Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

智能体审核

Answer

以下是关于智能体审核的相关内容:

在“Agent 共学”之 coze 模板搭建大赛中,评审规则如下:

  • 评审方为扣子、火山引擎。
  • 分数构成:总分(100 分)=智能体评分(70%)+说明文档评分(30%)。
    • 智能体评分维度:
      • 规范性(20 分):考察智能体基础信息、搭建的规范性,包括开场白设置是否简明清晰;交互、信息使用等是否符合活动要求。
      • 专业性(30 分):智能体是否有实用的落地场景,能否解决所属专业领域内的问题。
      • 技术性(30 分):智能体搭建完整度,功能设计的逻辑性、技术实现的成熟度以及整体方案的稳定性。考察 Bot 是否充分利用了扣子专业版的各项功能,如插件工具、知识库、数据库记忆能力和工作流设计等,Bot 整体功能是否可用且稳定。
      • 体验性(20 分):考察智能体的用户体验质量,包括交互自然度、响应及时性和准确性等。
    • 说明文档评分维度:
      • 作品创意(40 分):智能体搭建的创意思路。
      • 实现原理与功能(40 分):整体编排逻辑,各功能实现原理。
      • 文档结构(20 分):结构完整,语言简洁,逻辑清晰。

在企业自动化方面,决策智能体的应用案例包括:

  • Anterior(前称 Co:Helm)为例,该健康计划自动化公司开发了一个临床决策引擎,用于自动化理赔提交审核。护士们原本凭借装满条件知识的付款人规则手册人工完成这些审核,Anterior 简化了这个过程。该公司首先将付款方规则转换为有向无环图(DAG),使用基于规则的脚本和语言模型。然后,他们的智能体遍历这个决策树,在每个节点利用 LLM 来评估相关的临床文件是否符合特定的规则。对于较简单的节点,可能涉及基本的检索增强型生成(RAG)步骤。但是,Anterior 经常遇到需要子链的更复杂的任务,在这种情况下,智能体必须选择最佳方法,然后才能进入下一个节点。它会在每次决策时更新自己的状态,并一直进行到最终确定。
  • 其他领域也在利用决策智能体,包括Norm AI正在为监管合规打造 AI 智能体,以及Parcha正在为 KYC 建立智能体。

在 Coze 变现模板配置中,关于智能体沟通页面:

  • 在 Zion 中采用 OAuth 鉴权机制,有效防止应用被未授权的第三方直接调用,确保 Tokens 的安全使用。
  • 获取 Coze bot 应用鉴权密钥:在 Coze 主页点击左下方扣子 API,选择 Oauth 授权模式,接着添加新令牌,并配置基本信息。在创建 Key 的过程中,系统将生成一对公钥和私钥(私钥需要下载到电脑上单独打开)。最后,勾选全部权限。配置完成后可获得 OAuth 应用 ID 以及一对公私钥,请妥善保管这些密钥,切勿与他人共享,以确保应用安全。
  • 获取 Bot ID:进入自己的智能体在地址栏内复制“bot/”之后的数字,并且 bot 发布时一定要选择 Agent as API。
  • 在 Coze 上发布你的 bot:bot 发布时记得勾选 API 及 WEB SDK,Coze bot 发布存在审核周期,一般在 1-30 分钟,若从未审核通过或首次发布处于审核状态下,你的 bot 将无法正常被其他用户访问,务必确认你的智能体已发布成功。
Content generated by AI large model, please carefully verify (powered by aily)

References

「Agent 共学」之coze模板搭建大赛

评审方:扣子、火山引擎分数构成:总分(100分)=智能体评分(70%)+说明文档评分(30%)智能体评分维度:规范性(20分):考察智能体基础的基础信息、搭建是否规范,包括开场白设置是否简明清晰;交互、信息使用等是否符合活动要求。专业性(30分):智能体是否有实用的落地场景,能否解决所属专业领域内的问题。技术性(30分):智能体搭建完整度,功能设计的逻辑性、技术实现的成熟度以及整体方案的稳定性。考察Bot是否充分利用了扣子专业版的各项功能,如插件工具、知识库、数据库记忆能力和工作流设计等,Bot整体功能是否可用且稳定。体验性(20分):考察智能体的用户体验质量,包括交互自然度、响应及时性和准确性等。说明文档评分维度:作品创意(40分):智能体搭建的创意思路。实现原理与功能(40分):整体编排逻辑,各功能实现原理。文档结构(20分):结构完整,语言简洁,逻辑清晰。

