B2B2C 的场景是加分项。因为用户往往无法感知到 AI 能带来的帮助,需要面试者去了解用户工作流,有种“创造需求”的感觉。

公司在筛选几百份简历后,最终选择的 AIGC 提示词工程师和 AI 训练师,通常是像爱折腾的 00 后,有技术开发背景,对 Prompt 有独特深刻见解的人员。

Content generated by AI large model, please carefully verify (powered by aily)

References

刘海:「AI 提示词工程师」の 见解和经验分享

为了不脱轨目前行业的AI提示词工程师,可以搜索了解一下目前岗位的招聘技能要求情况。我使用ChatGPT结合BOSS直聘相关岗位,总结了一些点:1.本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。2.熟悉ChatGPT、Llama、Claude等AI工具的使用及原理,并具有实际应用经验。3.熟练掌握ChatGPT、Midjourney等AI工具的使用及原理。4.负责制定和执行AI项目,如Prompt设计平台化方法和模板化方法。5.了解并熟悉Prompt Engineering,包括常见的Prompt优化策略(例如CoT、Few-shot等)。6.对数据驱动的决策有深入的理解,能够基于数据分析做出决策。7.具有创新思维,能够基于业务需求提出并实践AI first的解决方案。8.对AI技术与算法领域抱有强烈的好奇心,并能付诸实践。9.对AIGC领域有深入的理解与实际工作经验,保持对AI技术前沿的关注。10.具备一定的编程和算法研究能力,能应用新的AI技术和算法于对话模型生成。11.具有一定的编程基础,熟练使用Python、Git等工具。观察上面的岗位需求,是不是像我说的,其实公司并不是需要一个prompt工程师,而是一个AI互联网产品经理。产品经理都是做啥活?我身边就有一个AI产品经理,他的工作内容就是(仅作参考):

刘海:「AI 提示词工程师」の 见解和经验分享

总结面试的一些加分项:[heading3]需求拆解能力/产品需求嗅觉[content]其实不但考验你的Prompt设计能力,更考验你的需求拆解、控制AI稳定输出理想结果的能力。[heading3]懂技术才更懂Prompt[content]Prompt设计离不开有AIGC开发经验,换言之,你只有懂开发,懂底层原理,你才能写出更好的Prompt。[heading3]有参与做过AIGC产品应用[content]写一些AIGC应用,最好用Langchain等框架去写,解决了哪些应用场景,其中的技术细节你是怎么解决的,有没有商业化变现,如何解决OpenAI请求需要科学上网的问题,负载均衡/APIKey怎么管理等等…[heading3]想法在用户需求认知前面[content]面试官给你一个行业场景(例如美妆),在不给你任何提示的情况下,让你畅享AI如何在该行业上赋能哪些功能场景,一般人都会只想到To C端的应用,如果你能回答上To B,或者B2B2C的场景都能联想到,那必然是加分项。因为用户是无法感知到AI能给他们带来什么方面的帮助,需要你去走一遍他们的工作流才能发现,所以需要你想在用户前面,有种「创造需求」的感觉。后来HR向我反馈的一些面试情况:

刘海:「AI 提示词工程师」の 见解和经验分享

公司从几百份简历当中最后筛选出来两个关于AIGC的工程师,一个是AI训练师,一个是AI提示词工程师。关于我的同事:我的同事是AI训练师,跟我同一天入职,我们两个工作内容存在一定的重合度,所以在分配工作上主要是我在主导需求分析,工作分配,我注重开发方面,他注重模型方面。他是毕业生,我认可的优秀Linux极客程序员(二刺猿。为什么要介绍我同事呢?因为想让大家知道一下这个岗位最后筛选下来的人大概是什么技能背景的。因为公司产品已经定型了,只需要编写Prompt,他们本来只想招会写Prompt的,不懂技术也没关系。但是面试下来发现,只有像我们这种爱折腾的00后,而且是搞技术开发出来的,才对Prompt有独特深刻的见解。

Others are asking
AIGC和AGI的区别
AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,包括文字、图像、视频等。它在内容创作、广告、媒体等领域广泛应用。 AGI(通用人工智能)则是一种让机器具备像人类一样的通用智能的目标,能够理解、学习和处理各种不同的任务和领域。 AIGC 侧重于内容的生成,是通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。而 AGI 追求的是更广泛和通用的智能能力。 例如,AIGC 可以生成文章、艺术作品、短视频等具体的内容形式;AGI 则是期望机器能够像人类一样进行思考、推理、解决复杂的综合性问题等。 总的来说,AIGC 是 AGI 在内容生成方面的一种具体应用,而 AGI 是更宏观和高远的人工智能发展目标。
2025-01-19
什么是AIGC
