Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

文生图模型排行

Answer

以下是一些常见的文生图模型排行及相关介绍:

  1. Kolors:最近开源的文生图模型中表现出色。从技术报告来看,有更强的中文文本编码器、机造的高质量文本描述、人标的高质量图片、强大的中文渲染能力,以及巧妙的 noise schedule 解决高分辨率图加噪不彻底的问题。实测效果不错,体现了快手的技术实力。
  2. 基于 Diffusion Model 的代表模型:
    • Stable Diffusion
    • Midjourney
    • GLIDE
    • DALL-E 2
    • DALL-E 3 发展阶段为 2022 年至今,受益于开源模式和参数量较少,研究成本相对低,在学术界和工业界的传播和迭代速度快。其原理是通过连续添加高斯噪声来破坏训练数据,然后通过消除噪声来学习如何重建数据。
  3. 基于自回归模型(Auto-regressive Model)的代表模型:
    • DALL-E
    • CogView
    • CogView2
    • Parti
    • CM3leon 发展阶段为 2020 年至今,囿于闭源模式和参数量较大,研究成本高,迭代速度慢于 Diffusion Model。其原理是 Encoder 将文本转化成 token,经特征融合后,由训练好的模型 Decoder 输出图像。
  4. Red_Panda:文生图模型黑马,霸榜 Hugging Face,超越了 Midjourney、Flux 等。
Content generated by AI large model, please carefully verify (powered by aily)

References

模型能力简介

Kolors可以说是最近开源的文生图模型中最给力的一个了。从技术报告来看,改进也是很全面的,更强的中文文本编码器、机造的高质量文本描述、人标的高质量图片、强大的中文渲染能力,以及巧妙的noise schedule解决高分辨率图加噪不彻底的问题。可以说是目前主流的文生图训练技巧都用上了,实测效果也确实很不错。在看到Kling视频生成的强大表现,不得不让人赞叹快手的技术实力。

质朴发言:一文纵览文生图/文生视频技术发展路径与应用场景|Z 研究第 1 期

基于Diffusion Model3.1.发展阶段:2022年至今,受益于开源模式和参数量较少,研究成本相对低,在学术界和工业界的传播和迭代速度快3.2.原理:Diffusion Model通过连续添加高斯噪声来破坏训练数据,然后通过消除噪声来学习如何重建数据3.3.代表模型:Stable Diffusion、Midjourney、GLIDE、DALL-E 2、DALL-E 3基于自回归模型(Auto-regressive Model)4.1.发展阶段:2020年至今,囿于闭源模式和参数量较大,研究成本高,迭代速度慢于Diffusion Model4.2.原理:自回归模型Encoder将文本转化成token,经特征融合后,由训练好的模型Decoder输出图像4.3.代表模型:DALL-E、CogView、CogView2、Parti、CM3leon

10月盘点:AI 行业大事记

文生图模型黑马Red_Panda霸榜Hugging Face,把一众老前辈Midjourney、Flux全部踩在脚下。[报道@机器之心](https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650941110&idx=2&sn=5115eccaeb0fc9158b4f5d75223089a7&scene=21#wechat_redirect)

