Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么训练AI数字人说话的语气和语调

Answer

训练 AI 数字人说话的语气和语调可以从以下几个方面入手:

  1. AI Agent:要让数字人像人一样思考,需要编写一个类似人的 Agent,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建具有挑战性。
  2. 驱动躯壳的实现:灵魂部分通过定义接口由躯壳部分通过 API 调用,调用方式有 HTTP、webSocket 等。但包含情绪的语音表达以及保证躯壳的口型、表情、动作和语音的同步及匹配方面,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但多为闭源,效果可参考 Nvidia 的 Audio2Face 或 Live Link Face + Face AR Sample。
  3. 实时性:由于数字人的算法部分组成庞大,几乎不能单机部署,算法一般部署到额外的集群或调用提供的 API,会涉及网络耗时和模型推理耗时,低延时是亟需解决的问题。
  4. 多元跨模态:不仅要有语音交互,还可根据实际需求添加其他感官交互,如通过添加摄像头数据获取视觉信息,再通过 CV 算法做图像解析。
  5. 拟人化场景:正常与人交流并非线性对话,插话、转移话题等情景需通过工程进行丝滑处理。

此外,对于数字人说话相关的算法开源代码有很多,如 ASR 语音识别方面有 openai 的 whisper、wenet、speech_recognition 等;AI Agent 方面大模型有 ChatGPT、Claude、ChatGLM 等,Agent 部分可使用 LangChain 的模块自定义;TTS 方面有微软的 edge-tts、VITS、so-vits-svc 等。

如果都要自建代码实现各模块,开发工作量巨大,迭代难度高,个人开发者可借助开源社区的力量,如 dify、fastgpt 等成熟的高质量 AI 编排框架,通过这些框架快速编排出自己的 AI Agent。在开源项目中,使用 dify 框架可利用其编排和可视化交互任意修改流程,构造不同的 AI Agent,实现相对复杂的功能。同时,Dify 的 API 暴露了 audio-to-text 和 text-to-audio 两个接口,基于此可将数字人的语音识别和语音生成都交由 Dify 控制。使用 Dify 接口时需注意必须在应用编排功能中打开文字转语音和语音转文字功能,且只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI 数字人-定义数字世界中的你

有了数字人躯壳,我们就需要构建数字人的灵魂,让数字人具备各种智能,比如记得你的个人信息,充当你的个人助手;在某个领域具备更专业的知识;能处理复杂的任务等等。这些能力实现有以下几个需要注意的工程关键点:1.AI Agent:我们要想数字人像人一样思考就需要写一个像人一样的Agent,工程实现所需的记忆模块,工作流模块、各种工具调用模块的构建都是挑战;2.驱动躯壳的实现:灵魂部分怎样去驱动躯壳部分,我们可以将灵魂部分的所有接口定义出来,然后躯壳部分通过API调用,调用方式可以是HTTP、webSocket等等,视躯壳部分的实现而定。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对来说成熟一些,但都是闭源的,效果可以参考Nvidia的Audio2Face(https://www.nvidia.cn/omniverse/apps/audio2face/)或则Live Link Face(Iphone APP)+Face AR Sample(UE);3.实时性:由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。4.多元跨模态:仅仅是语音交互的数字人是远远不够的,人有五感(听觉、视觉、嗅觉、触觉、味觉),听觉只是其中一种,其他的感官可以根据实际需求来做,比如视觉我们可以通过添加摄像头数据来获取数据,再通过系列CV算法做图像解析等;5.拟人化场景:我们正常和人交流的时候不是线性对话,会有插话、转移话题等情况,这些情景如何通过工程丝滑处理。