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。其应用领域广泛,包括内容创作、广告、媒体等。 能进行 AIGC 的产品项目和媒介众多。在语言文字类,有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;在语音声音类,有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等;在图片美术类,有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了 Midjourney、谷歌的 Disco Diffusion、OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等。 AIGC、UGC 和 PGC 都是内容生成的不同方式。UGC 是由用户生成的内容,反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 是由专业人士或机构生成的内容,内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。
2025-01-19
什么是AIGC
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,其应用领域广泛,包括但不限于内容创作、广告、媒体等。 例如,在文字生成方面,可使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容;在图像生成方面,可使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等;在视频生成方面,可使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式。UGC 是由用户生成的内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 是由专业人士或机构生成的内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 能进行 AIGC 的产品项目众多,媒介也多样。语言文字类有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;语音声音类有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits;图片美术类有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火了生成质量很高的 Midjourney、先驱者谷歌的 Disco Diffusion、一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型,代码模型权重已公开发布,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion。
2025-01-10
AIGC是什么
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 这种技术能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。AIGC 的应用非常广泛,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。 在内容生成方面,AIGC 包括文字生成(如使用大型语言模型 GPT 系列模型生成文章、故事、对话等)、图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等)、视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式。UGC 由用户生成内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 由专业人士或机构生成内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 能进行 AIGC 的产品项目众多,能进行 AIGC 的媒介也很多,包括且不限于: 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2025-01-08
Aigc国漫风格制作流程
以下是 AIGC 国漫风格的制作流程: 1. 主题与文案:确定国漫风格作品的主题,可借助 ChatGPT 等文本类 AI 工具协助完成文案。 2. 风格与布局:选择想要的国漫风格意向,背景可根据文案和风格灵活调整画面布局。 3. 生成与筛选:使用相关的 AIGC 绘图平台,输入关键词,生成并挑选出满意的底图。 4. 配文与排版:将上述素材进行合理排版,得到成品。排版同样可以参考 AIGC 相关的海报成果。 此外,还有一些相关的案例供您参考: 在制作海报方面,使用无界 AI 等软件,按照需求场景、大致流程进行操作。 在文旅视频制作中,如山西文旅宣传片,运用 Defense 及 SD 制作艺术字,通过 PS 处理和反复跑图提高画面完整度。 在游戏 PV 制作中,如《追光者》,结合多种 AI 工具,包括 chaGPT、MJ 绘图、SD 重绘等,进行前期脑暴拉片和风格参考情绪版的准备。
