Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

ai错误率高吗?

Answer

AI 的错误率因任务类型和具体应用场景而异。

对于一些像开车这样的任务,其容错率相当低,结果由物理定律和现实约束决定,正确性的衡量标准非常客观且明确,AI 在这类任务中的表现往往难以令人满意。

而在写作任务中,由于结果的好坏更多取决于人类的理解和接受程度,允许很多的近似和模糊性,所以相对来说,AI 在写作任务中的错误可能更容易被接受和解释。

例如,OpenAI 发布的 o1 基础版,其错误率比起预览版降低了 35%。但在现阶段,即使是最好的大模型,在大多数时候也根本无法独立完成生产任务,仅限于降本增效。

同时,我们还需要认识到人类自身也存在认知偏差,如确认偏误、锚定效应等,这也会影响我们对 AI 错误的判断和理解。为了更好地应对 AI 可能出现的错误,我们需要不断提升自身的认知能力,锻炼逻辑思维和掌握数据分析能力。

Content generated by AI large model, please carefully verify (powered by aily)

References

陈财猫:如何用 AI 写出比人更好的文字?

要解答这个问题,请假设我们现在要让各种诸如GPT或是Claude的大模型去完成这两类任务:开车和写文章。这里的开车和写文章实际上是一种隐喻,可以是任何类似的任务。但是你可以发现,几乎没有人敢坐GPT开的车,实际上它也开不了。但是不论愿不愿意,至少所有人都敢读AI写的文章。这种差别是根本原因之一,请让我们来对比它们。让我们首先来看“开车”类任务。这是一个黑白分明,讨厌不确定性的任务。它的结果由物理定律和现实约束决定,正确性的衡量标准非常客观且明确。特别的,这项活动的容错率相当低。撞上去就是撞上去了,车是不会理解你的差不多的。小错就是刮蹭,大错就是事故。接下来是写作任务。写作任务互动的不是客观的物理世界,而是主观的人类认知。结果的好坏是由你的理解和接受程度决定的,允许很多的近似和模糊性,是没有标准答案的。在写作任务上,如果你出了一点小错,大家会说这个表达很有意思,如果出了一个大错,我们也许会说“AI有创造力,实在太棒了”。这就是所谓的“小错小创新,大错大创新”。所以,写作任务非常合适由现阶段的AI完成。在现阶段,即使是最好的大模型o1,在大多数时候也根本无法独立完成生产任务,仅限于降本增效。我现在已经成功从一个产品经理转型为一个全栈工程师,在AI的帮助下,我可以在两周内写出一个需要3-5人的团队,工作一个月才能开发出的困难音视频处理项目。如果没有AI,我绝对做不成这件事。然而,在这个过程中我仍然感到相当的痛苦。

【深度揭秘】AI 幻觉背后的技术真相与应对策略,探索人工智能的未来

大脑就像精密仪器,需要不断学习和训练才能高效运转。为了避免“想当然”的错误,我们要不断提升认知能力,就像给大脑定期升级系统、打补丁。认清“思维陷阱”:就像学习识别网络钓鱼邮件一样,我们也需要了解常见的认知偏差,例如:确认偏误:我们会倾向于寻找支持自己已有观点的信息,而忽略反面的证据。例如,相信星座的人更容易关注符合自己星座描述的内容,而忽视不符合的部分。锚定效应:我们容易受第一印象的影响,即使这个印象是错误的。例如,商家先标一个高价,再打折促销,我们会觉得很划算,即使这个折扣后的价格仍然高于市场价。锻炼逻辑思维:就像学习数学一样,我们需要学习如何进行逻辑推理,识别错误的论证。例如,如果有人说“所有天鹅都是白的,因为我见过的天鹅都是白的”,这就是一种不严谨的逻辑,因为存在黑天鹅。掌握数据分析能力:在信息爆炸的时代,我们每天都会接触到大量的数字和统计数据。学习一些基本的统计学知识,可以帮助我们更好地理解和分析数据,避免被误导。例如,一则广告声称某种保健品有效率高达90%,但却没有说明样本量和实验方法,我们就需要保持警惕,不能盲目相信。

OpenAI12场发布会每日记录-Day1-7

OpenAI马拉松发布会Day1:GPT-o1全新升级发布🎉[[twi]@宝玉(@_twi(5).mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/WHvFbqLRVoMgoGx9asvcD4pSnAb?allow_redirect=1)翻译视频by宝玉https://x.com/dotey/status/1865128769582961154[heading3]🚀省流版总结[content]今天发布了两款全新模型:o1基础版和o1 Pro版,以及全新的ChatGPT Pro订阅计划。[heading3]🛠01基础版[content]适用于日常使用,功能强大、反应迅速。核心亮点:1.多模态能力增强📷:处理文本和图像的能力大幅提升,支持图像内容分析和相关问题解答。2.语言理解能力提升🗣️:更准确捕捉语言细节和上下文,文本生成、翻译和摘要表现更加流畅自然。3.错误率降低✅:比起预览版,错误率降低了35%,生成内容更加准确可靠。4.响应速度提升⚡:速度提升50%,减少用户等待时间,带来更流畅的使用体验。