AI 数字人-定义数字世界中的你

上述算法开源的代码有很多,这里列出一些仓库供大家参考:ASR语音识别openai的whisper:https://github.com/openai/whisperwenet:https://github.com/wenet-e2e/wenetspeech_recognition(这是一个语音识别的接口集合,里面有不同实现的语音识别的接口):https://github.com/Uberi/speech_recognitionAI Agent大模型部分就比较多了,包括ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等等。Agent部分可以使用LangChain的模块去做自定义,里面基本包含了Agent实现的几个组件(https://www.langchain.com/)TTS微软的edge-tts:https://github.com/rany2/edge-tts,只能使用里面预设的人物声音,目前接口免费。VITS:https://github.com/jaywalnut310/vits,还有很多的分支版本,可以去搜索一下,vits系列可以自己训练出想要的人声。so-vits-svc:https://github.com/svc-develop-team/so-vits-svc,专注到唱歌上面,前段时间很火的AI孙燕姿。除了算法,人物建模模型可以通过手动建模(音频驱动)或者AIGC的方式生成人物的动态效果(例如wav2lip模型)实现,这样就完成了一个最简单的数字人。当然这种简单的构建方式还存在很多的问题,例如:如何生成指定人物的声音?TTS生成的音频如何精确驱动数字人口型以及做出相应的动作?数字人如何使用知识库,做出某个领域的专业性回答?

AI 数字人-定义数字世界中的你

上述种种,如果都要自建代码实现各模块,开发工作量巨大,迭代难度也很高,对于个人开发者来讲不现实。因此我们推荐借助开源社区的力量,现在开源社区已经有了像dify、fastgpt等等成熟的高质量AI编排框架,它们有大量的开源工作者维护,集成各种主流的模型供应商、工具以及算法实现等等。我们可以通过这些框架快速编排出自己的AI Agent,赋予数字人灵魂。在笔者的开源项目中,使用了dify的框架,利用其编排和可视化交互任意修改流程,构造不同的AI Agent,并且实现相对复杂的功能,比如知识库的搭建、工具的使用等都无需任何的编码和重新部署工作。同时Dify的API暴露了audio-to-text和text-to-audio两个接口,基于这个两个接口就可以将数字人的语音识别和语音生成都交由Dify控制,从而低门槛做出来自己高度定制化的数字人(如下图),具体的部署过程参考B站视频:https://www.bilibili.com/video/BV1kZWvesE25。如果有更加高度定制的模型,也可以在Dify中接入XInference等模型管理平台,然后部署自己的模型。此外,数字人GUI工程中仍然保留了LLM、ASR、TTS、Agent等多个模块,能够保持更好的扩展,比如实现更加真实性感的语音转换、或者如果有更加Geek的Agent实现也可以选择直接后端编码扩展实现。上述Dify接口使用注意事项:1.使必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。2.只有接入了支持TTS和SPEECH2TEXT的模型供应商,才会在功能板块中展示出来,Dify的模型供应商图标下标签有展示该供应商支持哪些功能,这里可以自行选择自己方便使用的。对于TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。

