直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

请解释一下langchain和RAG的关系?

回答

LangChain是一个用于构建高级语言模型应用程序的框架,它提供了一系列的工具和组件,使得开发人员能够更容易地使用大型语言模型(LLM)来创建各种应用程序。LangChain的设计主张集中在模块化组件上,这些组件提供用于使用LLM的行为抽象,并为每个抽象提供实现的集合,从而允许开发人员构造新链或实现现成的链。

RAG,即检索增强生成(Retrieval-Augmented Generation),是一种结合了检索(检索外部知识库中相关信息)和生成(利用LLM生成文本)的技术。RAG能够为LLM提供来自外部知识源的附加信息,使得LLM在应对下游任务时能够生成更精确和上下文相关的答案,并减少LLM的幻觉现象。

LangChain和RAG之间的关系可以概括为:

  1. 框架与技术:LangChain作为一个框架,提供了实现RAG所必需的工具和组件。RAG作为一项技术,可以在LangChain框架内得以实施和利用。

  2. 模块化实现:LangChain允许开发者通过其模块化组件来构建RAG应用程序,例如使用LangChain的检索器(Retriever)和生成模型(LLM)来创建一个完整的RAG流程。

  3. 简化开发:LangChain通过提供现成的链(Off-the-shelf chains)和提示模板(Prompt Templates),简化了RAG应用程序的开发过程。

  4. 提高性能:利用LangChain实现RAG可以帮助开发者创建更高效、更准确的应用程序,特别是在需要大量外部信息来辅助决策的场景中。

  5. 应用构建:LangChain通过其丰富的API和组件库,支持开发者构建复杂的RAG应用,如智能问答系统、内容推荐引擎等。

总的来说,LangChain为RAG提供了一个强大的基础设施,使得开发者可以更容易地实现复杂的、基于LLM的应用程序,同时RAG作为LangChain支持的关键技术之一,能够帮助应用程序更好地利用外部知识源,提升应用的性能和准确性。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

其他人在问
如何对rag进行评估
对 RAG 进行评估可以从以下几个方面入手: 1. 使用 RAG 三角形的评估方法: 在 LangChain 中创建 RAG 对象,使用 RAGPromptTemplate 作为提示模板,指定检索系统和知识库的参数。 在 TruLens 中创建 TruChain 对象,包装 RAG 对象,指定反馈函数和应用 ID。反馈函数可使用 TruLens 提供的 f_context_relevance、f_groundness、f_answer_relevance,也可自定义。 使用 with 语句运行 RAG 对象,记录反馈数据,包括输入问题、得到的回答以及检索出的文档。 查看和分析反馈数据,根据 RAG 三角形的评估指标评价 RAG 的表现。 2. 建立评估框架将检索性能与整个 LLM 应用程序隔离开来,从以下角度评估: 模型角度(generation): 回答真实性:模型结果的真实性高低(减少模型幻觉)。 回答相关度:结果和问题的相关程度,避免南辕北辙。 检索角度(retrieval): 召回率(recall):相关信息在返回的检索内容中的包含程度,越全越好。 准确率(precision):返回的检索内容中有用信息的占比,越多越好。 3. 考虑以下评估方法和指标: 生成质量评估:常用自动评估指标(如 BLEU、ROUGE 等)、人工评估和事实验证,衡量生成文本的流畅性、准确性和相关性。 检索效果评估:包括检索的准确性、召回率和效率,其好坏直接影响生成文本的质量。 用户满意度评估:通过用户调查、用户反馈和用户交互数据了解用户对 RAG 系统的满意度和体验。 多模态评估:对于生成多模态内容的 RAG 系统,评估不同模态之间的一致性和相关性,可通过多模态评估指标实现。 实时性评估:对于需要实时更新的 RAG 任务,考虑信息更新的及时性和效率。 基准测试集:使用基准测试集进行实验和比较不同的 RAG 系统,涵盖多样化的任务和查询,以适应不同的应用场景。 评估方法和指标的选择取决于具体的任务和应用场景,综合使用多种评估方法可更全面地了解 RAG 系统的性能和效果,评估结果能指导系统的改进和优化,满足用户需求。此外,RAGAS 是一个用于 RAG 评估的知名开源库,可参考使用: 。需要注意的是,RAG 适合打造专才,不适合打造通才,且存在一定局限性,如在提供通用领域知识方面表现不佳,可能影响模型的风格或结构输出、增加 token 消耗等,部分问题需使用微调技术解决。
