AI 的基础包括以下方面:
此外,为了更深入地理解 AI 相关知识,还为您推荐三本神经科学书籍:
鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习(或学会学习)更快地获取知识,并推动人类进步。AI 的特性使我们能够将其拆解研究,通过构建系统深入探索其内部工作机制,创造学习的飞轮,未来专家 AI 可能成为下一代专家的教师。
[heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。
可能你需要的3本基础学科书籍📖 AI是多学科交叉的产物,在学习和运用具体的能力时,比如学习他人的prompt模板或设计prompt,与AI协作(对话沟通)等等,有一些基础学科作为基底,或许能打开AI的新天地:1.《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga; Richard B.Lvry; George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。CyberDaily:想象AI像人一样思考与决策,而不是让AI像计算机输入输出。2.《神经科学原理》(作者:Eric R.Kandel; James H.Schwartz)这本书,让你系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。CyberDaily:得益于神经网络的联结主义,知识并非存在于某个文档或者知识库或者在记忆区里,而是存在于知识与知识之间,这是一场流动的盛宴,而非躲藏在某个区域的金库。3.《神经生物学:从神经元到脑》(作者:John G.Nicholls等著)神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。CyberDaily:将以上两本一起食用,效果更佳,造物主设计的人脑值得细细研究和理解。
鉴于人工智能依赖的神经网络基础,这些专家AI可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI的性质让我们可以做一些我们无法对人做的事情;即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家AI的内部工作机制,我们将创造一个学习的飞轮。最终,专家AI可能超越领域专家的角色,成为下一代专家——无论是人类还是AI——的教师。