直达「 通往AGI之路 」飞书知识库 →
首页
AI 活动
AI 网站
AI 智能体
AI 提示词
与知识库对话
知识库精选
登录
首页
/
问答列表
/
问答详情
有没有推荐的AI的算法可以用于不同业务识别
回答
目前在不同业务识别中,常见且有效的 AI 算法包括:
决策树算法:易于理解和解释,能处理多种类型的数据。
随机森林算法:具有较高的准确性和稳定性。
支持向量机算法:在小样本、非线性问题上表现出色。
朴素贝叶斯算法:计算速度快,适用于大规模数据。
神经网络算法:特别是深度学习中的卷积神经网络和循环神经网络,在图像识别、语音识别等领域应用广泛。
具体选择哪种算法,需要根据您的业务特点、数据规模和质量、计算资源等因素综合考虑。
内容由 AI 大模型生成,请仔细甄别(powered by aily)
重新提问
其他人在问
如果借助AI开启2周岁女儿的绘本启蒙之旅
对于借助 AI 开启 2 周岁女儿的绘本启蒙之旅,目前知识库中没有相关的直接内容。但以下是一些可能的建议: 首先,可以利用 AI 生成简单、有趣、色彩鲜艳的绘本故事,内容可以是关于小动物、日常生活中的常见事物等,以吸引孩子的注意力。 其次,通过语音交互的 AI 工具,为孩子朗读绘本故事,培养孩子的听力和语言感知能力。 还可以借助具有互动功能的 AI 应用,让孩子在观看绘本的过程中进行一些简单的操作,增强参与感。 希望这些建议能对您有所帮助。
2024-12-21
小白怎么学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 此外,以下是一些关于 AI 技术原理的通俗易懂的内容: 1. 视频一主要回答了什么是 AI 大模型,原理是什么。 生成式 AI 生成的内容,叫做 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是利用有标签的训练数据学习输入和输出之间的映射关系,包括分类和回归。无监督学习是在学习的数据没有标签的情况下,算法自主发现规律,经典任务包括聚类。强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法。神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。对于生成式 AI,其中生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT 中 Transformer 是关键,Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-21
AI选股
以下是为您提供的关于 AI 选股的相关信息: 1. 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15): Zephyr AI:2024 年 3 月 13 日融资,融资金额 1.11 亿美元,轮次 A,主营 AI 药物发现和精准医疗。 Together AI:2024 年 3 月 13 日融资,融资金额 1.06 亿美元,轮次 A,估值 12 亿美元,主营 AI 基础设施和开源生成。 Glean:2024 年 2 月 27 日融资,融资金额 2.03 亿美元,轮次 D,估值 22 亿美元,主营 AI 驱动企业搜索。 Figure:2024 年 2 月 24 日融资,融资金额 6.75 亿美元,轮次 B,估值 27 亿美元,主营 AI 机器人。 Abridge:2024 年 2 月 23 日融资,融资金额 1.5 亿美元,轮次 C,估值 8.5 亿美元,主营 AI 医疗对话转录。 Recogni:2024 年 2 月 20 日融资,融资金额 1.02 亿美元,轮次 C,主营 AI 接口解决方案。 2. 2024 年 3 月科技变革与美股投资: AI 将引领新的服务模式,即“智能即服务”,重塑工作和生活,重新赋能芯片和云计算行业,创造新的投资机会,GPU 需求预计持续增长。 企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件。 科技巨头通过资本控制 AI 模型公司的趋势明显,如 OpenAI 与微软、Anthropic 与 Google 等的合作。 企业竞争策略主要集中在迅速成长为大型模型公司并寻找强大背书,或保持小规模专注盈利并灵活应对市场变化。 2024 年将是大模型争霸的一年,OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 是市场上受瞩目的公司。 3. 展望 2025,AI 行业的创新机会: 在 ToP 领域,峰瑞投资的冰鲸科技是一家 AI 智能硬件公司,为全球创作者和专业玩家设计创新的私有云产品,推出集成端侧 GPU 的旗舰产品——ZimaCube。 在 ToB 领域,AI 应用进入企业内部可从纵向的独立业务模块和横向的通用技能模块切入。2024 年 7 月,美国投资机构 A16z 发布文章探讨了人工智能在变革企业销售技术中的潜力,其中提到的多数产品符合上述特点。ToB 和 ToP 存在一定交集。