2025-01-08
Aigc国漫风格视频
以下是为您整理的相关内容: 关于 AIGC 国漫风格视频: 设计方面包括女执事、智能体、守护者等元素,有 3 种形态,平常翅膀呈隐藏状态,是人类的保护者和服务者。比如智小美,身材比 1:2,风格与智小鹿一脉相承但更智能,美貌与智慧并存,是智小鹿的妹妹。其设计灵感综合了导演、猫叔墨镜、影视元素等,猫叔在社区更新的万字编剧日记对创作 AIGC 有很大帮助。 关于 AIGC 小红书博主: 列举了多位小红书博主,如徐若木、笑笑(约稿)、吉吉如意令、发射井、惟玮、Sllanvivi、巧琢、上官文卿|ZHEN、AI 离谱社、布谷咕咕咕、果果(禾夭夭)、壹见空间川上扶蘇、Goooodlan🍅古德兰等,涵盖了商业插画师、约稿、头像、国风人物、创意设计、视频、动画设计教程、壁纸、景观设计等不同领域。 关于 AIGC Weekly88: 封面提示词为“abstract network out of glass made of holographic liquid crystal,dark background,blue light reflections,symmetrical composition,centered in the frame,highly detailed,hyperrealistic,cinematic lighting,in the style of Octane Rendear 16:9style rawpersonalizev 6.1”,可查看更多风格和提示词的链接为:https://catjourney.life/ 。这周训练了一个 FLUX Lora 模型,为褪色胶片风格,推荐权重 0.6 0.8,适合生成毛茸茸的动物玩偶,人像会偏向复古褪色的胶片风格,在玻璃制品产品展示摄影方面表现很好,整体景深模糊自然柔和,下载链接为:https://www.liblib.art/modelinfo/4510bb8cd80142168dc42103d7c20f82?from=personal_page
2025-01-08
怎么考取注册提示词工程师证
提示词工程师是在与人工智能模型交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。 提示词工程师的主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,以提高模型性能。 3. 评估提示:使用各种指标评估提示的有效性,如模型的准确率、流畅度和相关性等。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例: 1. Claude 官方文档提示词工程最佳实践中提到提示词的组成部分顺序很重要,包括“\n\nHuman:”、任务上下文、语气上下文、背景数据和文档、详细任务描述和规则、示例、对话历史、即时任务描述或请求、逐步思考/深呼吸、输出格式等。 2. 提示词工程师应做到开发测试用例、构建初版提示词、进行用例测试、优化提示词、分享完善后的提示词,且不要忘记测试边缘情况。 关于考取注册提示词工程师证的具体方式,目前可能还没有统一的标准和认证体系。但您可以通过以下途径提升相关能力: 1. 学习相关课程,如小七姐的提示词编写提升课,课程完成学习后通过结课考试获取证书。课程能帮助您提升表达能力、逻辑思维能力,熟练编写提示词,学会以商业化和工具化标准交付提示词,熟知提示词工程和行业常识及发展路径,搞懂提示词如何封装成工具,并获得自学路径以便继续深度学习。 2. 实践积累经验,不断测试和迭代自己编写的提示词。 3. 关注行业动态,了解最新的提示词工程技术和发展趋势。
2024-12-22
怎么成为一个提示词工程师
提示词工程师是在与人工智能模型交互时,负责设计和优化提示的专业人员,其目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。 提示词工程师的主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例: 1. 教育类:自动优化 Prompt,作者为 JackeyLiu,分类为代码,协助用户完成提示词优化。熟悉,将常规的 Prompt 转化为符合框架的优秀 Prompt,并让 chatGPT 输出符合预期的回复。 2. 商业类:自动优化 Prompt,作者为 JackeyLiu,分类为代码,协助用户完成提示词优化。熟悉,将常规的 Prompt 转化为符合框架的优秀 Prompt,并让 chatGPT 输出符合预期的回复。 提示词工程师是一个新兴的职业,随着人工智能技术的不断发展,对其需求将会越来越大。
2024-12-22