2024-11-13
RAG加速有什么好办法吗
以下是一些加速 RAG 的好办法: 1. 确保 LLM 以正确的格式回应:函数调用已成为确保 LLM 严格输出特定格式的相对靠谱的新方法,推荐使用此方法提升性能。可参考结构化输出文档,其中高层次的 LangChain API 展示了不同 LLM 如何调用工具和函数。 2. 使用参考样例:在实际操作中,将输入和对应输出的样例纳入其中通常大有裨益,这些样例有时比指示本身更能有效指导 LLM 处理特定情况。在提取用例文档中可找到更多细节,助您从 LLMs 中提取更好的性能。 此外,LangChain 携手 NVIDIA 为 RAG 加速带来了新的篇章: 1. 将 NVIDIA NIM 与 LangChain 结合使用:新增了支持 NIM 的集成包,安装专门的集成包后可导入所需模型,并通过示例展示如何构建应用程序,包括安装额外的包、加载数据源、初始化嵌入模型等一系列操作。 2. NVIDIA NIM 介绍:NVIDIA NIM 是一系列用户友好的微服务,旨在加速企业内部生成式 AI 的部署进程,支持广泛的 AI 模型,基于强大的推理引擎和技术构建,提供无缝的 AI 推理体验,是实现大规模、高性能生成式 AI 推理的最佳选择。其具有自托管特性,能保证数据安全;提供预构建的容器,方便选择和使用最新模型;具有可扩展性。开始使用 NIM 非常简单,在 NVIDIA API 目录中可轻松访问多种 AI 模型,NIM 是 NVIDIA AI Enterprise 的一部分,可通过相关博客获取详细指南。
2024-11-12
搜索DragGAN
DragGAN 于 2023 年 6 月 25 日开源。喜欢 AI 绘画的对它应该不陌生,期待它带来更大的惊艳。此外,相关论文中增加了微软研究院新发布的多模态 AI 助手;学习路径中增加了适合初学者的深度学习课程 fast.ai ;AI 名词增加到 80 多个,补充了很多技术名词。您可以通过以下链接获取更多详细信息:
2024-11-11
AI相关常见缩写及对应含义,包含例如prompt,rag
以下是一些 AI 相关的常见缩写及对应含义: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,可理解为与大模型说的话或下达的指令,其质量会显著影响大模型回答的质量。 Token:大模型语言体系中的最小单元。不同厂商的大模型对中文的文本切分方法不同,通常 1Token≈12 个汉字。大模型的收费计算及输入输出长度限制常以 token 为单位计量。 上下文(context):指对话聊天内容前、后的内容信息,其长度和窗口会影响大模型回答的质量。 在 AI 绘画中,常见的画面构图提示词有: 视图相关:Bottom view(底视图)、front,side,rear view(前视图、侧视图、后视图)、product view(产品视图)、extreme closeup view(极端特写视图)、look up(仰视)、firstperson view(第一人称视角)、isometric view(等距视图)、closeup view(特写视图)、high angle view(高角度视图)、microscopic view(微观)、super side angle(超博角)、thirdperson perspective(第三人称视角)、Aerial view(鸟瞰图)、twopoint perspective(两点透视)、Threepoint perspective(三点透视)、portrait(肖像)、Elevation perspective(立面透视)、ultra wide shot(超广角镜头)、headshot(爆头)、a crosssection view of)
2024-11-08
如何提高RAG应用中的准确率