2024-12-21
openai 12天都有哪些内容
以下是 OpenAI 12 天相关的内容: 12 月 18 日: API 正式版:速度更快,成本降低 60%,支持视觉识别、函数调用、结构化输出等功能。 语音交互升级:引入 WebRTC 支持,12 行代码即可实现实时语音交互,音频处理费用降低 60%。 偏好微调功能:让 AI 回答更具个性化,企业 AI 准确率提升显著。 新增 Go 和 Java 工具包,简化 API 密钥申请流程。 12 月 12 日: 苹果设备深度集成 ChatGPT,可通过 Siri 实现文档总结、任务分配、节日创意等操作。 多平台无缝衔接:支持 iPhone、iPad 和 Mac,涵盖 Siri 集成、写作工具增强、视觉智能分析等多种应用场景。 实用场景:圣诞派对策划、PDF 总结、歌单生成、视觉智能评选毛衣创意等功能演示,体现全新交互体验。 12 月 5 日: OpenAI 近日宣布将举行为期 12 天的活动,期间每天直播展示新功能或工具。 DeepMind 发布了基础世界模型 Genie 2,可以通过一张图片生成可操作的 3D 环境,实现智能体的实时交互与行为预测。 真格基金投资副总裁 Monica 在其播客「OnBoard!」发布的最新一期对谈中,与在一线大模型机构有实际训练大语言模型(LLM)经验的研究员针对 OpenAI o1 模型进行了三个多小时的拆解与解读。强化学习如何给大语言模型带来新的逻辑推理能力?这种能力的来源、实现方式和未来潜力又是怎样的?o1 带来的「新范式」会对行业有怎样的影响?
2024-12-20
有没有能根据哼唱,出伴奏的AI
以下是一些能根据哼唱出伴奏的 AI 相关信息: 在音乐创作中,如果只有词和一小段自己哼唱的旋律,可以上传这段哼唱的旋律,让 AI 扩展出自己喜欢的风格,然后将这段音轨作为动机音轨继续创作。 对于已有简单录音小样,可以利用 REMIX 优化音质与编曲结构,并利用 AI 尝试不同曲风版本,找到最喜欢的风格,然后制作成核心音轨,进而完成全曲创作。 同时,在使用 AI 进行音乐相关处理时也存在一些问题和需要注意的地方: 检查乐谱时,主旋律基本能还原,但可能会把噪声识别成音符形成错误信息,需要具备乐理知识去修复。 重奏输出方面,修谱和重奏软件可以使用 中的 Muse Score,它支持多种常用音频编辑格式的导出和高清输出。 目前存在一些待解决的问题,如延长音部分可能会抢节奏,爵士乐中的临时升降号可能导致判断混乱,高音和低音的符点会相互影响,基础修谱可能导致旋律单调等。 在将 Midi 导出到 MP3 虚拟演奏文件时,可以直接导总谱或分轨导出,后期若想输出到某些音乐平台可能需要转码。还可以使用相关软件修改音色进行渲染。把文件丢给 AI 做二次创作时,可以根据具体情况选择完整小节或在中间掐断。
2024-12-20
2025年AI的大走向是什么
2025 年 AI 的大走向可能包括以下几个方面: 1. 大型基座模型能力的优化与提升:通过创新训练与推理技术,强化复杂推理和自我迭代能力,推动在科学研究、编程等高价值领域的应用,并围绕模型效率和运行成本进行优化,为广泛普及和商业化奠定基础。 2. 世界模型与物理世界融合的推进:构建具备空间智能的世界模型,使系统能够理解和模拟三维环境,并融入物理世界,推动机器人、自主驾驶和虚拟现实等领域发展,提升对环境的感知与推理能力以及执行任务的实际操作能力,为人机交互带来更多可能。 3. AI 的多模态融合:整合文本、图像、音频、视频、3D 等多模态数据,生成式 AI 将显著提升内容生成的多样性与质量,为创意产业、教育、娱乐等领域创造全新应用场景。 4. 数字营销方面:AI 技术将成为数字营销的核心,品牌应注重利用 AI 提升用户体验,预计全球 AI 在数字营销领域的市场规模将达到 1260 亿美元,采用 AI 技术的公司在广告点击率上提高 35%,广告成本减少 20%。 5. 行业发展:2025 年或将成为 AI 技术逐渐成熟、应用落地取得阶段性成果的关键节点,同时成为 AI 产业链“资产负债表”逐步修复的年份,标志着行业从高投入、低产出向商业化路径优化迈出重要一步。 6. 竞争格局:大语言模型供应商将各具特色,竞争加剧;AI 搜索引擎将成为杀手级应用,快速普及,颠覆传统搜索方式;不同领域的 AI 搜索引擎将出现,针对专业需求提供更精准的信息服务。
2024-12-20
ai算法种类