Others are asking
两张照片还原人脸,用什么AI工具
以下是一些可用于两张照片还原人脸的 AI 工具和方法: 1. Stable Diffusion: 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够时放大图片。 利用 GFPGAN 算法将人脸变清晰,可参考文章。 将图片发送到图生图中,打开 stableSR 脚本放大两倍,切换到 sd2.1 模型进行修复,vae 选择 vqgan,提示词可不写。 2. Midjourney(MJ):加上简单的相机参数、写实风格,使用 MJ v 6.0 绘图,可调整图片比例。 3. InsightFaceSwap: 输入“/saveid”,idname 可随意填写,上传原图。 换脸操作输入“/swapid”,id 填写之前设置的名称,上传分割好的图。 选择效果较好的图片,注意插件每日免费使用次数。 此外,还会用到 PS 进行图片的角度调整、裁切、裁剪、拼接等操作。
2025-02-21
AI编程的落地场景是什么
以下是 AI 编程的一些落地场景: 1. 智能体开发:从最初只有对话框的 chatbot 到具有更多交互方式的应用,低代码或零代码的工作流在某些场景表现较好。 2. 证件照应用:以前实现成本高,现在可通过相关智能体和交互满足客户端需求。 3. 辅助编程: 适合原型开发、架构稳定且模块独立的项目。 对于像翻译、数据提取等简单任务,可通过 AI 工具如 ChatGPT 或 Claude 解决,无需软件开发。 支持上传图片、文档,执行代码,甚至生成视频或报表,大幅扩展应用场景。 4. 自动化测试:在模块稳定后引入,模块变化频繁时需谨慎。 5. 快速迭代与发布 MVP:尽早发布产品,不追求完美,以天或周为单位快速迭代。 需要注意的是,AI 编程虽强,但目前适用于小场景和产品的第一个版本,在复杂应用中可能导致需求理解错误从而使产品出错。在进度不紧张时可先尝试新工具,成熟后再大规模应用。同时,压缩范围,定义清晰的 MVP(最小可行产品),先完成一个 1 个月内可交付的版本,再用 1 个月进行优化迭代。
2025-02-21
不同ai模型的应用场景
以下是不同 AI 模型的应用场景: 基于开源模型: Civitai、海艺 AI、liblib 等为主流创作社区,提供平台让用户利用 AI 技术进行图像创作和分享,用户无需深入了解技术细节即可创作出较高质量的作品。 基于闭源模型: OpenAI 的 DALLE 系列: 发展历史:2021 年初发布 DALLE,2022 年推出 DALLE 2,2023 年发布 DALLE 3,不断提升图像质量、分辨率、准确性和创造性。 模型特点:基于变换器架构,采用稀疏注意力机制,DALLE 2 引入 CLIP 模型提高文本理解能力,DALLE 3 优化细节处理和创意表现。 落地场景:2C 方面可控性强于 Midjourney,但复杂场景和细节处理能力不如 Midjourney;2B 方面与 Midjourney 场景类似。 商业化现状:通过提供 API 服务,使企业和开发者能集成到应用和服务中,采取分层访问和定价策略。 伦理和合规性:加强对生成内容的审查,确保符合伦理和法律标准。 大模型: 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 编程和代码辅助:用于代码自动补全、bug 修复和代码解释。 翻译和跨语言通信:促进不同语言背景用户之间的沟通和信息共享。 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 教育和学习辅助:创建个性化学习材料、自动回答学生问题和提供语言学习支持。 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应图像,未来可能扩展到视频内容生成。 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家沉浸式体验。 医疗和健康咨询:理解和回答医疗相关问题,提供初步健康建议和医疗信息查询服务。 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务门槛。 这些只是部分应用场景,随着技术进步和模型优化,AI 模型在未来可能会拓展到更多领域和场景。同时,也需注意其在隐私、安全和伦理方面的挑战。
2025-02-21
爆款AI视频
以下是关于爆款 AI 视频的相关内容: 2025AI 春晚: 行业身份:首届 AI 春晚发起人&总导演,包括央视总台论坛&直播、TEDxAI 演讲、得到分享等。 爆款视频案例:快手&国家反诈中心合作,微博 650w+热搜,快手 520w+热搜(6 月 28 日);央视&海尔冰箱首支 AI 概念短片(6 月 29 日);个人制作视频,无推流,快手平台 636w 播放(6 月 29 日)。 社区与企业关系:涉及 WaytoAGI、AIGCxChina 等聚会,以及德必集团、万兴集团、福布斯 AItop50 等的论坛分享,还有嘉定区政府颁奖、温州 AI 音乐大会、腾讯研究院论坛、江西财经大学分享、宣亚集团分享等。 WTF:1w 粉 10w 粉仅仅用时 13 天,像素级拆解《动物时装秀》: 作者模仿动物时装秀账号效果不错并分享教程。一个爆款视频至少要满足以下几点: 切片:短视频通过不断切片,增加信息密度,从长视频和其他短视频中脱颖而出。 通感:利用人的直觉脑,不让观众动脑子,如头疗、水疗直播间靠声音让人舒服,美食直播间靠展示美食吸引人。 反差:可参考抖音航线里行舟大佬的相关文档。 视频模型:Sora: OpenAI 突然发布首款文生视频模型 Sora,能够根据文字指令创造逼真且充满想象力的场景,生成 1 分钟的超长一镜到底视频,女主角、背景人物等都有惊人的一致性和稳定性,远超其他 AI 视频工具。