以下是一些提高 RAG 应用准确率的方法: 1. 基于结构化数据来 RAG: 避免数据向量化和语义搜索的问题,直接利用原始数据和 LLM 的交互,提高准确率。因为结构化数据的特征和属性明确,能用有限标签集描述,可用标准查询语言检索,不会出现信息损失或语义不匹配的情况。 减少 LLM 的幻觉可能性,LLM 只需根据用户问题提取核心信息和条件,并形成标准查询语句,无需理解整个文档语义。 提高效率,省去数据向量化和语义搜索过程,直接使用标准查询和原始数据进行回复,且结构化数据的存储和更新更易更省空间。 增加灵活性,适应不同数据源和查询需求,只要数据是结构化的,就可用此方法进行 RAG。 2. 参考行业最佳实践,如 OpenAI 的案例: 从较低的准确率开始,尝试多种方法,标记哪些被采用到生产中。 通过尝试不同大小块的信息和嵌入不同内容部分,提升准确率。 采用 Reranking 和对不同类别问题特别处理的方法进一步提升。 结合提示工程、查询扩展等方法,最终达到较高的准确率,同时强调模型精调和 RAG 结合使用的潜力。 3. 深入了解 RAG 的基础概念: RAG 由检索器和生成器组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统,能提供详细准确的回答。
2024-11-08
什么是RAG的分词?
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。通过检索的模式为大语言模型的生成提供帮助,使大模型生成的答案更符合要求。 LLM 需要 RAG 进行检索优化的原因在于 LLM 存在一些缺点: 1. 无法记住所有知识,尤其是长尾的,受限于训练数据和现有的学习方式,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. 输出难以解释和验证,存在内容黑盒、不可控以及受幻觉干扰等问题。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 在 PDF 结构识别方面,基于规则的方法 PyPDF 存在一些问题: 1. 不擅于检测段落的边界,没有解析段落的边界,使用特殊分隔符“.\n”的启发式方法在很多情况下不成立。 2. 无法识别表格内的结构,表格的结构会被完全破坏,大语言模型无法从中辨别有意义的信息。 3. 无法识别内容的阅读顺序,按照字符存储顺序解析文档,面对复杂布局时可能导致解析结果混乱。 4. 无法识别段落和表格的边界,会错误地分割表格,并将部分与后续段落合并。 PyPDF 的解析和分块工作流程是:先将 PDF 文档中的字符序列化为没有文档结构信息的长序列,然后使用分割规则如换行符“\n”进行分割,仅当组合块的长度不超过预定限制 N 个字符时,才会合并相邻块。
2024-11-05
LangChain的技术方案和应用场景
LangChain 是一个为简化大模型应用开发而设计的开源框架。 其技术方案具有以下特点: 提供模块化的工具和库,便于开发者集成和操作多种大模型。 注重简化开发流程,让开发者能将更多精力投入到应用的核心价值创造上。 支持广泛的模型,具有良好的可扩展性,能适应业务需求的变化。 在应用方面: 作为得到社区广泛支持的开源项目,拥有活跃的贡献者和持续更新。 提供全面的文档和示例代码,有助于新用户快速掌握。 充分考虑应用的安全性和用户数据的隐私保护。 是多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2024-11-01
langchain
LangChain 是一个用于构建高级语言模型应用程序的框架,具有以下特点和功能: 旨在简化开发人员使用语言模型构建端到端应用程序的过程,提供了一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更易实现。 核心概念包括组件和链,组件是模块化的构建块,可组合创建强大应用,链是一系列组件或其他链的组合,用于完成特定任务。 主要特点包括模型抽象,提供对大型语言模型和聊天模型的抽象,允许选择合适模型并用组件构建应用;支持创建和管理提示模板;支持定义处理步骤的链;支持构建代理,能使用语言模型做决策并调用工具;支持多种用例,可与外部数据源交互并提供内存功能。 与 RAG(检索增强生成)的关系:LangChain 作为框架提供实现 RAG 所需工具和组件,RAG 作为技术可在其框架内实施利用;允许通过模块化组件构建 RAG 应用,简化开发过程,提高性能,支持构建复杂的 RAG 应用。 叶清介绍了提示词链的搭建,以用 AI 批量生成拆书稿为例,展示了利用 LangChain 将语言模型与应用程序连接,实现自动生成大量内容的方法。