Others are asking
AI 是什么
AI 是一门令人兴奋的科学,它研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。对于 AI ,可以有以下几种理解: 1. 对于没有理工科背景的文科生来说,可以将其当成一个黑箱,只需要知道它是某种模仿人类思维可以理解自然语言并输出自然语言的东西。其生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 2. 从任务角度来看,对于像“根据照片判断一个人的年龄”这类无法明确编程的任务,因为我们不清楚大脑完成此任务的具体步骤,所以无法编写明确程序让计算机完成,而这类任务正是 AI 所感兴趣的。 3. AI 健身是指利用人工智能技术来辅助或改善健身训练和健康管理的方法。它利用 AI 算法和数据分析来个性化地指导用户进行锻炼、提供健康建议、监测运动进度和提供反馈。 在实际应用中,有一些不错的 AI 健身工具,如 Keep 、 Fiture 、 Fitness AI 、 Planfit 等。
2024-12-25
修图ai是哪个
以下是一些常见的修图 AI 工具: 1. Niji·journey 5:在二次元绘画领域表现出色,能够生成令人惊叹的二次元风格角色。 2. 无界 AI:国内网络可稳定使用,有免费出图点数,支持中文关键词输入,无需额外下载风格模型,可直接取用。 如果您想了解更多关于这些工具的详细信息或使用方法,可以进一步向我提问。
2024-12-25
图像对比与图像搜索这块,有没有哪个ai大模型做的比较好比较深入的
在图像对比与图像搜索方面,以下是一些相关的 AI 大模型特点和应用: RAG(检索增强生成):通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。RAG 是一个检索生成框架,能够支持在本地运行。 AI 搜索:结合了多种能力,如 fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容。一些 AI 搜索平台专注于特定领域,如为程序员提供代码搜索。 多模态大模型:像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。 生成式模型和决策式模型:决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。
2024-12-25
AI提示词的意思是指训练自己的AI智能体吗
AI 提示词并非仅仅指训练自己的 AI 智能体。 智能体大多建立在大模型之上,其发展从基于符号推理的专家系统逐步演进而来。基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。智能体的核心在于有效控制和利用大型模型以达到设定目标,这通常涉及精确的提示词设计,提示词的设计直接影响智能体的表现和输出结果。 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。与多数其他 NLP 服务不同,补全和聊天补全几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。 我们的模型通过将文本分解为标记来理解和处理文本,在给定的 API 请求中处理的标记数量取决于输入和输出长度。对于英文文本,1 个标记大约相当于 4 个字符或 0.75 个单词,文本提示词和生成的补全合起来不能超过模型的最大上下文长度。
2024-12-25
最好用的会计AI
以下是关于会计 AI 的相关信息: 生成式 AI 在金融服务领域,包括会计方面,具有多方面的应用和优势: 1. 预测方面:能够帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,发现模式,从更广泛、更复杂的数据集中为预测建议输入,并适应模型为公司决策提供依据。 2. 报告方面:可以自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 3. 会计和税务方面:能够帮助综合、总结,并就税法和潜在的扣除项提出可能的答案。 4. 采购和应付账款方面:能够帮助自动生成和调整合同、采购订单和发票以及提醒。 金融服务公司利用历史金融数据微调大型语言模型或从零开始训练模型,能够迅速回答几乎任何金融问题。金融服务行业准备使用生成式人工智能实现个性化的消费者体验、成本效益高的运营、更好的合规性、改进的风险管理以及动态的预测和报告这五个目标。 目前没有专门针对“最好用的会计 AI”的明确推荐,但您可以参考以上生成式 AI 在金融和会计领域的应用特点,结合自身需求进行选择。同时,营销领域有一些常用的 AI 工具,如 Synthesia、HeyGen、Jasper AI、Copy.ai、Writesonic 等,更多相关产品可查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。但请注意内容由 AI 大模型生成,请仔细甄别。
2024-12-25
可以对数据进行分析,生成报表的AI工具或网站
以下是一些可以对数据进行分析并生成报表的 AI 工具或网站: 1. 在金融服务领域,生成式 AI 能够帮助金融服务团队从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。例如,它可以帮助编写 Excel、SQL 和 BI 工具中的公式和查询以实现分析自动化,自动创建文本、图表、图形等报告内容,还能在会计和税务、采购和应付账款等方面提供帮助。 2. 对于撰写专业区域经济报告,可利用 AI 搜索与权威网站结合获取关键数据,将报告内容拆分处理,借助传统工具如 Excel 结合 AI 指导操作数据筛选与图表生成,利用 AI 辅助分析后撰写报告初稿,但最终内容需人工主导校验。 3. 一些具体的工具和网站包括: PandasAI:将 Pandas DataFrame 转换为“聊天机器人”,用户可以以自然语言提问,它会以自然语言、表格或图表形式回答,目前仅支持 GPT 模型,需自备 OpenAI API key。网址:https://github.com/gventuri/pandasai DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告,平台符合 GDPR/PDPA 标准。网址:https://datasquirrel.ai/
2024-12-25