以下是一些常见的 AI 算法种类: 分类算法:如 Categorization Algorithms、Classification Model 等。 聚类方法:如 Cluster Resolution Feature Selection、ClusterBased Splitting、Clustering Methods 等。 动态规划:如 Dynamic Programming 。 超参数相关:如 Hyperparameter Opimization、Hyperparameters 。 图像相关:如 Image And Speech Recognition、Image Classification、Image Classifier、Image Recognition 。 其他:如 Combined Gradient、Dual Algorithm、Dual Problem 等。
2024-12-19
wifi和相机融合目标检测算法
图像融合是将两个或多个图像合成为一个新的图像,以获取比原始图像更全面和丰富的信息。可通过像素级融合、特征级融合和决策级融合等技术实现,在提高图像质量、增加信息量、遥感图像处理及计算机视觉和机器人技术中均有多种用途。 目标检测是计算机视觉领域的重要任务,旨在图像或视频中准确识别和定位特定对象。随着多模态数据的广泛应用,将不同模态信息融合能进一步提升目标检测的性能和鲁棒性。 图像融合和目标检测均是计算机视觉领域的重要技术,在多个领域有广泛应用前景和研究价值。 图像融合的大致原理是将多个不同图像合并成新图像以获得更准确、全面的信息,相关算法有小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。 目标检测的大致原理是在图像中找到特定目标并进行定位和识别,相关算法有基于深度学习的目标检测算法(如 RCNN、Fast RCNN、Faster RCNN、YOLO、SSD 等)、基于传统计算机视觉技术的目标检测算法(如 HOG、SIFT、SURF 等)。
2024-12-10
将直流电压信号从时域转化到频域,有什么算法可以实现?
将直流电压信号从时域转化到频域,可以采用以下算法: 1. 傅里叶变换:原始的音频等信号很难提取特征,需要进行傅里叶变换将时域信号转换到频域进行分析。音频进行傅里叶变换后,结果为复数,复数的绝对值就是幅度谱,而复数的实部与虚部之间形成的角度就是相位谱。经过傅里叶变换之后获得的幅度谱特征明显,可以清楚看到基频和对应的谐波。基频一般是声带的频率,而谐波则是声音经过声道、口腔、鼻腔等器官后产生的共振频率,且频率是基频的整数倍。音频一般采用的是短时傅里叶变化,因此需要将音频分割成帧(每帧 20ms~50ms),再进行傅里叶变换,帧与帧之间是有重叠的。 2. GriffinLim 算法:GriffinLim 将幅度谱恢复为原始波形,但是相比原始波形,幅度谱缺失了原始相位谱信息。GriffinLim 算法利用两帧之间有重叠部分的这个约束重构信号,因此如果使用 GriffinLim 算法还原音频信号,就需要尽量保证两帧之间重叠越多越好,一般帧移为每一帧长度的 25%左右,也就是帧之间重叠 75%为宜。其算法实现较为简单,整体是一种迭代算法,迭代过程如下: 随机初始化一个相位谱; 用相位谱和已知的幅度谱经过逆短时傅里叶变换(ISTFT)合成新语音; 对合成的语音做短时傅里叶变换,得到新的幅度谱和相位谱; 丢弃新的幅度谱,用相位谱和已知的幅度谱合成语音,如此重复,直至达到设定的迭代轮数。 此外,对于语音信号的处理,还可以采用倒谱分析实现解卷积处理。倒谱分析,又称为同态滤波,采用时频变换,得到对数功率谱,再进行逆变换,分析出倒谱域的倒谱系数。同态滤波的处理过程如下: 傅里叶变换。将时域的卷积信号转换为频域的乘积信号:${\\rm DFT}=X$ 对数运算。将乘积信号转换为加性信号。
2024-11-25
如果想学习ai,作为ai产品经理,需要ai底层的算法掌握到什么程度
作为 AI 产品经理,对 AI 底层算法的掌握程度需要达到以下几个方面: 1. 理解产品核心技术:了解基本的机器学习算法原理,以便做出更合理的产品决策。 2. 与技术团队有效沟通:掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性:在产品规划阶段,能够准确判断某些功能的技术可行性。 4. 把握产品发展方向:了解算法前沿,更好地把握产品未来的发展趋势。 5. 提升产品竞争力:发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力:掌握相关算法知识,提升数据分析能力。 同时,如果希望在 AI 领域继续精进,还需要了解以下基础内容: AI 背景知识: 基础理论:清楚人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 评估和调优: 性能评估:知道如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等的基本结构。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-05