2024-10-31
langchain
LangChain 是一个用于构建高级语言模型应用程序的框架,具有以下特点和功能: 1. 旨在简化开发人员使用语言模型构建端到端应用程序的过程,提供了一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更易实现。 2. 核心概念包括组件和链,组件是模块化的构建块,可组合创建强大应用,链是一系列组件或其他链的组合,用于完成特定任务。 3. 主要特点包括: 模型抽象:提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用。 提示模板和值:支持创建和管理提示模板,引导语言模型生成特定输出。 链:允许开发人员定义一系列处理步骤,按顺序执行完成复杂任务。 代理:支持构建代理,利用语言模型做决策并调用工具。 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,可与外部数据源交互并提供内存功能。 4. 与 RAG(检索增强生成)的关系: LangChain 作为框架,提供实现 RAG 所需的工具和组件。 RAG 作为技术,可在 LangChain 框架内实施和利用。 LangChain 允许通过模块化组件构建 RAG 应用程序,简化开发过程,提高性能,支持构建复杂的 RAG 应用。 此外,叶清介绍了提示词链的搭建,以用 AI 批量生成拆书稿为例,展示了相关设计思路和程序输出。
2024-10-13
AI的关键技术有哪些,比如langchain
AI 的关键技术包括以下方面: 1. 编排(Orchestration):涉及到的公司如 DUST、FIAVIE、LangChain 等提供的工具帮助开发人员管理和协调各个部分和任务,以确保系统的流畅运行。 2. 部署、可扩展性和预训练(Deployment, Scalability & PreTraining):这个类别的公司如 UWA mosaicm、NMAREL、anyscale 等提供工具,帮助开发人员部署模型,保证模型的可扩展性,以及在模型使用前进行预训练。 3. 上下文和嵌入(Context & Embeddings):这个类别的公司如 TRUDO,Llamalndex,BerriAI 等提供工具,帮助模型处理和理解语言上下文,以及将词语和句子转化为计算机可以理解的形式。 4. 质量保证和可观察性(QA & Observability):这个类别的公司如 Pinecone,drant,Vald 等提供工具,以确保模型的表现,并能够监控模型的性能和状态。 LangChain 作为一个框架,具有以下特点和作用: 1. 与 RAG 的关系:作为一个框架,为 RAG 提供了实现所必需的工具和组件。允许开发者通过其模块化组件来构建 RAG 应用程序,简化了 RAG 应用程序的开发过程,提高性能,支持构建复杂的 RAG 应用,如智能问答系统、内容推荐引擎等。 2. 在 ProductHunt 2023 年度最佳产品榜单中的表现:入围了 AI Infra 类别,帮助 AI 创作者为他们的产品选择合适的 AI API 并在它们之间切换,快速创建和部署 LLM 插件或 LLM 应用程序,以及追踪和调试复杂的 LLM 应用程序。例如,Langfuse 为大模型应用提供开源可观测性和分析功能;Langdock 可在几分钟内创建、部署、测试和监控 ChatGPT 插件。
2024-09-19
langchain是什么
LangChain 是一个用于构建高级语言模型应用程序的框架,其目的在于简化开发人员使用语言模型构建端到端应用程序的流程。 它具有以下特点和功能: 1. 提供一系列工具、组件和接口,便于创建由大型语言模型(LLM)和聊天模型支持的应用程序。 2. 核心概念包括组件和链,组件是模块化的构建块,链是组合在一起以完成特定任务的一系列组件(或其他链)。 3. 具有模型抽象功能,能让开发人员为用例选择合适的模型,并利用组件构建应用程序。 4. 支持创建和管理提示模板,引导语言模型生成特定输出。 5. 允许开发人员定义一系列处理步骤,按顺序执行以完成复杂任务。 6. 支持构建代理,使其能使用语言模型做决策,并根据用户输入调用工具。 7. 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,还能与外部数据源交互收集数据,并提供内存功能维护状态。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-05