2025-02-21
AI音频与数字人
以下是关于 AI 音频与数字人的相关信息: 数字人口播配音: 操作指引:输入口播文案,选择期望生成的数字人形象及目标语言,选择输出类型,点击开始生成。 支持的数字人形象和语言多样,能让视频制作更高效。 图片换脸: 操作指引:上传原始图片和换脸图片,点击开始生成。 图片大小上限 5M,支持 JPG、PNG 格式。 视频换脸: 操作指引:上传原始视频和换脸图片,点击生成。 音频合成数字人: 操作指引:上传音频文件,选择数字人角色和输出类型,点击开始生成。 支持 MP3 和 WAV 格式的音频文件,文件大小上限 5M,工具支持使用 100+数字人模板,可解决无素材冷启问题。 AI 配音: 多语种(包含菲律宾语、印地语、马来语等小语种)智能配音,同时支持区分男声和女声。 操作指引:输入需配音文案,选择音色,点击立即生成。 注意输入的配音文案需和选择音色语种保持一致。 AI 字幕: 操作指引:点击上传视频,开始生成,字幕解析完成后下载 SRT 字幕。 支持 MP4 文件类型,大小上限为 50M。 在数字人语音合成方面,提到了声音克隆,有新的声音克隆且音质很不错。算法驱动的数字人相关开源代码仓库有: ASR 语音识别:openai 的 whisper(https://github.com/openai/whisper)、wenet(https://github.com/wenete2e/wenet)、speech_recognition(https://github.com/Uberi/speech_recognition)。 大模型:ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 Agent 部分:可以使用 LangChain 的模块去做自定义(https://www.langchain.com/)。 TTS:微软的 edgetts(https://github.com/rany2/edgetts)、VITS(https://github.com/jaywalnut310/vits)、sovitssvc(https://github.com/svcdevelopteam/sovitssvc)。 构建简单数字人的方式包括通过手动建模(音频驱动)或者 AIGC 的方式生成人物的动态效果(例如 wav2lip 模型),但仍存在一些问题,如如何生成指定人物的声音、TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作、数字人如何使用知识库做出某个领域的专业性回答等。
2025-02-21
现阶段最智能的AI工具是哪一款?
现阶段很难确切地指出哪一款 AI 工具是最智能的,因为这取决于不同的应用场景和需求。以下为您介绍一些表现出色的 AI 工具: Unity 推出的两款 AI 工具: Copliot 工具:可通过与 Muse Chat 聊天快速启动创建游戏项目,如生成塔防类游戏基础框架、创建人物角色动作,还能协助编码和熟悉工程环境。 Unity Sentis:能在 Unity 运行时为游戏或应用程序嵌入 AI 模型,增强玩法和功能,是首个将 AI 模型嵌入实时 3D 引擎的跨平台解决方案。 基于 2022 年 9 月至 2023 年 8 月访问量的 10 个最佳人工智能工具: ChatGPT:访问量达 146 亿次,在美国使用率最高,男性用户占比较大,多用于写作和内容创作、教育和常识等方面。 Character AI QuillBot Midjourney Hugging Face Google Bard NovelAI CapCut JanitorAI Civitai 不同类型的 AI 工具在不同领域各有优势,例如聊天机器人在流量份额上占比较大,而图像生成器、视频生成器、语音和音乐工具等也在各自领域表现出色。您可以根据具体需求选择适合的工具。
2025-02-21
我有一个内容很长的现场录音转文字发言稿,有什么工具可以去掉里面的语气词,自动处理为正常可读的文字稿
目前有一些工具可以帮助您处理这类需求,例如: 1. 讯飞听见:具有语音转文字及文字优化处理的功能。 2. 网易见外:能对转写的文字进行一定的优化和整理。 您可以根据自己的需求和使用习惯选择适合的工具。
2024-10-18
复杂推理的产品,给模型灌什么能够更好训练推理能力?以及怎么优化模型的推理准确度?
以下是一些能够更好训练模型推理能力以及优化推理准确度的方法: 1. OpenAI 的推理模型通过强化学习进行训练,在训练过程中,模型学会在回答前思考,产生长链的思维过程,并不断尝试不同策略,识别错误,从而能够遵循特定的指导方针和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 2. 蒙特卡洛树搜索(MCTS)对推理模型有积极影响,例如在数学定理证明中,能探索非确定性证明路径,将解决 IMO 几何题的耗时从传统方法的 30 分钟降至 90 秒;在多跳问答系统中,结合 MCTS 的模型在 HotpotQA 数据集上准确率提升 12%,因其能回溯验证中间推理步骤。 3. 动态知识融合机制方面,传统基于规则的推理无法处理模糊知识,而 MCTS 增强方案在医疗诊断中可将误诊率从纯规则引擎的 23%降至 9%。 4. 资源分配优化方面,在逻辑谜题求解任务中,MCTS + Transformer 能达到 85%准确率且耗时 3 秒,而纯 Transformer 为 62%准确率且耗时 8 秒;在法律条文推导任务中,MCTS + Transformer 有 92%合规性且耗时 5 秒,纯 Transformer 为 88%合规性且耗时 2 秒。 OpenAI 于 9 月 12 日发布的新模型 o1 旨在实现通用复杂推理,通过强化学习和思维链的方式提升推理能力,尤其在数学和编程领域表现出色,但用户反馈显示其实际表现与宣传存在差距,成本高于 GPT4o,且在某些任务上优势不明显,OpenAI 仍在探索如何优化模型的推理性能。