我是图像开发工程师,我需要研发图像处理有关的程序,可以找哪个ai 工具
如果您是图像开发工程师,需要研发图像处理有关的程序,以下是一些可供选择的 AI 工具: 1. 图片处理方面:DallE、Leonardo、BlueWillow、Midjourney。 2. 去水印工具:AVAide Watermark Remover、Vmake、AI 改图神器。 3. 画质增强工具:Magnific(https://magnific.ai/)、ClipDrop(https://clipdrop.co/imageupscaler)、Image Upscaler(https://imageupscaler.com/)、Krea(https://www.krea.ai/)。更多工具可以查看网站的图像放大工具库:https://www.waytoagi.com/category/17
2024-11-30
aigc提示工程师应该学习哪些课程
以下是 AIGC 提示工程师应该学习的一些课程: 1. 针对开发者的 AIGPT 提示工程课程:由 OpenAI 技术团队成员授课,涵盖软件开发最佳实践的提示,常见用例如总结、推理、转换和扩展,以及使用 LLM 构建聊天机器人等内容。 2. 范德堡大学的提示工程课程:教您成为生成 AI 工具的专家用户,展示利用生成式人工智能工具的示例,提高日常工作效率,并深入了解其工作原理。 3. 了解大型语言模型背后的理论:深入探讨自然语言处理中基本模型的细节,学习创新技术,涉及基于 Transformer 的模型,以及少量学习和知识蒸馏等转移学习技术,聚焦新的 LLM 发展方向。 4. 提示词培训课——Part4:包括提词工程的基础概念和实用技巧,如利用地规构建思考链条、探讨提示词的敏感性问题、解释'token'概念及相关操作,深入讲解提示词的进阶技术,如增强推理能力、运用元提示和任务分解技巧,探讨 AIAgent 和 AIAgentic 的概念和差别,学习多智能体设计模式,梳理提词落地流程。
2024-10-31
无人驾驶开发工程师
以下是为您提供的关于无人驾驶开发工程师的相关信息: 在生成式人工智能的行动方面,目前出现的趋势是首先将 AI 作为辅助驾驶(humanintheloop)部署,并通过使用机会积累经验,最终实现全自动化部署。例如 Sierra 就是一个例子,它在无法解决问题时能优雅地转交给人工处理。同时,新一代自主型应用随着生成式 AI 推理能力的提升而涌现,如 L4 智能驾驶可能是第一个具身智能最大的应用场景,目前其安全性比人类高 10 倍。 在 2024 北京智源大会的主题讨论中,张亚勤认为目前真正赚钱的是 2B 领域,如芯片、服务器等,应用是先 2C 再 2B。他把智能分成信息智能、具身智能、生物智能 3 个阶段,预测 05 年是信息智能,510 年是物理智能(具身智能),1520 年是生物智能。李开复认为无人驾驶面临巨大机会,FSD 会为无人驾驶带来新机遇,大模型适合虚拟世界,而接入物理世界会面临很多现实问题,创业者更适合从虚拟世界的 AI 创业开始。
2024-10-21
我是一个java开发工程师,现在想学习AIGC,请帮我制定一个学习计划,从0到1学习AIGC知识,并提供相关的学习资料
以下是为您制定的从 0 到 1 学习 AIGC 知识的学习计划,并为您提供相关学习资料: 一、学习计划 1. 基础知识学习 了解 AIGC 的基本概念和发展历程。 学习机器学习的基础知识,包括数据获取、特征工程、模型训练、评估与应用等方面。 2. 框架学习 学习 Langchain 框架:了解其丰富的功能,能够根据需求更换模型和实现方式。参考网址:https://python.langchain.com/docs/get_started/introduction.html 掌握 Flask / FastAPI 框架:学习如何与前端或业务后端做接口对接,根据具体场景选择合适的框架。参考网址: FastAPI:https://fastapi.tiangolo.com/zh/ Flask: https://flask.palletsprojects.com/en/2.3.x/ 3. 实践应用 通过实际项目练习,深入理解 AIGC 的应用开发。 二、学习资料 1. 关于机器学习的定义和流程: 卡耐基梅隆大学计算机学院教授汤姆·米切尔(Tom Michell)对机器学习的定义:“计算机程序能从经验 E 中学习,以解决某一任务 T,并通过性能度量 P,能够测定在解决 T 时机器在学习经验 E 后的表现提升” 学习数据获取、特征工程、模型训练、评估与应用等方面的知识。 2. 框架学习资料: Langchain 框架:https://python.langchain.com/docs/get_started/introduction.html Flask 框架:https://flask.palletsprojects.com/en/2.3.x/ FastAPI 框架:https://fastapi.tiangolo.com/zh/ 希望这个学习计划和学习资料对您有所帮助,祝您学习顺利!
