Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

ai小白怎么入行

Answer

对于 AI 小白入行,以下是一些建议:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
  6. 入行敲门砖:
    • 一个点子。
    • 一张图。
  7. 岗位技能学习:
    • 对于“AI 提示词工程师”岗位,如果是零基础小白,可在网上找基础课程学习。
    • 推荐看科普类教程,阅读 OpenAI 的文档,理解每个参数的作用和设计原理。
    • 推荐一些练手的 Prompt 工具和相关教程文档。
Content generated by AI large model, please carefully verify (powered by aily)

References

小白30min加入离谱村的流水账

加入的入口足够明显,大家起码扫一眼看一下guide就能知道。但是对于我这种AGI小白来说,看到大佬们的介绍和样例,觉得自己怎么的也得潜心学习1个月才好意思进来,然而,大错特错了!!来都来了,不要不好意思直接冲——其实敲门砖很简单:一个点子一张图

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

刘海:「AI 提示词工程师」の 见解和经验分享

市场调研->观察目标群体工作流->创造并拆解需求->选型现有AI解决方案做成产品来解决需求->抽象出来集成为一个互联网APP产品->写PRD ->画APP产品原型图->组织团队进行APP产品开发。公司招这个岗位,不会多招其他懂AI的岗位了,所以你等于是需要有比较综合的个人能力,敏捷的产品嗅觉,需求走在用户前面,敢想敢做,这也不是谁都能做得来的,有些人可能内向,可能不善于表达想法,可能只想默默地写代码,我接触过太多这样的程序员了…[heading3]1、零基础小白怎么学?[content]如果你现在真的是0基础小白,推荐你去找找网上的教程,虽然是新领域吧…但是基础课程还是蛮多的,为什么这么说呢,因为AIGC这种不稳定不确定的业务流里面,真正第一波赚钱的是哪些人?不是做应用的吧,卖课的。不过我还是推荐你看一些科普类教程,比如我前几天看到的这个视频做的不错:还有OpenAI的文档也过一下,理解一下每个参数都有哪些作用,为什么要这样设计,不至于面试官一问就触及的知识盲区和认知上限了。推荐有阅读能力的还是读一读官方文档吧,毕竟外面做教程的都有时效性,第二天OpenAI就更新文档,旧的教程就可能废弃了。推荐一些练手的Prompt工具:一些相关教程文档:

