Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Gemini是用什么训练的

Answer

Gemini 是在 Google 的 TPU AI 加速器上训练的,似乎没有使用英伟达的 GPU。Google 还推出了全新的 Cloud TPU v5p 和 AI Hypercomputer 超级计算机,将加速 Gemini 的开发,使 AI 模型的训练更快。

Cloud TPU v5p 是目前 Google 最强大、可扩展和灵活的 AI 加速器。它在 TPU v4 的基础上提供了超过 2 倍的 FLOPS(浮点运算次数/秒)和 3 倍的高带宽内存(HBM)。TPU v5p 可以比前一代 TPU v4 更快地训练大型语言模型(LLM),对于嵌入密集型模型,其训练速度比 TPU v42 快 1.9 倍。TPU v5p 的可扩展性是 TPU v4 的 4 倍。

AI Hypercomputer 是一个突破性的超级计算机架构,它采用了集成的系统,包括性能优化的硬件、开放软件、领先的机器学习框架,以及灵活的消费模型。通过系统级协同设计来提高 AI 训练、调优和服务的效率和生产力。具有性能优化的计算、存储和网络硬件,建立在超大规模数据中心基础设施之上,利用高密度占地面积、液体冷却和 Jupiter 数据中心网络技术。通过开放软件使开发者能够调整、管理和动态编排 AI 训练和推理工作负载。提供了一系列灵活和动态的消费选择,包括传统的承诺使用折扣(CUD)、按需定价和现货定价,以及为 AI 工作负载量身定制的消费模型。

Gemini 模型是在一个既包含多模态又包含多语言的数据集上进行训练的。预训练数据集使用来自网络文档、书籍和代码的数据,并包括图像、音频和视频数据。使用 SentencePiece 分词器,发现在整个训练语料库的大样本上训练分词器可以改善推断的词汇,并进而提高模型性能。对所有数据集进行过滤,使用启发式规则和基于模型的分类器,还进行安全过滤以删除有害内容。从训练语料库中筛选出评估集。在训练过程中进行分阶段训练,通过增加领域相关数据的权重来改变混合组合,直到训练结束。

Content generated by AI large model, please carefully verify (powered by aily)

References

Gemini相关内容

来源Gemini是在Google的TPU AI加速器上训练的,似乎没有使用英伟达的GPU。Google还推出了全新的Cloud TPU v5p和AI Hypercomputer超级计算机,将加速Gemini的开发,使AI模型的训练更快。Cloud TPU v5p:性能:Cloud TPU v5p是目前Google最强大、可扩展和灵活的AI加速器。它在TPU v4的基础上提供了超过2倍的FLOPS(浮点运算次数/秒)和3倍的高带宽内存(HBM)。速度:TPU v5p可以比前一代TPU v4更快地训练大型语言模型(LLM),提供了2.8倍的速度提升。对于嵌入密集型模型,其训练速度比TPU v42快1.9倍。可扩展性:TPU v5p的可扩展性是TPU v4的4倍,意味着它可以在单个pod中提供更多的FLOPS。AI Hypercomputer:集成系统:AI Hypercomputer是一个突破性的超级计算机架构,它采用了集成的系统,包括性能优化的硬件、开放软件、领先的机器学习框架,以及灵活的消费模型。系统级协同设计:与传统方法相比,AI Hypercomputer采用系统级协同设计来提高AI训练、调优和服务的效率和生产力。性能优化硬件:AI Hypercomputer具有性能优化的计算、存储和网络硬件,建立在超大规模数据中心基础设施之上,利用高密度占地面积、液体冷却和Jupiter数据中心网络技术。开放软件:AI Hypercomputer通过开放软件使开发者能够调整、管理和动态编排AI训练和推理工作负载。灵活消费模型:AI Hypercomputer提供了一系列灵活和动态的消费选择,包括传统的承诺使用折扣(CUD)、按需定价和现货定价,以及为AI工作负载量身定制的消费模型。详细:[https://cloud.google.com/blog/products/ai-machine-learning/introducing-cloud-tpu-v5p-and-ai-hypercomputer](https://t.co/6rTc9DlIGw)

