以下是关于 AI 就业的相关信息:
在 AI 就业市场方面:
从企业组织的结构来看,提供 AI 劳动力的产品有两种形式:AI 同事(雇佣)。
在 AI 与工作场景结合方面,以下是一些应用案例:
基于我之前也实操了一些AI落地项目(后面分享),我实际聊了一些AI企业的就业机会,谈谈个人的想法。1)鱼龙混杂,求职者要做好信息甄别。即使面试通过拿到offer,除了看boss直聘的招聘评价,一定要提前收集其他信息,如在脉脉上搜一下这家公司靠不靠谱;2)一些公司实际上没搞懂用AI能为自己企业带来什么价值,只是处于焦虑或跟风心态要做AI,这部分企业可以聊,但要求求职者要有咨询和商业化的思维,能帮公司厘清业务增长机会;3)不同公司对AI产品经理的定位不同,所以招聘市场上对AI产品经理的岗位职责和任职要求也不同,慢慢会统一标准,这也是产品经理转型的机会。4)有行业沉淀和认知的产品经理转型会更有机会,类似之前的“互联网+”,目前应用层的机会在“AI+行业”,只懂AI或只懂行业是不够的。还有就是业务创新,找到细分的场景痛点并完成PMF验证,海外有很多优秀案例。
不久前,知名投资机构Nfx在他们最新的《[](https://www.nfx.com/post/ai-workforce-is-here)[The AI Workforce is Here:The Rise of a New Labor Market](https://www.nfx.com/post/ai-workforce-is-here)》中刚好分析了这个趋势。现在AI正在强制逆转SaaS这个缩写的含义,从“软件即服务”转变为“服务即软件”,软件既能组织任务,也能执行任务,你无需雇佣额外劳动力,它们是“内置”的,传统的劳动力市场最终将和软件融合成为一个新市场!配图2.08:New AI Workforce(来自NFX)例如,我们现在购买SaaS销售工具,仍然需要雇佣并培训销售人员来完成实际的销售工作。在公司内部,招聘预算和软件预算不在一个数量级;在整个经济体中,劳动力市场和软件市场也是完全分开的。粗略地计算一下,美国企业在知识型劳动力上的支出超过5万亿美元;相比之下,公司在SaaS上的支出仅为2300亿美元。接下来,AI要做的事情就是降低企业在知识工作者上的支出,让大家购买或者是租用能自己工作的SaaS,从而提高在软件市场的支出。现在,从企业组织的结构来看,提供这种AI劳动力的产品有两种形式:配图2.09:Playbooks for AI workforce(来自NFX)AI同事(雇佣)
|标题|简介|作者|分类|前往查看👉|封面|入库时间||-|-|-|-|-|-|-||七大行业的商业化应用|企业运营:日常办公文档材料撰写整理;营销对话机器人,市场分析,销售策略咨询;法律文书起草、案例分析、法律条文梳理;人力资源简历筛选,预招聘,员工培训。<br>教育:协助评估学生学习情况,为职业规划提供建议;针对学生情况以及兴趣定制化学习内容;论文初稿搭建及论文审核;帮助低收入国家/家庭通过GPT获得平等的教育资源。<br>游戏/媒体:定制化游戏,动态生成NPC互动,自定义剧情,开放式结局;出海文案内容生成,语言翻译及辅助广告投放和运营;数字虚拟人直播;游戏平台代码重构;AI自动生成副本。<br>零售/电商:舆情、投诉、突发事件监测及分析;品牌营销内容撰写及投放;自动化库存管理;自动生成或完成SKU类别选择、数量和价格分配;客户购物趋势分析及洞察。<br>金融/保险:个人金融理财顾问;贷款信息摘要及初始批复;识别并检测欺诈活动风险;客服中心分析及内容洞|钛媒体深度|工作|[七大行业的商业化应用](https://waytoagi.feishu.cn/wiki/I9L3wS10kie2KFki0XDcaJdqnfb?table=tblwdvsWICkId67f&view=vewm6DMY99)||2023/10/30|