Others are asking
生成图像的AI
以下是关于生成图像的 AI 的相关信息: 生成式 AI 对创意工作产出(如图像生成)影响巨大,在效率和成本方面带来显著改进。其工作方式是接收用户的简单文本输入(即提示),然后生成视觉输出,目前能创建多种输出格式,包括图像、视频、3D 模型和纹理。例如,可通过在少量照片上重新训练预训练的图像模型,实现特定领域的图像生成。生成图像在成本和速度上相比传统方式具有极大优势。 AI 绘图 Imagen3 具有以下功能点和优势: 功能点: 根据用户输入的 Prompt 生成图像。 Prompt 智能拆解,提供下拉框选项。 提供自动联想功能,帮助用户选择更合适词汇。 优势: 无需排队,可直接使用。 免费使用。 交互人性化,如自动联想和下拉框选项。 具有较好语义理解能力,能生成符合描述的图像。 灵活性强,用户可根据自动联想调整 Prompt 生成不同图像。 目前市场上一些受欢迎的文生图工具包括: DALL·E:OpenAI 推出,能根据文本描述生成逼真图片。 StableDiffusion:开源,可生成高质量图片,支持多种模型和算法。 MidJourney:因高质量图像生成效果和用户友好界面设计受欢迎,在创意设计人群中流行。 您还可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104)查看更多文生图工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-28
目前的AI插件产业实践有哪些,需要收费的又有哪些
目前的 AI 插件产业实践中,以开发 AI Share Card 插件为例: 技术方案:将模板生成功能设计为固定的代码组件,让大模型专注于内容总结的功能。若用户需要其他模板,可通过增加更多模板选项或自定义模板代码功能实现。 对 AI 大模型的要求:处理纯文本总结任务,仅需 13B 或更小参数的模型,加上精调的提示词就能产生很好结果。 AI API 服务的选型要求: 较长的上下文窗口,因为内容总结类任务需要较大的上下文长度。 响应速度要快、并发支持要高,以在多人使用插件时保持良好性能表现。 免费或尽量低价,以减少模型 token 费用。例如选用的 GLM4flash(截至 202412,长达 128k 的上下文窗口,完全免费的调用价格,200 RPM 高并发支持)。 需要收费的 AI 插件因具体应用和服务提供商而异,常见的收费方式包括按使用量计费、订阅制等。但像上述提到的 GLM4flash 在特定时间内是免费的。
2024-12-28
想通过PPT制作AI教学视频
以下是关于通过 PPT 制作 AI 教学视频的相关信息: 一、开箱即用的解决方案 目前体验和 AI 能力支持较好的产品有 Synthesia、HeyGen AI、DID 和 Opus Clip。前三者是 AI Avatar+语音生成快速生产视频的产品,Move AI 能轻松实现动作捕捉。 Synthesia 1. 产品特点:无需麦克风、摄像机、专业演员出镜即可制作视频,内置 100 多种人物形象和多语言配音能力,帮助企业节省制作费用和周期,能一键生成多国语言视频,便于企业本土化推广,主要服务企业客户,付费方案类似 MJ 的流量策略。 2. 功能介绍:可以通过简单的 PPT 制作生成视频 Demo,可以替换 AI 头像库中的形象、制作简单的动画等,同时支持多种视频(PPT)模板。 官网地址:https://www.synthesia.io/?via=elegantthemes 二、几款 PPT 生成工具(网站) 1. 剪映:图文成片(只需提供文案,自动配图配音) 2. BibiGPT:可以支持小红书、B站等网站视频的归纳总结,还可以提问互动,答案还会附上对应的视频节点。推荐链接:https://bibigpt.co/r/Bm63FV 、https://bibigpt.co/ 三、智慧课程培育建设相关 1. AI 助力教学设计:为新时代课程赋能,包括教学革新(AI 支持教学目标设定和教学活动设计,使教学更加个性化、精准和高效)、个性化学习(AI 能根据不同学生的学习需求,提供差异化教学内容,提高学习效果)、实用策略(提供在教学设计中整合 AI 的具体方法和步骤,如利用 AI 工具进行学情分析、智能推荐等)。 2. 其它视频工具推荐:BibiGPT 四、COZE 应用:语文教学助手 1. 访问地址:https://www.coze.cn/s/iDsBwYLF/ 2. 首页说明:启动页面说明 3. 生成教案:进入设计教案页面,等待执行完成后即可看到教案(教案是以下三个功能的基础,所有功能都以教案为中心) 4. 趣味课堂:进入趣味课堂,根据课文内容设计课堂问答卡和针对性的教学活动,采用寓教于乐的方式激发孩子学习兴趣,如通过 5 个问题贯穿全文与故事主线,还有课堂互动游戏。 5. 课后作业:基于教学大纲和课本重点内容设计题目,包括生字词运用、阅读理解、写作。 6. 教案 PPT:PPT 内容基于前面生成的教学大纲,需要手动进行少许内容修正,若对大纲内容不满意,可重新生成大纲和 PPT。 7. 作业批改:建议把上传文件的名字修改得有意义一些,所有批改记录会进行归类并保存。
2024-12-28
国内AI预测股票走势的工具
目前国内利用 AI 技术进行金融投资分析的工具,例如东方财富网的投资分析工具。它通过数据分析和机器学习等技术,分析金融市场数据,为投资者提供投资建议和决策支持。比如会根据股票的历史走势和市场趋势,预测股票的未来走势。但需要注意的是,股票走势受到多种复杂因素的影响,AI 预测结果仅供参考。
2024-12-28
国内AI炒股的工具