Gemini report 中文翻译

我们在Google开发了一系列高性能的多模态模型Gemini。我们通过图像、音频、视频和文本数据共同训练了Gemini,目的是构建一个在各个模态中具有强大的通用能力以及在各个领域中具有尖端的理解和推理性能的模型。Gemini 1.0,我们的第一个版本,有三种尺寸:Ultra适用于高度复杂的任务,Pro提供增强性能和可扩展性,适用于大规模部署,Nano适用于设备上的应用程序。每个尺寸都经过特别设计以满足不同的计算限制和应用要求。我们对Gemini模型在广泛的语言、编码、推理和多模态任务上进行了全面的内部和外部基准测试。Gemini在多个任务中获得了SOTA性能,包括语言模型(Anil等,2023;Brown et al.,77.7%2023;Hoffmann et al.,2022年;OpenAI,2023a;Radford等人,2019;Rae等人,2021年),图像理解(Alayrac等人,2022年;Chen等人,2022年;Dosovitskiy等人,音频处理(Radford等人,Google的2023年;张等人,2023年),以及视频理解(Alayrac等人,2022年;Chen等人,2023年。它基于大量的序列模型的工作,机器学习分布式系统来巡礼那大规模模型。

Gemini report 中文翻译

Gemini模型是在一个既包含多模态又包含多语言的数据集上进行训练的。我们的预训练数据集使用来自网络文档、书籍和代码的数据,并包括图像、音频和视频数据。我们使用SentencePiece分词器(Kudo和Richardson,2018),发现在整个训练语料库的大样本上训练分词器可以改善推断的词汇,并进而提高模型性能。例如,我们发现Gemini模型可以高效地标记非拉丁脚本,这反过来可以提高模型质量以及训练和推理速度。训练最大模型所使用的标记数量是根据Hoffmann等人(2022)的方法确定的。为了在给定的推理预算下提高性能,较小的模型被训练了更多的token,类似于(Touvron等人,2023a)提倡的方法。我们对所有数据集进行过滤,使用启发式规则和基于模型的分类器。我们还进行安全过滤以删除有害内容。我们从训练语料库中筛选出我们的评估集。通过对较小的模型进行消融实验,确定了最终的数据混合和权重。我们在训练过程中进行分阶段训练,通过增加领域相关数据的权重来改变混合组合,直到训练结束。我们发现数据质量对于一个高性能的模型至关重要,并且相信在寻找预训练的最佳数据集分布方面还存在许多有趣的问题。