2024-08-17
推荐3个ai 提示词工具
以下为您推荐 3 个 AI 提示词工具: 1. OpenPromptStudio:这是一款帮助撰写 MJ 和 SD 提示词的工具,支持将大段的 Prompt 提示词翻译成单词块、可拖拽单词块调整顺序、点击隐藏单词块使其在大段 Prompt 中消失、点击空白处新建单词块、提示词词典连接个人 Notion 数据库。整体交互设计出色,准确洞察了大家写提示词时的痛点。访问地址:https://moonvy.com/apps/ops/ 。 2. Majinai: 。 3. 词图: 。
2025-01-22
ai视频提示词
以下是关于 AI 视频提示词的相关知识: 在制作 AI 视频时,提示词非常关键。对于小白来说,思路清晰很重要。比如,描述一个场景时,应明确主体(什么东西)、动作(干啥了)、场景和镜头(怎么拍)。例如:“一个中年妇女辅导 12 岁的女儿作业,女孩看着妇女,妇女挠挠头,表情沉重。然后拿出手机对着桌子上的书拍照,然后放下手机,跟小姑娘说话,表情舒缓,欣慰,温柔。侧面镜头,镜头环绕到正面”。 同时要注意提示词的准确性,避免使用不确切的描述,如“一个女生备考,用纳米 AI 定制模拟专题练习,最后成功上岸”,AI 可能不理解其中的“备考”“纳米 AI 搜索”“专题练习”“上岸”等词汇,应改为更合理的描述。 提示词在文生视频、图生视频和角色生视频中广泛使用。准确的提示词能让 PixVerse 更容易生成您想要的视频,减少试错成本。在 AI 视频生成中,提示词指的是用于指导或引导 AI 模型生成特定视频内容的描述性文本或指令,您需要在提示词中描述想要生成的视频画面,一般包含描述性文字、指令参数、情感氛围、参考风格等方面。 另外,推荐使用英文输入提示词,因为 PixVerse 对英文的理解能力最佳,效果最好。但如果您对英文不熟悉,也可以使用自己的语言,PixVerse 的模型可以处理任何语言输入。
2025-01-21
runway 提示词
以下是关于 Runway 提示词的相关内容: 相机运动类型: 1. 静态拍摄:镜头保持固定。 2. 平移:摄像机水平移动(向左或向右)。 3. 倾斜:摄像机垂直移动(向上或向下)。 4. 滑轨:摄影机向或远离拍摄对象移动。 5. 跟踪拍摄:摄像机跟踪拍摄对象。 6. 起重机/摇臂拍摄:使用起重机或摇臂移动摄像机。 7. 斯坦尼康拍摄:使用了斯坦尼康稳定器的平稳跟拍。 8. 手持式:摄像机以自然的手持方式移动。 9. 变焦:相机放大或缩小。 10. 鞭状平移:摄像机快速平移,产生模糊效果。 11. 焦点变化:相机在不同主体之间移动焦距。 12. 荷兰角:摄像机向一侧倾斜。 13. 弧形拍摄:摄像机围绕拍摄对象做圆周运动。 提示结构: 1. 基本提示: 纯文本提示:当它们遵循一个清晰的结构,将。注意:重复或加强在不同部分中关键想法可以帮助提高输出的遵守度。例如,你可能会注意到摄像机在超速镜头中快速穿越场景。 非纯文本提示:Image+Text Base Prompt,使用输入图像时,请专注于描述您希望在输出中看到的动作,而不是图像的内容。
2025-01-21
有制作爆款短视频的ai提示词吗?