介绍一下视觉算法产品,以及该方向产品经理需要做的内容,以及面试可能会考察的知识点
目前知识库中暂时没有关于视觉算法产品、该方向产品经理工作内容以及面试考察知识点的相关信息。但一般来说,视觉算法产品是利用计算机视觉技术来实现特定功能的产品,例如图像识别、目标检测、视频分析等。 视觉算法产品经理需要做的工作内容可能包括: 1. 市场调研与需求分析:了解市场需求、竞争对手情况,挖掘潜在的用户需求。 2. 产品规划与定义:明确产品的目标、功能、性能指标等。 3. 算法选型与整合:根据需求选择合适的视觉算法,并进行整合和优化。 4. 项目管理与推进:协调开发团队、测试团队等,确保项目按时交付。 5. 与客户沟通:收集反馈,优化产品。 在面试视觉算法产品经理时,可能会考察以下知识点: 1. 计算机视觉基础知识,如常见的算法和模型。 2. 对相关行业和市场的了解。 3. 产品管理的方法和流程。 4. 项目管理经验和能力。 5. 沟通协调和团队合作能力。
2024-11-01
好用简单的算法有哪些?
以下为您介绍一种在自制 2048 小游戏中应用的简单算法: 作者吵爷前阵子写了 BP 算法入门,因公式多遭批评,近期学习 Pygame 制作 55 的 2048 小游戏。偶然产生让 AI 玩的想法,简单与 GPT 交流后,带入一些简单算法使 AI 能运行游戏,虽性能不如人,但能直观感受算法对模型性能的提升,对初学者比看数学公式更友好。目前仅在基础逻辑做优化,后续会继续改进。未用到高级算法,但此案例可作为简单算法应用的参考。
2024-10-31
有没有视觉识别的模型
以下是一些视觉识别的模型: 1. siglipso400mpatch14384:由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容(如物体、场景、颜色、纹理等)、将这些视觉信息编码成一组特征向量。可在 ComfyUI\models\clip 中下载,若因环境问题,也可在网盘中下载。下载好后,目录的文件包括 image_adapter.pt(适配器),其连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征使其适合语言模型处理、进行一些特定任务的优化或微调(如图片到文字)。可通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,若该文件夹不存在,新建一个。 2. Comfyui IPAdapter 中的图像模型: ,下载并重命名。 ,下载并重命名。下载后放入/ComfyUI/models/clip_vision。需要注意的是,clip vison 只能编码 224x224 大小的正方形图片,后续使用时若图片不是正方形,需进行裁剪。
2024-12-19
我想找关于视觉识别相关的api
很抱歉,目前知识库中没有关于视觉识别相关 API 的具体信息。但您可以通过以下途径寻找: 1. 一些知名的云服务提供商,如阿里云、腾讯云、百度云等,它们通常提供视觉识别相关的 API 服务。 2. 专门的人工智能和计算机视觉技术公司的官方网站,可能会有相关的 API 介绍和使用文档。 3. 技术社区和开发者论坛,例如 CSDN、掘金等,您可以在这些地方与其他开发者交流,获取相关的推荐和经验分享。
2024-12-19
音乐识别
以下是一些与音乐识别相关的人工智能音频初创公司: :人工智能驱动的音乐相似性搜索和自动标记,适合以音乐发现为业务的人。 :用于音频和声音目录的直观音频搜索引擎。 :发现将音乐从歌曲和播放列表束缚中解放出来的艺术家。 :每次播放公平报酬。 (被 SoundCloud 收购):使用人工智能帮助自动化工作流程。 (被 Spotify 收购):构建人工智能驱动的音乐应用程序。 :用于音乐标记和相似性搜索的人工智能。 (被 SongTradr 收购):B2B AI 音乐元数据服务,例如自动标记、元数据丰富和语义搜索。 :基于歌词的音乐发现、推荐和搜索的算法和工具。 :寻找最好的音乐,讲述更好的故事,扩大听众。人工智能驱动的引擎可帮助找到正确的配乐。 :音乐识别和版权合规性。音频指纹、大规模翻唱识别。 :AI 音乐分析,包括歌词摘要、主题提取和音乐特征。 此外,关于 GPT4 在音乐方面的情况:其训练数据中包含以 ABC 符号表示的音乐信息。当被指示生成简短曲调时,能够生成有效的 ABC 符号,有清晰结构、一致节拍和音符模式,但似乎未获得理解和声的技能。用音乐术语描述曲调时,能给出结构的技术描述,但和声和和弦描述与音符不一致。能按指示改写旋律,如将上升序列改为下降序列,将曲调转换为二重唱并添加低音声部,但两个声部之间缺乏和声。总之,能生成有效 ABC 符号曲调并解释和操纵结构,但无法产生非平凡形式的和声,也无法以 ABC 符号产生知名曲调或识别这些曲调。