Others are asking
飞书多维表格如何接入gemini?
要将飞书多维表格接入 Gemini,以下是一些相关的操作步骤和说明: 首先,请注意部分操作需要搭配 Google 云服务或自备 API 才可以正常练习,具体内容)。友情提示,从这一部分及以后内容,多数都会是配合代码完成的,如果您是 0 代码学习者,尝试看懂提示词,并在一些 AI 产品上尝试使用。 接下来,课程将深入探讨代码部分。为了运行这个笔记本,需要执行一些设置代码。首先,需要导入 utils 并进行身份验证,这意味着需要设置一些凭证和项目 ID,以便能够从笔记本环境调用云端的 Gemini API。项目包含在云中使用的资源和 Gemini API。这个设置过程确保了笔记本能够正确连接和使用 Gemini 模型。 对于本课程,还需要指定一个区域,即代码将在哪里执行。在这种情况下,使用的是 uscentral1。 接下来,课程将导入 Vertex AI SDK。Vertex AI SDK 可以看作是一个 Python 工具包,帮助用户与 Gemini 交互。通过这个 SDK,可以使用 Python 调用 Gemini API 并获得响应。 在笔记本中,需要初始化 Vertex SDK。这意味着需要告诉 SDK 以下信息: 1. 使用的项目 2. 想要使用 Gemini 模型的区域 3. 用户凭证 通过提供这些信息,Gemini API 就能识别用户身份,并确认用户有权使用 API。 为了使用 Gemini API,需要从 SDK 中导入 generative_model。设置完成后,需要指定具体的模型。这可以通过设置 model 变量来完成,使用刚刚导入的 generative_model,并选择特定的 Gemini 模型。在这个案例中,课程将使用 Gemini 1.0 Pro 版本。这个选择反映了对于当前任务,Gemini Pro 可能是最合适的平衡点,提供了良好的性能和效率。 此外,Gemini 不仅是单一模型,而是一个模型系列,包含不同大小的模型,每种大小都针对特定的计算限制和应用需求而定制。首先是 Gemini Ultra,这是系列中最大和最强大的模型。Gemini Pro 被设计为多功能的主力模型,平衡了模型性能和速度。还有 Gemini Flash,这是一个专门为高容量任务设计的最快、最具成本效益的模型。最后是 Gemini Nano,它是 Gemini 家族中的轻量级成员,专门设计用于直接在用户设备上运行。
2025-03-28
gemini
Google 的多模态大模型叫 Gemini。Gemini 是由 Google DeepMind 团队开发的,它不仅支持文本、图片等提示,还支持视频、音频和代码提示。能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出。被称为 Google 迄今为止最强大、最全面的模型,是一种“原生多模态大模型”,从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。 Gemini report 有中文翻译,翻译贡献者为林夕,源文档为 https://storage.googleapis.com/deepmindmedia/gemini/gemini_1_report.pdf 。本报告介绍了一种新的多模态模型 Gemini,它在图像、音频、视频和文本理解方面具有卓越的能力。Gemini 系列包括 Ultra、Pro 和 Nano 三种尺寸,适用于从复杂的推理任务到设备内存受限的应用场景。 可以使用 Gemini 拆解视频,例如使用 Gemini 1.5 Pro 进行视频分析和拆解。有测试者如阿强、张余、Ling、洋洋等进行了相关测试,反馈效果较好,准确度很高。
2025-03-24
OpenAI o1、Claude Sonnet 3.7、Gemini 2.0 pro 哪个 AI 搜索能力更强?
OpenAI o1、Claude Sonnet 3.7 和 Gemini 2.0 pro 在不同方面具有各自的优势,难以简单地比较哪个的搜索能力更强。 OpenAI o1 推理能力强,适合作为架构师或算法顾问。 Claude Sonnet 3.7 擅长长上下文任务,在快速生成代码与网页设计方面表现出色。 Gemini 2.0 pro 长上下文支持较好(2M Tokens),适合代码反编译与混淆代码分析。 具体的搜索能力表现还会受到应用场景和具体任务的影响。
2025-03-21
Gemini现在的表现怎么样?