AI 智能体:企业自动化的新架构 - Menlo Ventures

我们将探讨的第一类智能体是决策智能体,它们使用智能体决策制定在复杂、多步骤的推理流程中导航并做出业务决策。与RAG或工具使用方法不同,这种架构首次将一定的控制逻辑交给LLMs,而不是预先设定所有步骤-但仍位于智能体自由度范围的较低端,因为智能体主要作为路由器导航一组预先确定的决策树。让我们以[Anterior](https://www.anterior.com/)(前称Co:Helm)为例。该健康计划自动化公司开发了一个临床决策引擎,用于自动化理赔提交审核。护士们如今凭借装满条件知识(就像世界上最无聊的"自选冒险")的付款人规则手册,人工完成这些审核。Anterior简化了这个过程。该公司首先将付款方规则转换为有向无环图(DAG),使用基于规则的脚本和语言模型。然后,他们的智能体遍历这个决策树,在每个节点利用LLMs来评估相关的临床文件是否符合特定的规则。对于较简单的节点,这可能涉及基本的检索增强型生成(RAG)步骤。但是,Anterior经常遇到需要子链的更复杂的任务,在这种情况下,智能体必须选择最佳方法,然后才能进入下一个节点。它会在每次决策时更新自己的状态(在内存中管理这些中间输出),并一直进行到最终确定。前者并非独一无二的采取这种方法。其他领域也在利用决策智能体,包括[Norm AI](https://norm.ai/)正在为监管合规打造AI智能体,以及[Parcha](https://www.parcha.com/)正在为KYC建立智能体。

Coze变现模板全新升级:【一键配置版】 函子(Zion)让你快速用智能体赚钱!

智能体沟通页面在Zion中采用OAuth鉴权机制,有效防止应用被未授权的第三方直接调用,确保Tokens的安全使用。1.获取Coze bot应用鉴权密钥:在Coze主页点击左下方扣子API,选择Oauth授权模式,接着添加新令牌,并配置基本信息。在创建Key的过程中,系统将生成一对公钥和私钥(私钥需要下载到电脑上单独打开)。最后,勾选全部权限。配置完成后可获得OAuth应用ID以及一对公私钥,请妥善保管这些密钥,切勿与他人共享,以确保应用安全。1.获取Bot ID:进入自己的智能体在地址栏内复制“bot/”之后的数字,并且bot发布时一定要选择Agent as API。1.在Coze上发布你的bot:bot发布时记得勾选API及WEB SDK,Coze bot发布存在审核周期,一般在1-30分钟,若从未审核通过或首次发布处于审核状态下,你的bot将无法正常被其他用户访问,务必确认你的智能体已发布成功。