目前国内 AI 炒股的工具相对较少。不过,博主林亦 LYi 的《AI 炒股?我开了一家员工全是 AI 的公司,自动帮我炒股》在某种程度上实现了多 Agent 协作的能力。 需要注意的是,AI Agent 应用仍处于探索阶段,其概念在市场上尚未达成共识,存在被滥用的现象。准确来说,AI Agent 指的是一种智能代理系统,接近人类大脑,可形成记忆、达成行动规划、自动交互、主动预测。其应用具有个性化的特点,能随着用户的使用越来越了解用户习惯和想法,从而作出喜好预测,比如 Dot App 在对话中了解用户喜好,随后为用户推荐新的咖啡店。同时,AI Agent 能够自主完成任务,如 Auto GPT 可在用户输入目标后,自主执行任务、递归地开发和调试代码。此外,多 Agent 协作的应用也有,如斯坦福大学的 SmallVille(小镇)项目已开源,25 个人工智能体居住在一个沙盒虚拟城镇中通过复杂的社交互动来执行日常生活,Fixie AI 在收到用户请求后启动多个负责不同模块的 Agent 进行数据查询和传递,最终生成邮件内容给客户回复。 目前,AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品少之又少。一方面是高度智能化的 Agent 能力需要打磨,概念落地还有较长一段距离;另一方面是 AI 和娱乐消费诉求的结合还几乎没有,其主要带来的是生产方式变革和效率变革。个人消费者方向,目前只看到“私人助理”场景。
2024-12-28
openai
以下是关于 OpenAI 的相关信息: AGI 的 5 个等级: 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者(Reasoners):具备人类推理水平,能解决复杂问题,如 ChatGPT,可根据上下文和文件提供详细分析和意见。 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品执行任务后仍需人类参与,尚未达到完全智能体水平。 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 模型: GPT4(Beta):一组改进 GPT3.5 的模型,可理解和生成自然语言或代码。 GPT3.5:一组改进 GPT3 的模型,可理解并生成自然语言或代码。 DALL·E(Beta):可以在给定自然语言提示的情况下生成和编辑图像的模型。 Whisper(Beta):可以将音频转换为文本的模型。 Embeddings:一组可以将文本转换为数字形式的模型。 Codex(Limited Beta):一组可以理解和生成代码的模型,包括将自然语言转换为代码。 Moderation:可以检测文本是否敏感或不安全的微调模型。 GPT3:一组可以理解和生成自然语言的模型。 GPT、DALL·E、Sora 相关:Sora 的出现证明了 OpenAI 试图让计算机模拟真实物理世界的野心及对自身技术路线的坚持。从 OpenAI 发布的 Sora 的技术报告中可看到对过往大语言模型训练成功经验的复用。加州大学伯克利分校计算机科学 PHD、知乎作者 SIY.Z 从技术实现上分析了 Sora 成功的部分原因,以及从商业和技术趋势上分析了 OpenAI 能跑通全部技术栈的原因,并尝试预测了 OpenAI 下一步的进展。
2024-12-27
请问什么是AGI?我应该如何入行这个领域,并且实现盈利?
AGI 即人工通用智能(Artificial General Intelligence),是指具备像人类一样广泛的认知能力和学习能力,能够理解、学习和处理各种不同类型的任务和知识的智能。 要入行 AGI 领域并实现盈利,您可以考虑以下步骤: 1. 扎实的知识储备:深入学习人工智能的相关知识,包括机器学习、深度学习、自然语言处理等。 2. 掌握相关技术:熟练掌握编程语言和相关工具,如 Python 以及常见的深度学习框架。 3. 关注行业动态:了解 AGI 领域的最新研究成果和发展趋势。 4. 实践项目经验:通过参与实际项目,积累实践经验,提升自己的能力。 5. 创新解决方案:思考如何将 AGI 技术应用于实际问题,提供独特且有价值的解决方案。 例如,OpenAI 起初作为非盈利组织,为实现 AGI 的愿景努力。但由于计算成本等原因转向盈利领域,推出了如 ChatGPT 这样成功的产品,并实现了快速的人群覆盖和可观的收入。在 AGI 尚未完全实现时,应用层公司仍有发挥作用的空间,需要根据不同客户类型和场景精心设计解决方案。但如果 AGI 实现,可能会对人类的工作和社会产生深远影响。
2024-08-23
我想要入行虚拟陪伴领域,应该学习哪些内容,有哪些门槛较低的入行方式
进入虚拟陪伴领域,通常需要对人工智能、虚拟现实技术、软件开发、产品设计、用户研究以及相关法律法规有一定的了解和掌握。以下是一些建议,可以帮助你开始学习并入行: 1. 技术知识:学习人工智能基础,包括机器学习、自然语言处理(NLP)等。了解虚拟现实(VR)和增强现实(AR)技术的发展和应用。 2. 编程技能:掌握至少一种编程语言,如Python、Java或C++,这些语言在AI和VR开发中广泛使用。 3. 产品设计:了解产品设计的基本原则,包括用户体验(UX)设计和用户界面(UI)设计。 4. 用户研究:学习如何进行用户调研,包括访谈、问卷调查和数据分析,以了解用户需求和偏好。 5. 社交和情感陪伴:理解社交和情感陪伴的重要性,以及如何在虚拟陪伴产品中实现这些功能。 6. 法律法规:了解与虚拟陪伴相关的法律法规,包括数据保护、隐私权和知识产权等。 7. 市场调研:研究当前市场上的虚拟陪伴产品和服务,了解它们的特点和用户反馈。 8. 实践项目:参与相关的开源项目或实习机会,通过实践来提升技能和经验。 门槛较低的入行方式可能包括: 参与在线课程:许多在线平台提供AI和VR相关的课程,可以帮助你快速入门。 加入社区:加入相关的技术社区,如GitHub、Stack Overflow或专业的论坛,可以与其他开发者交流经验。 小规模项目实践:从小规模的个人或团队项目开始,逐步积累经验。 实习或助理职位:寻找实习或助理职位的机会,这可以提供实践经验并帮助你建立职业网络。 参加竞赛:参加AI或VR相关的竞赛,这不仅可以提升技能,还有机会获得认可和奖励。 内容创作:通过撰写博客、制作视频教程或参与在线讨论,分享你的知识和经验,建立个人品牌。 记住,持续学习和实践是关键,同时保持对新技术和行业动态的关注。