目前谷歌的 Gemini 多模态模型表现如下: 包括 Ultra、Pro 和 Nano 三种型号,能够处理图像、音频、视频和文本。 原生多模态能力是其优势,一个模型即可完成多种任务。 多模态能力有限,存在幻觉问题和多语言表现不佳的情况。 对中文的理解能力较弱,体验不如 ChatGPT,但在生成质量和与搜索生态结合方面有显著进步,体验比 Bing 和 GPT 好。 Gemini Ultra 在 MMLU(大规模多任务语言理解)上的表现超过了人类专家。 被设计为天生的多模态模型,从一开始就在不同模态上进行预训练,然后通过额外的多模态数据进行微调,以进一步提高其有效性。 在文生图方面,能一次性生成多套不同风格的设计,例如在 20 秒内生成 12 张;在抠图、换背景、打光影等方面也有出色表现,能在 10 秒内取得相当稳定的预期结果。 但目前开启条件存疑,例如使用美国加州 IP 和默认英语语言进入 Bard 可能无法找到模型选项进行修改。
2025-03-19
gemini本地部署
Gemini 相关信息如下: Mistral Small 3 仅 24B 参数,但性能媲美 70B 级别模型,适合本地部署。 Gemini 2.0 Flash 正式上线,高级用户支持 100 万 token(1M)上下文窗口,可处理 1500 页文件,新增 Deep Research&Gems 等高级功能,提升任务深度理解能力,图像生成功能升级至 Imagen 3,优化细节与指令解析,Gemini 1.5 Flash&Pro 将继续提供数周支持,助用户平稳过渡。 AlphaCode 团队构建了基于 Gemini 的 AlphaCode 2,将 Gemini 的推理能力与搜索和工具使用相结合,在解决竞争性编程问题方面表现出色。同时,Gemini Nano 提升了效率,在设备上的任务中表现出色,如摘要、阅读理解、文本补全等,在推理、STEM、编码、多模态和多语言任务中展示出令人印象深刻的能力。在评估方面,涵盖了良好的研究 Benchmark 和人类偏好的评估,包括文本、代码、图像、音频和视频,包括英语性能和多语言能力。还讨论了部署方法,包括影响评估、制定模型策略、评估和减轻危害的过程。最后探讨了 Gemini 的更广泛影响、局限性和潜在应用。
2025-03-18
gemini
Google 的多模态大模型叫 Gemini。Gemini 是由 Google DeepMind 团队开发的,它不仅支持文本、图片等提示,还支持视频、音频和代码提示。能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出。被称为 Google 迄今为止最强大、最全面的模型,是一种“原生多模态大模型”,从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。 Gemini report 有中文翻译,源文档为:https://storage.googleapis.com/deepmindmedia/gemini/gemini_1_report.pdf 。本报告介绍了一种新的多模态模型 Gemini,它在图像、音频、视频和文本理解方面具有卓越的能力。Gemini 系列包括 Ultra、Pro 和 Nano 三种尺寸,适用于从复杂的推理任务到设备内存受限的应用场景。 可以使用 Gemini 拆解视频,例如使用 Gemini 1.5 Pro 进行视频分析和拆解。有测试者表示拆解准确度很高,如阿强将用 AI 做的功夫熊猫相关视频丢进去分析,效果很好。
2025-03-18
大模型公司的数据训练成本目前大概是多少
目前,AI 大模型的训练成本较高。在数据、算力、算法三要素中,算力是基础也是大模型竞争力,但国产芯片在软件适配度、稳定性方面存在不足。大部分采用智能计算中心、自费买英伟达 A800/H800 显卡组成服务器运行、或者用价格更为实惠的服务器云来训练,成本最高的部分是前期的模型训练。 千亿参数模型的报价高达数十万元,由于训练成本高、数据筛选难度大,高昂的售价让很多客户望而却步。在预训练阶段,从互联网上获取大量文本并处理,需要 GPU 集群,通常需要数百万美元的成本。 开源模型可以由任何人托管,包括不承担大模型训练成本(高达数千万或数亿美元)的外部公司。闭源模型能否长久保持优势还是未知数。
2025-03-28
大模型训练师