Others are asking
AI合规审核,产品包装信息如何借助AI进行智能审核
利用 AI 进行产品包装信息的智能审核,可以参考以下类似的方法和步骤: 1. 数据收集与分析:利用 AI 工具收集和分析大量的产品包装信息数据,包括市场上已有的成功案例、相关法规要求等,以了解常见的模式和问题。 2. 关键词提取与匹配:通过 AI 提取产品包装中的关键信息,并与合规要求的关键词进行匹配,快速筛选出可能存在问题的部分。 3. 图像识别与内容审查:运用 AI 图像识别技术审查包装上的图片、图标等元素,确保其符合相关规定,同时对文字内容进行深度分析。 4. 法规库对接:将 AI 系统与最新的法规库进行对接,实时更新审核标准,保证审核的准确性和及时性。 5. 风险评估与预警:AI 可以根据分析结果评估包装信息的合规风险,并及时发出预警,提示修改。 6. 个性化审核模型:根据不同产品类型和行业特点,训练个性化的 AI 审核模型,提高审核的针对性和准确性。 7. 反馈与优化:根据审核结果和用户反馈,不断优化 AI 模型,提高审核的质量和效率。
2025-01-13
AI合规审核,产品保证信息如何借助AI进行只能审核
以下是关于借助 AI 进行产品保证信息合规审核的一些建议: 1. 建立用户的举报和响应机制:在网站建立相关投诉举报机制,如设置侵权举报按钮,简化举报流程,并建立快速响应团队,负责评估收到的侵权举报,并在必要时采取法律行动。 2. 对用户进行潜在风险提示,明确用户责任与义务:在用户协议中详细列出禁止侵权行为的条款,并明确违反协议的法律后果。通过用户教育活动,如在线研讨会、指南和常见问题解答,提高用户对版权的认识。 3. 企业应当深入钻研相关法律法规,深化版权合规流程: 定期组织知识产权法律培训,确保团队成员对相关法律法规有深刻理解,涵盖适用于 AI 生成内容的版权法、AI 创新的专利申请策略,以及对国际知识产权法律差异的理解等内容。 建立专门的法律合规团队,其职责不仅是监控,还需主动解释新法律变动对公司运营的影响,包括对新立法进行影响分析、从法律角度对产品开发提供建议,以及制定内部政策以指导公司对法律更新的响应。 制定严格的数据来源审核流程,确保所有用于训练 AI 的数据均获得明确的版权授权。对于 AI 生成的内容,应实行版权审核机制,以确保这些内容要么是原创的,要么已经得到授权使用。 4. 建立企业内容过滤与监控系统:开发或采用先进的内容识别技术,如图像识别和文本匹配,自动识别并过滤潜在的侵权内容。同时,建立内容监控小组,负责人工审核由用户生成的内容,确保过滤系统的准确性。通过结合使用技术和人工审核,提高识别侵权内容的能力,保护企业和用户免受侵权风险。
2025-01-13
目前字节有哪些可以运用到安全审核业务的大模型?
字节在安全审核业务中可能运用到的大模型包括: 1. Claude2100k 模型,其上下文上限是 100k Tokens,即 100000 个 token。 2. ChatGPT16k 模型,其上下文上限是 16k Tokens,即 16000 个 token。 3. ChatGPT432k 模型,其上下文上限是 32k Tokens,即 32000 个 token。 大模型的相关知识: 1. 大模型中的数字化便于计算机处理,为让计算机理解 Token 之间的联系,需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 2. 以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”指用于表达 token 之间关系的参数多,例如 GPT3 拥有 1750 亿参数。 3. 大模型的架构包括 encoderonly(适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT)、encoderdecoder(同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 google 的 T5)、decoderonly(更擅长自然语言生成任务,典型使用包括故事写作和博客生成,众多 AI 助手基本都来自此架构)。大模型的特点包括预训练数据非常大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级数据进行预训练)、参数非常多(如 Open 在 2020 年发布的 GPT3 已达到 170B 的参数)。
2024-12-25
目前字节有哪些可以运用到审核安全业务的ai?
字节在审核安全业务方面可以运用的 AI 包括: 1. OpenAI 的审核(Moderation)Endpoint:可用于检查内容是否符合使用策略,其模型分为 hate(表达、煽动或宣扬基于种族、性别等的仇恨内容)、hate/threatening(仇恨内容且包括对目标群体的暴力或严重伤害)、selfharm(宣扬、鼓励或描绘自残行为)、sexual(旨在引起性兴奋的内容)、sexual/minors(包含未满 18 周岁的个人的色情内容)、violence(宣扬或美化暴力或歌颂他人遭受苦难或羞辱的内容)、violence/graphic(以极端血腥细节描绘死亡、暴力或严重身体伤害的暴力内容)等类别。在监视 OpenAI API 的输入和输出时,可以免费使用审查终结点,但目前不支持监控第三方流量,且对非英语语言的支持有限。 2. 专利审查方面的 AI: 专利趋势分析和预测:AI 可以分析大量的专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。