langchain
LangChain 是一个用于构建高级语言模型应用程序的框架,具有以下特点和功能: 旨在简化开发人员使用语言模型构建端到端应用程序的过程,提供了一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更易实现。 核心概念包括组件和链,组件是模块化的构建块,可组合创建强大应用程序,链是一系列按顺序执行以完成复杂任务的组件或其他链。 主要特点有: 模型抽象:提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用程序。 提示模板和值:支持创建和管理提示模板,引导语言模型生成特定输出。 链:允许开发人员定义一系列处理步骤。 代理:支持构建代理,可使用语言模型做决策并决定调用工具。 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,能与外部数据源交互,还提供内存功能维护状态。 LangChain 与 RAG(检索增强生成)的关系: LangChain 是用于构建高级语言模型应用程序的框架,提供一系列工具和组件。 RAG 是一种结合检索(检索外部知识库中相关信息)和生成(利用 LLM 生成文本)的技术,能为 LLM 提供附加信息,使生成更精确和上下文相关的答案,减少幻觉现象。 LangChain 在 RAG 应用开发中的作用: 是专注于大模型应用开发的平台,提供一系列组件和工具帮助构建 RAG 应用。 数据加载器:从数据源加载数据并转换为文档对象,包含页面内容和元数据。 文本分割器:将文档对象分割成多个较小的文档对象,方便检索和生成。 文本嵌入器:将文本转换为嵌入,用于衡量文本相似度实现检索功能。 向量存储器:存储和查询嵌入,通常使用索引技术加速检索。
2024-08-19
帮我解释一下AI和人工智能、机器学习的关系
AI 即人工智能,是一个广泛的概念,旨在让计算机模拟人类智能。 机器学习是人工智能的一个重要分支。它指的是计算机通过寻找数据中的规律进行学习,包括监督学习、无监督学习和强化学习等方式。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习处理的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习则是从反馈中学习,以最大化奖励或最小化损失,类似于训练小狗。 深度学习是一种参照人脑神经网络和神经元的方法,由于具有很多层所以称为深度。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI 能够生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI ,生成图像的扩散模型不属于大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解,像上下文理解、情感分析、文本分类等,但不擅长文本生成。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-10-15
帮我解释一下transformer
Transformer 的工作流程如下: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,例如将“ I ”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有能捕获序列顺序的结构,如递归或卷积,所以给每个词位置加上位置编码,让模型知晓词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,一是多头注意力机制(MultiHead Attention),用于捕捉单词间的依赖关系;二是前馈神经网络(FeedForward NN),对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器同样由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成“我”“是”等单词的概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 注意力机制是 Transformer 最关键的创新,允许模型捕获长距离依赖关系。