2024-04-17
小白从0学习ai的教程在哪里
以下是为小白从 0 学习 AI 提供的教程和建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于零基础小白: 网上有很多基础课程,您可以找找相关教程。 看一些科普类教程,比如相关视频。 阅读 OpenAI 的文档,理解每个参数的作用和设计原理。 推荐一些练手的 Prompt 工具和相关教程文档。 7. 推荐视频: 【包教包会】一条视频速通 AI 大模型原理_哔哩哔哩_bilibili:https://www.bilibili.com/video/BV17t4218761/?vd_source=3cc4af77a2ef185635e8097d3326c893 由(女神)主讲,和某知识 up 主 Genji 一起制作的免费公益课,新手友好,带你 50 分钟速通 AI 大模型原理。 用大模型保存你的全部人生,你会接受吗:专访安克创新 CEO 阳萌|大咖谈芯第 11 期_哔哩哔哩_bilibili:https://www.bilibili.com/video/BV1iT421Q7M1 某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,视频链接是第二期。两期内容都值得观看,访谈非常硬核。
2024-12-27
听说你这里有ai小白学习ai知识从0到1的文档,哪里可以查看到
新手学习 AI 可以按照以下步骤进行: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果您是零基础小白,还可以: 1. 网上找基础课程进行学习。 2. 观看科普类教程。 3. 阅读 OpenAI 的文档,理解每个参数的作用和设计原理。 4. 推荐使用一些练手的 Prompt 工具和相关教程文档。
2024-12-26
我是个小白,该如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,还可以: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是小白还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-12-23
我是个外行,完全小白、没有编程基础。我有个初步的想法,做一个智能客服,来代替或者帮助我们行业的人工客服。那么,我应该从哪些知识开始学习、或者我自己能不能办到?
对于完全没有编程基础但想做智能客服的小白,以下是一些建议: 1. 先对 AI 有初步的了解,明确自己的需求和目标。 2. 学习一些基本的概念,比如什么是 AI、提示词工程等。 3. 可以参考他人的学习路径,例如以“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”等为关键词。 4. 要有耐心,在 AI 的帮助下一步一步来,并在这个过程中逐渐学习一些编程知识。 5. 避免追求“大而全”和完美主义,从小的功能和简单的应用开始,尽快让系统“跑起来”,获得实际使用的反馈,再不断改进。 同时,有一些成功的案例可供参考。比如有人从完全不懂代码和英语很差的状态,通过不断学习和实践,在公司中实现了智能客服从创建到应用的过程,还创建了多个智能体。但也要注意,现实中真正的应用往往有复杂的需求,不能完全依赖 AI 一次性搞定,需要自己不断努力和积累。
2024-12-23
小白学习ai的学习计划
以下是为小白制定的学习 AI 的计划: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,进行实践以巩固知识,尝试使用各种产品做出自己的作品。 在知识库中查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于 0 绘画基础想要用 AI 为儿子做生日海报的情况,可以参考以下步骤: 1. 学习 AI 图像生成的原理: 参考 。 参考 。 2. 尝试工具和效果: 制定学习计划时,可以参考 。 可以根据自身情况逐步推进问题,明确每日需要投入的时间和每周用到的资源,并增加每周学习成果评估的要求。 根据实际情况调整学习计划,比如决定专心学习绘画。
2024-12-22
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 以下是一些通俗易懂的技术原理与框架内容: 1. 视频一主要回答了什么是 AI 大模型,原理是什么。 生成式 AI 生成的内容,叫做 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习是学习的数据没有标签,算法自主发现规律,经典任务包括聚类。强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法。神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。对于生成式 AI,其中生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT 含义:Transformer 是关键。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-22