示例平台如 Innography、PatSnap。 具体 AI 应用示例: Google Patents:使用 AI 技术进行专利文献的全文检索和分析,提高了专利检索的准确性和效率。 IBM Watson for IP:利用 NLP 和机器学习技术,自动化地进行专利检索、分类和分析,减少了人工工作量,提高了专利审查的效率和准确性。 其他应用: 专利检索与分类:通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。示例平台如 Google Patents、IBM Watson for IP。 专利分析和评估:分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。示例平台如 TurboPatent、PatentBot。 自动化专利申请:帮助自动生成专利申请文件,减少人工编写和审查时间。示例平台如 Specifio、PatentPal。 专利图像和图表分析:分析专利申请中的图像和图表,帮助识别和分类技术内容。示例平台如 Aulive、AIpowered image recognition tools。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-25
智能体内容审核
智能体的内容审核主要包括以下几个方面: 1. 输入侧防御: 传统防御手段可用,结合大模型特性,进行意图识别、语义匹配、提示词与模型输入响应及语义结构分析,综合判断用户输入是否恶意。 2. 模型侧防御: 有模型训练能力和大模型厂商应增强安全性,从对抗训练到安全微调,到带安全任务的多任务学习,以及在整体对话中进行安全性上下文动态感知等,但要平衡安全性与模型性能。 开发者虽无法训练模型,但能在开发中带着安全意识优化应用和系统提示词,加入安全引导和禁止内容。 3. 输出侧防御: 传统防御和内容过滤手段均可使用,基于大模型特点,可进行提示词、私有数据泄露等检查,判断是否有事实性错误、脱离话题、乱码文本、不正确格式、错误代码等。 护栏项目可对输入、输出进行检测和防护,检测项可能较简单。 在「Agent 共学」之 coze 模板搭建大赛的评审规则中,分数构成包括智能体评分(70%)和说明文档评分(30%)。智能体评分维度包括规范性(20 分)、专业性(30 分)、技术性(30 分)、体验性(20 分)。说明文档评分维度包括作品创意(40 分)、实现原理与功能(40 分)、文档结构(20 分)。 Claude2 经过专门训练以保证无害性,是筛查涉及暴力、非法或色情活动消息的良好工具。可通过示例提示评估用户消息是否包含不适当内容,根据情况回复,Claude 的回答可传递给另一个提示说明后续操作。
2024-12-17
智能体平台审核
以下是关于智能体平台审核的相关信息: 在 Zion 中配置变现模板时,智能体沟通页面采用 OAuth 鉴权机制。获取 Coze bot 应用鉴权密钥需在 Coze 主页操作,生成的公私钥要妥善保管。获取 Bot ID 则要进入自己的智能体在地址栏内复制相关数字,且 bot 发布时要选择 Agent as API,并记得勾选 API 及 WEB SDK。Coze bot 发布存在审核周期,一般为 1 30 分钟,若未审核通过或首次发布处于审核状态,bot 将无法被其他用户访问,需确认发布成功。 轨道智能体被赋予更高级目标和更多自由度,受程序性知识指导,拥有预定义工具并受审查措施约束。运行时会有规划智能体评估应用程序状态、选择并执行最佳链条等模式,此架构可能需要额外的数据基础设施支持。 在「Agent 共学」之 coze 模板搭建大赛中,评审方为扣子和火山引擎。总分 100 分,由智能体评分(70%)和说明文档评分(30%)构成。智能体评分维度包括规范性、专业性、技术性和体验性;说明文档评分维度包括作品创意、实现原理与功能、文档结构。
2024-12-17
如何搭建一个你这样的知识库智能问答机器人,有相关的流程教程吗?
搭建一个知识库智能问答机器人通常包括以下流程: 1. 基于 RAG 机制: RAG 机制全称为“检索增强生成”,是一种结合检索和生成的自然语言处理技术。它先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 要实现知识库问答功能,需创建包含大量文章和资料的知识库,例如有关 AI 启蒙和信息来源的知识库,并通过手工录入方式上传文章内容。 2. 利用 Coze 搭建: 收集知识:确认知识库支持的数据类型,通过企业或个人沉淀的 Word、PDF 等文档、云文档(通过链接访问)、互联网公开内容(可安装 Coze 提供的插件采集)等方式收集。 创建知识库。 创建数据库用以存储每次的问答。 创建工作流: 思考整个流程,包括用户输入问题、大模型通过知识库搜索答案、大模型根据知识库内容生成答案、数据库存储用户问题和答案、将答案展示给用户。 Start 节点:每个工作流默认都有的节点,是工作流的开始,可定义输入变量,如 question,由 Bot 从外部获取信息传递过来。 知识库节点:输入为用户的查询 Query,输出为从知识库中查询出来的匹配片段。注意查询策略,如混合查询、语义查询、全文索引等概念。 变量节点:具有设置变量给 Bot 和从 Bot 中获取变量的能力。 编写 Bot 的提示词。 预览调试与发布。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-03-14
智能座舱