以下是关于大模型训练师的相关信息: 招聘信息: 中国移动设计院正在招聘大模型开发工程师,办公地点在北京海淀中关村。 数量:1 名 学历:本科及以上 资历:5 年及以上 岗位要求: 参与大模型技术研究、大模型微调、大模型智能体研发、基于大模型的应用研发等工作。 大模型相关的数据工程,包括预训练数据、微调数据、行业数据挖掘等。 大模型相关的落地实现:如推理优化、部署、AIAgent、工具学习、领域大模型等。 技能要求: 了解大模型基本原理,包括不限于模型架构、模型预训练及微调、模型部署及推理。 熟悉 LLM 相关技术,如 transformer,prompt tuning,RLHF,langchain,Agent,MOE,RAG 等。 熟悉算法和数据结构,熟悉常用的编程语言,有较好的 Python 开发经验,编程基础扎实。 了解或掌握机器学习、深度学习基本算法原理,熟悉 AI 建模流程,在 NLP 领域有开发经验优先。 了解熟悉大模型常用训练框架、推理架构;了解分布式计算、并行计算。 联络方式:飞书与@史鹏飞联系 大模型入门指南: 通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。可以用『上学参加工作』这件事来类比大模型的训练、使用过程: 1. 找学校:训练 LLM 需要大量的计算,因此 GPU 更合适,只有购买得起大量 GPU 的贵族学校才有资本训练自己的大模型。 2. 确定教材:大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 2024 年人工智能现状: More Money,More Problems: 预计明年会有团队花费超过 10 亿美元训练单个大规模模型。GenAI 的热潮不会消退,只是会变得更加昂贵。 Compute Squeeze: 政府和大型科技公司都将继续感受到计算需求的压力,其增长速度超过了电网的支持能力。这就像一个健美运动员增长得太快,健身房都快承受不住了——在某个时候,天花板可能会坍塌。 AI Enters Elections: 预期的 AI 对选举和就业的影响尚未显现,但这并不意味着我们可以放松警惕。记住,AI 的影响就像闪光粉:一旦出现,多年来你会在各处发现它。 人工智能仍然是令人兴奋的突破、未解决的伦理问题和无数万亿美元赌注的混合体。随着 OpenAI 在某些领域领先,Meta 在其他领域崛起,以及中国实验室不受制裁影响而上升,2024 年的 AI 舞台感觉更像是一个拥挤的拳击台,而不是一个和平的会议室。所以准备好爆米花,准备好 GPU——我们将迎来又一年的 AI 突破边界、测试极限,并可能改写一些定义。
2025-03-27
AI训练范式革命
以下是关于 AI 训练范式革命的相关信息: Prime Intellect: Intellect1 是业界首个采用去中心化训练方式的大规模语言模型,模型规模达到 10B 参数量级,采用跨地域分布式训练架构,横跨 3 大洲 5 国,整合 112 台 H100 GPU 算力,训练过程实现 83%的算力利用率,验证了去中心化训练在大模型构建中的技术可行性。该公司为美国初创公司 Prime Intellect,专注去中心化 AI 技术的研发与创新。产品入口完全开源,开放基础模型、检查点、微调模型、训练数据及 PRIME 训练框架等全套技术资源。 GPT4.5: 通过扩展无监督学习和思维链推理两种范式来提升 AI 能力。扩展思维链推理可让模型在回应前思考,从而处理复杂的 STEM 或逻辑问题;扩展无监督学习能提高世界模型的准确性、降低幻觉率并改善联想思维。GPT4.5 是在扩展无监督学习范式上的新进展。 开发了新的可扩展对齐技术,能训练更大更强的模型,并使用来自较小模型的数据,提高了 GPT4.5 的可操纵性、对细微差别的理解和自然对话能力。 GPT4.5 在多样化的数据集上进行了预训练和后训练,包括公开数据、来自数据合作的专有数据和内部开发的自定义数据集。数据处理流程包括严格过滤以保证数据质量和降低潜在风险。 内部测试人员称 GPT4.5 热情、直观和自然,在处理情感类查询时表现出色,在创意写作和设计方面有较强能力。 医疗 AI 领域: 图像理解在医疗领域率先实现商业化,科技巨头深耕医疗 AI 研发,学术界取得突破性进展,行业权威对医疗 AI 持积极态度。 多模态识别能力提升使 AI 在专业领域的理解和分析应用成为可能,医疗 AI 的成功得益于其深度对接专业场景,以解决实际临床需求为导向的发展路径。 规模化训练是通过扩大模型参数、数据规模和算力投入,在量变中实现质变的训练范式。视频生成相比图像生成难度提升百倍,视频生成技术发展出自回归与扩散两大路线,Sora 引领 DiT 架构成为主流方向,规模化训练是实现高质量视频生成的关键。
2025-03-27
如何训练AI智能体