多头注意力可并行计算,因此高效。残差连接和层归一化有助于优化网络。整体上,Transformer 无递归和卷积结构,计算并行化程度高,更适合并行加速。 Transformer 是一个大参数(千亿级别)的回归方程,其底层是 function loss 损失函数。它是在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。回归方程的 Function loss 拟合 A to B mapping 关系,实现数据集的压缩与还原。 在公众传播层面,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型,如 ChatGPT;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC;AGI 指通用人工智能。公众传播一般会混用上述名词,但底层是 Transformer 结构。 大语言模型是一个 perfect memory,repeat 曾经出现的内容。它与 Alpha Go 有差异,Alpha Go 是一个增强学习模型,学习结果会调整模型自身参数,有推理能力,但大语言模型在推理这块很弱。Transformer 决定 LLM 是一个生成式模型。
2024-10-12
我是一个小学生,给我解释一下什么是AI
AI 是一门令人兴奋的科学,它研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。简单来说,就是让计算机或机器能像我们人类一样思考和学习的技术。 在小学课堂上,可以用学生能理解的语言来解释 AI。比如,先和学生互动,听听他们口中的 AI,再引出我们的概念。可以告诉学生,AI 就像一个聪明的机器人,它可以通过学习和分析大量的数据,来完成各种任务,例如识别图像、语音识别、翻译等。 虽然计算机已经很先进了,但有些任务我们并不知道明确的解法,例如从一个人的照片中来判断他/她的年龄。而 AI 对这种类型的任务感兴趣,它可以通过学习和分析大量的照片数据,来学会如何判断一个人的年龄。 总之,AI 是一种非常酷的技术,它可以帮助我们解决很多难题,让我们的生活变得更加便捷和有趣。
2024-07-09
解释一下大语言模型的幻觉
大型语言模型有时会产生所谓的“幻觉”。幻觉是指模型在生成文本时产生不准确、误导性或不相关信息的倾向。这种现象通常发生在模型试图填补其知识或理解上的空白时,尤其是在处理复杂、模糊或具有多义性的输入时。 幻觉的原因包括: 过度泛化:模型可能会过度泛化从训练数据中学到的模式,导致在新的或不常见的情境中产生不准确的信息。 缺乏更新信息:由于大型语言模型通常是基于截至特定时间点的数据集进行训练的,它们可能不具备最新的信息或事件更新。 错误的信息源:在训练过程中,模型可能会吸收不准确或误导性的信息,这些信息可能来源于训练数据中的错误或不准确的数据源。 对模糊或歧义输入的误解:当输入信息含糊不清或具有多种解释时,模型可能会生成与原始意图不符的响应。 为了连贯性牺牲准确性:在尝试生成流畅、连贯的文本时,模型有时可能会牺牲信息的准确性。 为了避免幻觉,用户在使用大型语言模型时应该保持警惕,特别是在处理关键决策或需要高度准确性的情境中。验证模型提供的信息,并从多个可靠来源进行交叉检查是非常重要的。此外,随着技术的进步,模型的设计和训练方法也在不断改进,以减少幻觉现象的发生。
2024-04-17
ldap和ad之间是什么关系
LDAP(轻型目录访问协议)是一种用于访问和管理目录服务的开放协议。AD(Active Directory)是微软基于 LDAP 协议开发的一种目录服务。 AD 利用了 LDAP 协议的特性来实现对网络资源和用户的集中管理、认证和授权等功能。可以说 AD 是基于 LDAP 协议构建的一个具体的、功能丰富的目录服务系统。 总的来说,LDAP 是一种通用的协议,而 AD 是基于 LDAP 协议的特定实现,并针对微软的环境进行了优化和扩展。
2024-11-12
ChatGLM3 及相关系列产品有哪些
