AI 的发展历程大致如下:
早在 1945 年,Alan Turing 就考虑用计算机模拟人脑,设计了 ACE(Automatic Computing Engine - 自动计算引擎),这被视为机器智能的起源。随着对大脑工作机制认知的增加,神经网络的算法和模型也不断进步。例如,CNN 的结构基于两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等许多应用中表现出色。每次对大脑工作机制的更多了解,都推动着神经网络的发展。
1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等
早在1945年,Alan Turing就已经在考虑如何用计算机来模拟人脑了。他设计了ACE(Automatic Computing Engine -自动计算引擎)来模拟大脑工作。在给一位同事的信中写道:"与计算的实际应用相比,我对制作大脑运作的模型可能更感兴趣......尽管大脑运作机制是通过轴突和树突的生长来计算的复杂神经元回路,但我们还是可以在ACE中制作一个模型,允许这种可能性的存在,ACE的实际构造并没有改变,它只是记住了数据......"这就是机器智能的起源,至少那时在英国都这样定义。
CNN的结构是基于这两类细胞的级联模型,主要用于模式识别任务。它在计算上比大多数其他架构更有效、更快速,在许多应用中,包括自然语言处理和图像识别,已经被用来击败大多数其他算法。我们每次对大脑的工作机制的认知多一点,神经网络的算法和模型也会前进一步!