以下是关于训练 AI 智能体的一些信息: 1. 可以将一些创新的 prompt 融入工作流中,以更高效地训练智能体。这种方法不仅能改进现有的大语言模型,还能探索新的应用领域,实现低成本、高效能和模型效益最大化,突破单纯依赖算法的方式。 2. 采用流式训练方式提升训练速度和质量,例如将孔明灯换成泡泡,基于 Transformer 模型进行流匹配,这种方式优于扩大模型。 3. 利用多种 AI 生成工具,如输入简单提示词就能创作音乐的 so no 音频生成工具,能创建个人 AI 智能体的豆包,输入文本可生成播客的 Notebook LN。 4. 了解 AI 工程平台,如 define 等,涉及数据清洗管道、数据存储和检索、编辑生成平台、构建 prompt 技巧、智能体概念、插件调用、运维平台、模型层和缓存机制等,还能接入多家大模型。以 coach 平台为例,新版本有很多模板,有众多插件工具,包括必应搜索、链接读取、代码执行器等,还有工作流,可创建应用 APP,有新手教程和文档,可创建智能体,通过工作流节点调用和 prompt 构建提示词,还能调用插件、图像流、知识库等,商城中有各种智能体和插件模板,知识库可添加多种格式内容。 5. 了解一些为大模型提供数据、企业模型和算力服务的平台,如魔搭社区等,有按任务划分的模型库、数据集和在线应用供体验。
2025-03-25
AI模型训练师要学习那些知识?
AI 模型训练师需要学习以下知识: 1. 数据收集:了解如何从互联网上收集各种文本数据,如文章、书籍、维基百科条目、社交媒体帖子等。 2. 数据预处理:掌握清理和组织数据的方法,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段等。 3. 模型架构设计:熟悉如 Transformer 等适合处理序列数据(如文本)的神经网络架构,虽然复杂但需有一定了解。 4. 训练原理:明白模型通过反复阅读数据、尝试预测句子中的下一个词来逐渐学会理解和生成人类语言。 5. 领域专业知识:以医疗保健领域为例,AI 模型训练师应了解该领域的专业知识,如生物学、化学等基础学科,以及如何培养处理涉及细微差别决策的直觉。 6. 了解大模型的底层原理:以 GPT3 为例,要知道其预训练阶段所学习的内容和数据量,以及 Transformer 模型的相关概念。
2025-03-24
我想学习有关ai的知识,但是并不是单单的系统性的学,而是想利用现有的模型比如说deep seekr1模型来训练一个自己的模型这样的,来实现某些功能
以下是关于 DeepSeek R1 模型的相关知识: 1. DeepSeek R1 引入了纯强化学习(RL),不依赖大量人类标注数据,而是通过自我探索和试错来学习。在“冷启动”阶段,仅通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。准确率奖励用于评估最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间。 2. 与其他模型相比,Alpha Zero 只训练了三天,就以 100 比 0 的战绩完胜 Alpha Go Lee,Alpha Go(老)采用监督学习+强化学习,学习人类棋谱,更接近人类职业棋手风格,继承了人类的局限,Alpha Zero(新)完全摒弃人类数据的纯强化学习,从零开始自我博弈,不受限于人类经验,具有创造性的下棋风格。DeepSeek R1 在训练中更注重学习推理的底层策略,培养通用推理能力,使其能够实现跨领域的知识迁移运用和推理解答。 3. 使用 DeepSeek R1 给老外起中文名的操作指引: 点击邀请,复制邀请链接或下载邀请海报分享给好友。 打开火山引擎的模型页面(https://zjsms.com/iP5QRuGW/),使用习惯的方式登录。 登录后点击左侧列表里的“在线推理”,再点击“快速入门”。 获取 API Key,点击“创建 API Key”,可修改名字后创建,创建完成后点击“查看并选择”,将“已复制”的提示内容找个地方存一下。 复制 R1 的调用示例代码,选择模型为“DeepSeek R1”,修改示例代码中的相关内容,然后点击右侧的复制按钮,将代码找个地方存起来。 上述接入方法是快速入门方式,平台会自动创建在线推理接入点,并提供 50 万 Token 的免费额度,用完才需充值。如需充值,点击页面右上角的“费用”》“充值汇款”,根据账单适当充值。 4. DeepSeek R1 不同于先前的普通模型,它与 OpenAI 现在最先进的模型 o1、o3 同属于基于强化学习 RL 的推理模型。在回答用户问题前,R1 会先进行“自问自答”式的推理思考,提升最终回答的质量,这种“自问自答”是在模拟人类的深度思考,其“聪明”源于独特的“教育方式”,在其他模型还在接受“填鸭式教育”时,它已率先进入“自学成才”新阶段。
2025-03-22