2024-12-18
哪个ai可以识别心电图并给出诊断
以下是一些可以识别心电图并给出诊断的 AI 相关产品: 1. PM Cardio:这是一款由人工智能驱动的、获得 IIb 类医疗设备认证的产品,可以帮助您像专业心脏病学家一样准确诊断和治疗 38 种心血管疾病。 2. BeamO:四合一生命监护仪,整合了数字听诊器、心电图、血氧仪和体温计。心房颤动检测,心率和体温通知,血氧饱和度监测。一分钟内完成健康检查,数据可由医生或 AI 解读。
2024-12-16
支持识别图片内容物的ai软件
以下是一些支持识别图片内容物的 AI 软件: 1. PixelLLM Google 的新视觉语言模型: 能提供对图片内容的详细描述及每个词汇的具体位置。 可以识别图片中的物体,并精确指出其位置。 特别适用于图像和文字紧密结合的任务。 相关链接:https://jerryxu.net/PixelLLM/ 、https://arxiv.org/abs/2312.09237 2. EmbedAI 定制您自己的 ChatGPT: 支持使用各种数据源训练 ChatGPT,包括文件、网站、Notion 文档和 YouTube。 应用范围广泛,如智能客服、个性化学习助手等。 无代码平台,适合非编程背景用户。 相关链接:https://thesamur.ai 、https://x.com/xiaohuggg/status/1736336780876742873?s=20 此外,还有用于判断一张图片是否为 AI 生成的网站,如 ILLUMINARTY(https://app.illuminarty.ai/)。但在测试过程中可能存在一些误判情况。
2024-12-14
支持识别图片内容物的ai软件
以下为一些支持识别图片内容物的 AI 软件: 1. PixelLLM Google 的新视觉语言模型: 能提供对图片内容的详细描述及每个词汇的具体位置。 可以识别图片中的物体,并精确指出其位置。 特别适用于图像和文字紧密结合的任务。 相关链接:https://jerryxu.net/PixelLLM/ 、https://arxiv.org/abs/2312.09237 2. EmbedAI 支持使用各种数据源训练 ChatGPT,包括文件、网站、Notion 文档和 YouTube。应用范围广泛,如智能客服、个性化学习助手等。无代码平台,适合非编程背景用户。 相关链接:https://thesamur.ai 、https://x.com/xiaohuggg/status/1736336780876742873?s=20 此外,还有用于鉴别图片是否为 AI 生成的网站,如 ILLUMINARTY(https://app.illuminarty.ai/),但在测试过程中可能存在一些误判情况。
2024-12-14
有没有免费是数字人工具
以下是一些免费的数字人工具: 1. HEYGEN: 优点:人物灵活,五官自然,视频生成很快。 缺点:中文的人声选择较少。 使用方法: 点击网址注册后,进入数字人制作,选择Photo Avatar上传自己的照片。 上传后效果如图所示,My Avatar处显示上传的照片。 点开大图后,点击Create with AI Studio,进入数字人制作。 写上视频文案并选择配音音色,也可以自行上传音频。 最后点击Submit,就可以得到一段数字人视频。 2. DID: 优点:制作简单,人物灵活。 缺点:为了防止侵权,免费版下载后有水印。 使用方法: 点击上面的网址,点击右上角的Create vedio。 选择人物形象,可以点击ADD添加照片,或者使用DID给出的人物形象。 配音时,可以选择提供文字选择音色,或者直接上传一段音频。 最后,点击Generate vedio就可以生成一段视频。 打开自己生成的视频,可以下载或者直接分享给朋友。 3. KreadoAI: 优点:免费(对于普通娱乐玩家很重要),功能齐全。 缺点:音色很AI。 使用方法: 点击上面的网址,注册后获得120免费k币,选择“照片数字人口播”的功能。 点击开始创作,选择自定义照片。 配音时,可以选择提供文字选择音色,或者直接上传一段音频。 打开绿幕按钮,点击背景,可以添加背景图。 最后,点击生成视频。 此外,还有一些常用于营销领域且可制作数字人的工具,如Synthesia、HeyGen等。更多数字人工具请访问相关网站查看。在使用这些工具时,请确保遵守相关的使用条款和隐私政策,并注意保持对生成内容的版权和伦理责任。
2024-12-21
目前,有没有能替代My GPT这种功能的外国ai?