2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。其中,智谱清言是基于 ChatGLM 大模型的产品。 智谱清言的特点包括:在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。总体更擅长专业能力,但代码能力还有优化空间,知识百科与其他第一梯队模型相比稍显不足。 其适合的应用场景相对广泛,根据 SuperCLUE 测评结果,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景。在较复杂推理应用上效果不错,在广告文案、文学写作方面也是很好的选择。
2024-11-04
用户体验设计与大模型的关系
用户体验设计与大模型密切相关。 在构建基于大模型的应用方面: 开发大模型应用复杂,涉及众多步骤和环节,包括框架选择、提示词设计等。 提示词的精心设计和调试至关重要,直接影响模型输出质量和应用效果。 构建有效的大型语言模型应用需要遵循一系列要点,如进行工程化、选择合适框架、了解业务需求、设计提示词、遵守安全和伦理标准、测试迭代、持续维护更新等。 在 AI 战场的发展趋势方面: 2023 年认为训练最好的模型就能吸引用户,但 2024 年大量消费者 AI 应用将通过提供最佳用户体验而非单纯提升模型性能来竞争,大模型可作为差异化优势之一,但老式护城河仍可能决定长期赢家。 关于大模型的道德观念: 大型语言模型本身不具有真正的道德观念或意识,它们是通过大量数据训练模拟语言统计规律的。 开发者和研究人员会采取多种方法确保模型输出符合社会道德和伦理标准,如数据清洗、算法设计、制定准则、保持透明度、用户反馈、持续监控、人工干预、教育和培训等,但这仍是复杂且持续的挑战。
2024-11-04
多模态AI是什么,和深度学习的关系
多模态 AI 是指能够处理和生成多种数据类型(如文本、图像、音频、视频等)交互的人工智能技术,从而能够提供更接近人类感知的场景。 多模态 AI 与深度学习有着密切的关系。在深度学习时期,深度神经网络等技术的发展为多模态 AI 提供了基础。当前,多模态 AI 是 AI 领域的前沿技术之一。 多模态 AI 具有以下特点和应用: 1. 能够无缝地处理和生成多种音频或视觉格式的内容,将交互扩展到超越语言的领域。 2. 像 GPT4、Character.AI 和 Meta 的 ImageBind 等模型已经能够处理和生成图像、音频等模态,但能力还比较基础,不过进展迅速。 3. 多模态模型可以为消费者提供更加引人入胜、连贯和全面的体验,使用户能够超越聊天界面进行互动。 4. 多模态与工具使用密切相关,能够使用设计给人类使用但没有自定义集成的工具。 5. 从长远来看,多模态(特别是与计算机视觉的集成)可以通过机器人、自动驾驶车辆等应用程序,将大语言模型扩展到物理现实中。
2024-10-28
claude和chatgpt是什么关系,哪个好用
Claude 和 ChatGPT 没有直接的关系。 Claude 是由 Anthropic 开发的语言模型,ChatGPT 是由 OpenAI 开发的。 关于哪个好用,这取决于具体的使用场景和个人需求。在一些情况下,Claude 可能因其某些特点而更适合某些用户,例如在阅读 PDF 和长文方面。而 ChatGPT 也有其优势,比如在输出内容品质上可能给人较好的感觉。 但需要注意的是,它们的性能和适用性会因用户的具体任务和期望而有所不同。
2024-10-27
智能体和工作流的关系是什么
智能体和工作流密切相关。工作流就像是一个可视化的拼图游戏,由多个小块块(节点)组成,如大语言模型 LLM、用户自己写的代码、做判断的逻辑等,这些小块块可以是工作流的基本单元。工作流有开始和结束的小块块,开始的小块块包含输入的信息,结束的小块块展示运行结果。不同小块块可能需要不同信息才能工作,包括引用前面小块块给出的信息和用户自己设定的信息。 在具体应用中,技能设定分为“智能体分析”和“智能体模板构建”等核心部分。依据这些技能点审视工作流程,流程前半部分用于执行智能体分析,后半部分用于实现智能体模板构建。示例与工作流程相呼应,具象了流程中的每一步工作内容,且能灵活适配和生成结构化提示词模板。 对于 Bot 智能体,其由不同的工作流组成,在不同情况下会根据用户输入调用不同工作流完成自动化任务。例如,用户在 Bot 中直接输入查询需求去抓取热点时,采用 hotspot_direct_output 工具;在特定复杂需求下,会调用相应的工具实现从简单到复杂的不同流程的自动化,以及多平台获取用户需求和发送结果。 总之,智能体的实现离不开工作流的合理编排和有效执行,工作流的设计要与智能体所需的技能相匹配,以确保任务的顺利完成。
2024-10-16