以下是一些制作爆款短视频的 AI 提示词相关内容: 1. 写脚本方面: 可以选择 Kimi、Claude、Chatgpt 等大模型,对于科学上网困难的小伙伴,可优先选择免费好用的 kimi(https://kimi.moonshot.cn/),有条件可选功能更强大的 chatgpt(https://chatgpt.com/),本作品用的是 Claude(https://claude.ai/new),Claude 在脚本创作方面有优势。 脚本提示词的结构是:我要做什么样的视频+视频要包含哪些关键的元素+对脚本的输出有什么要求。例如,要做 30 秒时长的广告宣传片脚本、做一个孩子们喜欢的儿童绘本脚本等;重点要把产品的特性或者想要的广告风格说出来,如奔驰高端商务、豪华舒适的特性,苹果香脆多汁、红润饱满的特点;按照一定的格式输出,推荐使用 Markdown 格式输出,方便后续操作。 2. 单镜头内容注意:要给 AI 确切的画面描述,杜绝不确切描述,如将“一个女生备考,用纳米 AI 定制模拟专题练习,最后成功上岸”改为“一个中年妇女辅导 12 岁的女儿作业,女孩看着妇女,妇女挠挠头,表情沉重。然后拿出手机对着桌子上的书拍照,然后放下手机,跟小姑娘说话,表情舒缓,欣慰,温柔。侧面镜头,镜头环绕到正面”。 3. 提示词网站分享: Learn Prompting https://learnprompting.org/docs/intro AI Short https://www.aishort.top/en/ AIPRM https://www.aiprm.com/prompts/ Prompt Library https://promptlibrary.org/
2025-01-20
lisp提示词
Lisp 语言在提示词编程中的应用具有以下特点: 1. Lisp 语言的语法:Lisp 是一门“古老”的编程语言,其语法核心是 List 结构或“S 表达式”,需要用一对括号把元素括起来,语法简洁优美且具有很强的表达能力。 2. 与 Markdown 的比较:平时写提示词更多用的是 Markdown 语法,它简单且大语言模型能很好理解,如标题、列表、加粗强调等。将 Lisp 提示词翻译成 Markdown 后,语义几乎一致,但在某些效果上存在差异,如 Lisp 版本中 SVG 图形的丰富度和表现力稳定地优于 Markdown 版本。此外,Markdown 版本在执行过程中会输出中间“思考”过程,多数场景下这样一步一步思考有正向收益,还能调试优化流程。而 Lisp 版本很难让大语言模型有条理地执行流程。 3. LLM 对 Lisp 程序的理解:一段 Lisp 提示词可能描述了简单的工作流,如对用户输入文本处理生成小确幸表达和生成 SVG 卡片等。虽然 Lisp 擅长描述程序且压缩信息能力强,但程序难懂,需要大量解码和按特定逻辑解读。大语言模型能解释 Lisp 程序,但作为提示词让其按程序逻辑运行很难,尤其对于复杂的函数调用,且难以保证程序里定义的子步骤被正确且无遗漏地执行。
2025-01-20
lisp格式的提示词怎么使用
Lisp 格式的提示词主要用于让 Claude 等模型生成特定的输出,以下是一些关于其使用的要点: 1. 用 Lisp 编写提示词能使生成 SVG 图形的效果优于 Markdown 版本。这可能是因为 Transformer 架构擅长从一种语言映射到另一种语言,Lisp 和 SVG 都是代码,两者距离更近,且 Lisp 的 List 结构更适合描述 SVG 卡片的设计规范、元素构成和配置参数。 2. 在实际应用中,可能会采用 Markdown 和 Lisp 混合的组合形式。如果通过 Chatbot 界面使用大语言模型,只能杂糅成一条提示词,一般情况下会拆成工作流,通过多次调用大语言模型来实现。 3. 用 Lisp 这种编程语言写提示词是之前在 prompt 圈被带火的,使用起来更为凝练和简洁。但平时写提示词用的更多的是 Markdown 语法,其简单且大语言模型能很好“理解”。 4. 要使用 Lisp 格式的提示词,可直接打开 Claude 首页,把提示词发送,完成初始化后即可使用。但通过 API 调用 Claude 可能输出效果不佳,网页版也许会更好。 5. 虽然 Markdown 版本与 Lisp 版本的提示词在语义上几乎一致,但在执行过程和某些效果上存在差异。Markdown 版本会输出中间“思考”过程,而 Lisp 版本很难让大语言模型有条理地执行流程。但用 Lisp 编写提示词时,更多是作为描述性语言而非程序性语言。
2025-01-20