目前,在国外有一些能够替代 My GPT 功能的 AI 产品。例如,ChatGPT 是由 OpenAI 开发的知名 AI 助手,它在全球范围内具有广泛的影响力。ChatGPT 具有开创性,是首批向公众开放的大规模商用 AI 对话系统之一,改变了人们对 AI 的认知,为技术发展指明了方向。其界面简洁直观,交互流畅自然,降低了使用门槛。从技术角度看,背后的 GPT 系列模型性能和能力处于行业领先地位。但它也有局限性,且对于国内用户可能存在网络连接等问题。 此外,Google 的 Bard 也是一种选择。在写代码领域,GitHub 的 Copilot 有一些替代品,如 Tabnine、Codeium、Amazon CodeWhisperer、SourceGraph Cody、Tabby、fauxpilot/fauxpilot 等。 Meta 在 2023 年 2 月开源了 LLaMA 1,并在 7 月发布了进阶的 Llama 2 且允许商用,此举推进了大模型的发展。
2024-12-20
在WAY TO AGI 知识库有没有适合老师备课用的AI?请推荐
以下是为老师备课推荐的一些 AI 相关内容: B 站 up 主 Nally 的课程,免费且每节 15 分钟,内容很棒。 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。 16 号晚上中老师将带大家动手操作炼丹,炼丹可能需要准备一些图,后续会让中老师提前发布内容方便大家准备。 工程生产有很多可控性,AI 视频相关内容丰富,文档会列出工具优劣及操作。很多工具每天有免费积分,共学课程基本不用花钱。每周有 AI 视频挑战赛。 有 AI 音乐的流派和 prompt 电子书,格林同学做了翻译。 此外,还有以下相关信息: 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 11 月 2 号左右将开展博物馆奇妙日主题活动,在各地博物馆进行新创意。 关于 AI 知识库及学习路径的介绍,包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。
2024-12-20
有没有AI换头工具
以下是一些关于 AI 换头工具的信息: 实战方法: 打开快捷工具中的 JupyterLab,通过终端启动 facefusion。具体操作包括:点击顶部的“+”号选项卡打开新的终端窗口,在终端区域输入命令查看文件列表(输入“ls”并回车)、进入 facefusion 目录(输入“cd facefusion 并回车”)、启动 facefusion(输入“python./run.py executionproviders cuda cpu”)。注意后面的参数“executionproviders cuda cpu”非常重要,不加“cuda”默认不使用 GPU 能力,推理会很慢。 打开 facefusion 软件,返回实例列表,点击自定义服务按钮,通过新的浏览器窗口访问其 UI 界面,上传准备好的图片、视频,在右侧可看到预览效果,点击开始按钮执行换脸处理,处理完成后在输出位置下载处理后的视频。 辅助工具: Face Swapper:AI 换脸工具,可一次替换多张脸,支持 JPG、PNG、WEBP 格式,最大 1024px 分辨率,应用场景包括时尚、美容、电影、媒体、人力资源。传送门: 开源免费的解决方案 facefusion: 开源地址:https://github.com/facefusion/facefusion 本机解决方案:需要 Python 环境及安装视频解码器等多个依赖软件,对编程知识有一定要求,且运行推理计算速度依赖 GPU,本地计算机若无 GPU 或 GPU 显存较小,执行速度慢,不推荐本地化安装。 云服务解决方案:可利用云厂商如阿里云的 PAI 和 AutoDL 已提供的大模型运行环境和计算能力,如选择 AutoDL,其官网是:https://www.autodl.com/home 。注册后在算力市场中选择能接受价格的算力服务器,建议选取 GPU 配置更高的算力设备。在算法社区查找 facefusion 镜像,点击右侧合适的镜像创建并启动实例。
2024-12-18