2025-02-21
agent训练
在人工智能领域中,AI Agent 的训练具有以下特点: 传统强化学习中,Agent 训练往往需大量样本和时间,且泛化能力不足。 为突破瓶颈,引入了迁移学习:通过促进不同任务间知识和经验迁移,减轻新任务学习负担,提升学习效率和性能,增强泛化能力,但当源任务与目标任务差异大时,可能无法发挥效果甚至出现负面迁移。 探索了元学习:核心是让 Agent 学会从少量样本中迅速掌握新任务最优策略,能利用已有知识和策略调整学习路径适应新任务,减少对大规模样本集依赖,但需要大量预训练和样本构建学习能力,使开发通用高效学习策略复杂艰巨。 时间:21 世纪初至今 特点:迁移学习是将一个任务学到的知识迁移到其他任务;元学习是学习如何学习,快速适应新任务。 技术:迁移学习如领域自适应;元学习如 MAML、MetaLearner LSTM。 优点:提高学习效率,适应新任务。 缺点:对源任务和目标任务的相似性有一定要求。 此外,智谱 AI 开源的语言模型中与 Agent 相关的有: AgentLM7B:提出了 AgentTuning 方法,开源了包含 1866 个高质量交互、6 个多样化真实场景任务的 Agent 数据集 AgentInstruct,基于上述利用 Llama2 微调而成,上下文 token 数为 4K。 AgentLM13B:上下文 token 数为 4K。 AgentLM70B:上下文 token 数为 8K。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
主流的LORA 训练工具是什么?
主流的 LORA 训练工具包括: 1. B 站 UP 主“朱尼酱”的赛博丹炉,其界面友好、美观,适合新手入门。 2. 训练器,支持 Kolors 开源模型。 3. Kolors+Refiner,由 AIKSK 开发的工作流应用。 4. Kolors可图大模型XL 精修工作流,由@AiARTiST 非人类开发。 5. kolors+SDXL 细节修复+instant+ipa,由@谷尘 DesignDog 开发。 6. kolors 一键设计中文海报,由亦诚视觉开发。 7. ,魔搭社区官方模型。 8. InstantIDKolors 专属模型,由 InstantX 开发。
2025-02-18
flux lora训练
以下是关于 Flux 的 Lora 模型训练的详细步骤: 模型准备: 1. 下载所需模型:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意:不使用时存放位置不限,只要知晓路径即可。训练时建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 下载脚本: 1. 网盘链接: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 安装虚拟环境: 1. 下载完脚本并解压。 2. 在文件中找到 installcnqinglong.ps1 文件,右键选择“使用 PowerShell 运行”。 3. 新手在此点击“Y”,然后等待 1 2 小时的下载过程。下载完成后会提示是否下载 hunyuan 模型,选择“n”不用下载。 数据集准备: 1. 进入厚德云 模型训练 数据集:https://portal.houdeyun.cn/sd/dataset 2. 创建数据集:在数据集一栏中,点击右上角创建数据集,输入数据集名称。 可以上传包含图片 + 标签 txt 的 zip 文件,也可以上传只有图片的文件(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片。建议提前将图片和标签打包成 zip 上传,Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 上传 zip 以后等待一段时间,确认创建数据集。返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,可预览到数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 4. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 5. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 6. 等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图。鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 数据集存放位置:.Flux_train_20.4\\train\\qinglong\\train 运行训练:约 1 2 小时即可训练完成。 验证和 lora 跑图:有 ComfyUI 基础的话,直接在原版工作流的模型后面,多加一个 LoraloaderModelOnly 的节点就可以,自行选择您的 Lora 和调节参数。
2025-02-17