以下是关于智能座舱的相关信息: 火山引擎 AI 创造者大赛设置了“AI 座舱”赛道。该大赛由火山引擎携手领克汽车与英特尔联合主办,鼓励开发者及技术爱好者利用豆包大模型和扣子专业版,针对领克汽车的真实业务场景开发具有实际应用价值的智能体解决方案。 在“AI 座舱”赛道中,赛题说明为利用豆包大模型、扣子专业版以及吉利原子化能力,探索 AI 在智能座舱中的多样化应用,通过智能座舱内的智能体开发,满足车主定制化的需求。核心目标是通过扣子专业版的插件调用吉利座舱原子化能力自建车载智能体,利用豆包大模型提升智能体的交互能力和智能水平,开发的解决方案应具备实际应用价值,并能够显著提升用户体验。 2023 年度中文大模型基准测评报告显示,在智能座舱与交互这一维度上,仅有一个中文模型达到了良好表现,说明中文大模型在智能座舱与交互还有不少的进步空间。在汽车场景中,部分中小模型在满足用户需求方面具备良好能力,端侧模型有非常大的潜力。
2025-03-14
智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以规划、子目标和分解、反思和完善、记忆、工具使用等关键组成部分。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态,不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估不同行动方案并选择最优行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能够通过与环境交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 智能体功能实现: 本智能体主要通过一个工作流实现,采用单 Agent(工作流模式)。工作流全景图按照市场分析报告内容划分,分成 7 个分支处理,每个分支调研并生成报告中的一部分,以发挥并行处理的效率。工作流主要节点包括文本处理节点、必应搜索节点、LinkerReader 节点、代码节点、大模型节点和结束节点。文本处理节点将用户输入与报告主题拼装形成关键词句,必应搜索节点根据关键词句搜索相关网络内容,LinkerReader 节点获取网页详细内容,代码节点对搜索到的网页链接信息进行过滤,大模型节点生成报告内容并添加引用链接,结束节点将 7 部分内容拼接并流式输出。
2025-03-14
大模型和智能体的区别
大模型和智能体的区别主要体现在以下几个方面: 概念定义: 智能体:简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。可以是面向 C 端,如社交方向,用户注册后先捏一个自己的智能体,然后让其与他人的智能体聊天,两个智能体聊到一起后再真人介入;也可以面向 B 端,帮助 B 端商家搭建智能体。 大模型:是一种技术。 局限性: 大模型具有强大的语言理解和生成能力,但存在一定局限性,例如无法回答私有领域问题(如公司制度、人员信息等),无法及时获取最新信息(如实时天气、比赛结果等),无法准确回答专业问题(如复杂数学计算、图像生成等)。 开发平台: 有众多智能体开发平台,如字节的扣子、Dify.AI 等。 应用场景: 智能体应用基于大模型,通过集成特定的外部能力,能够弥补大模型的不足。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,缺少技术人员开发大模型问答应用等场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 在 Anthropic 的定义中,智能体可以有多种定义,一些客户将其定义为能够长期独立运行的全自动系统,能使用各种工具完成复杂任务;另一些则将其描述为更具规范性、遵循预定义工作流程的系统。Anthropic 将这些变体统称为智能系统,并在架构上区分为工作流和智能体两种类型,工作流是通过预定义代码路径来编排 LLM 和工具的系统,智能体则是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。
2025-03-14
学习智能体搭建应该从哪里开始?
学习智能体搭建可以从以下几个方面开始: 1. 利用相关平台:例如 Coze、Dify 等 AI 智能体编排平台,它们降低了制作智能体的门槛。 2. 输入人设等信息:创建智能体时,输入相关人设等基础信息,并配置相关工作流。 3. 体验常见工具:对于没有编程基础但对 AI 有一定概念的小白,可以从工具入门篇开始,如 Agent 工具 小白的 Coze 之旅。 4. 参考优秀案例:可以获取现成好用的 Prompt 案例,直接复制、粘贴使用。 5. 了解相关教程:如阅读等详细讲解搭建步骤的文章。
2025-03-13
怎样做一个辅助数学教学的智能体
要制作一个辅助数学教学的智能体,可以考虑以下几个方面: 1. 提示词技术: CCoT:通过正反力矩机制,指导模型识别正确与错误,方法简洁直观。 PoT:作为思维链技术的衍生,适用于数值推理任务,引导模型生成代码再通过代码解释器工具进行运算,能显著提升模型在数学问题求解上的表现。PoT 遵循零样本和少样本的学习范式。 2. 利用现有模型和技术: 如 MathGPT 可用于数学辅导,具备公式编辑等功能。 谷歌 Gemini 可辅助教学,例如通过分析视频并回答相关逐步深入的数学问题,包括理解核心概念、阐述数学原理、提供编程示例等。 此外,还需注意模型性能与计算量、模型参数量、数据大小等因素的幂律关系,以优化智能体的性能。
2025-03-13