Others are asking
DeepSeek可以文生图吗
DeepSeek 可以文生图。 DeepSeek 深夜发布的大一统模型 JanusPro 将图像理解和生成统一在一个模型中。全新的 Emu3 仅通过预测下一个 token 这一建模范式进行训练,可完成文本、图像、视频三种模态数据的理解和生成。Emu3 支持高质量文生图,支持灵活的分辨率和风格。 JanusPro7B 远好于 Janus,更稳定,提示词更短。JanusPro 是一个统一理解和生成多模态语言模型(MLLM),它将多模态理解和生成的视觉编码解耦。 此外,DeepSeek 开源的多模态模型 JanusPro 寓意古罗马双面神雅努斯,既能进行视觉理解,也能生成图像。与 DALLE 3 相比,JanusPro 在参数上领先,并具备图像识别、地标识别等多种能力。该模型通过更优化的训练策略、更海量的数据和更大规模的参数(70 亿)实现了更强的智能表现。
2025-02-05
文生视频的 AI 能力
以下是关于文字生成视频的 AI 能力的相关信息: 文字生成视频的 AI 产品有: 1. Pika:擅长动画制作,支持视频编辑。 2. SVD:可在 Stable Diffusion 图片基础上直接生成视频,是 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 (内容由 AI 大模型生成,请仔细甄别) 对于视频模型的评估,可从以下方面全面评估 AI 视频生成模型的各种能力: |测试类型|提示词(Prompt)| ||| |生成质量|“A highresolution 4K video of a sunset over the ocean with smooth transitions.”| |生成速度|“A short 10second clip of a running dog in a park.”| |一致性|“A person walking from left to right across the screen with consistent motion and background.”| |多样性|“A fantasy world with dragons flying in the sky and wizards casting spells.”| |可控性|“Generate a video of a beach scene with a setting sun and seagulls flying,with the ability to change the weather from sunny to cloudy.”| |音频生成|“A video of a thunderstorm with synchronized sound effects of thunder and rain.”| |界面友好度|“Test the user interface by generating a video of a mountain landscape with easytouse controls for adjusting the time of day and weather conditions.”| |可定制性|“Create a video of a city street with customizable options for the number of people,types of vehicles,and time of day.”| |计算资源|“Generate a 30second video of a busy market scene and measure the CPU,GPU,and memory usage.”| |运行成本|“Produce a 2minute educational video on the water cycle,evaluating the cost efficiency for longer videos.”| |错误处理|“Generate a video with an incomplete prompt to test how the model handles missing information.”| OpenAI 发布的首款文生视频模型 Sora 具有强大的能力,不仅能根据文字指令创造逼真且充满想象力的场景,还能生成长达 1 分钟的超长视频,且一镜到底。在视频中的女主角、背景人物等方面都达到了惊人的一致性,各种镜头随意切换,人物保持了神一般的稳定性。相比之下,Runway Gen 2、Pika 等 AI 视频工具在几秒内的连贯性方面还有待突破。
2025-02-05
文生图
以下是关于文生图的相关知识: 1. 简明操作流程: 定主题:明确生成图片的主题、风格和要表达的信息。 选择基础模型 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 ControlNet:可控制图片中特定的图像,如人物姿态、特定文字等,属于高阶技能。 局部重绘:下篇再教。 设置 VAE:选择 840000 即可。 Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写要避免产生的内容,单词和短语组合并用英文半角逗号隔开。 采样算法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 采样次数:根据采样器特征,选 DPM++2M Karras 时在 30 40 之间。 尺寸:根据喜好和需求选择。 2. 提示词: Stable Diffusion 的生成方式主要分为文生图和图生图两种,文生图仅通过正反向词汇描述发送指令。 文本描述分为内容型提示词和标准化提示词,内容型提示词用于描述想要的画面,如“1 个女孩,黑发,长发,校服,向上看,短袖,粉红色的花,户外,白天,蓝色的天空,云,阳光,上身,侧面”。 采样迭代步数通常控制在 20 40 之间,采样方法常用的有 Euler a、DPM++2S a Karras、DPM++2M Karras、DPM++SDE Karras、DDIM 等,有的模型有指定算法,搭配更好用。 比例设置为 800:400,尺寸并非越大越好,模型练图基本按 512x512 框架,可点选高清修复放大图像倍率。 3. 文生图工具: DALL·E:OpenAI 推出,可根据文本描述生成逼真图片。 StableDiffusion:开源,能生成高质量图片,支持多种模型和算法。 MidJourney:图像生成效果好,界面设计用户友好,在创意设计人群中流行。 在 WaytoAGI 网站(https://www.waytoagi.com/category/104 )可查看更多文生图工具。
2025-02-02
文生图如何提高字在图中的准确率
要提高文生图中字在图中的准确率,可以从以下几个方面入手: 1. 数据准备: 对于中文文字的生成,Kolors从两个方面准备数据。一是选择 50000 个最常用的汉字,机造生成了一个千万级的中文文字图文对数据集,但机造数据真实性不足。二是使用 OCR 和 MLLM 生成海报、场景文字等真实中文文字数据集,大概有百万量级。 Hugging 和英特尔发布了提高文生图模型空间一致性的方案,包括一个详细标注了空间关系的 600 万张图片的数据集,模型和数据集都会开源。 2. 模型能力: DALLE 3 和 SD3 已经有了很强的英文文字生成能力,但目前还未有模型具有中文文字的生成能力。中文文字的生成存在困难,一是中文汉字的集合大且纹理结构复杂,二是缺少中文文字的图文对数据。 作者观察到,使用机造数据结合高质量真实数据后,中文文字生成能力的真实性大大提升,而且即使是真实数据中不存在的汉字的真实性也得到了提升。 3. 训练方法: 在包含大量物体的图像上进行训练,可以显著提高图像的空间一致性。 此外,在写文生图的提示词时,通常的描述逻辑是这样的:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。通过这些详细的提示词,能更精确地控制绘图。对于新手而言,还有一些功能型辅助网站来帮我们书写提示词,比如:http://www.atoolbox.net/ 、https://ai.dawnmark.cn/ 。还可以去 C 站(https://civitai.com/)里面抄作业。但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会截然不同。
2025-01-29
文生视频哪个网站最好,免费的
以下是一些免费的文生视频网站推荐: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。网址:https://pika.art/ https://discord.gg/pika 。 2. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 3. Hidreamai(国内,有免费额度):https://hidreamai.com//AiVideo 支持文生视频、图生视频,提示词使用中文、英文都可以,文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。 4. ETNA(国内):https://etna.7volcanoes.com/ 是一款由七火山科技开发的文生视频 AI 模型,它可以根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8~15 秒,画质可达到 4K,最高 38402160,画面细腻逼真,帧率 60fps,支持中文,时空理解。 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 。 内容由 AI 大模型生成,请仔细甄别。
2025-01-26
现在有哪些开源的文生图大模型?
以下是一些开源的文生图大模型: Kolors: 2024 年 7 月 6 日开源,基于数十亿图文对进行训练,支持 256 的上下文 token 数,支持中英双语。技术细节参考 。 已支持 Diffusers,使用方式可参考 。 支持了 。 支持了 。 关于 Kolors 模型的教学视频: ,作者:BlueBomm 。 ,作者:AI 算法工程师 01 。 ,作者:峰上智行 。 ,作者:设计师学 Ai 。 Kolors 模型能力总结:改进全面,有更强的中文文本编码器、机造的高质量文本描述、人标的高质量图片、强大的中文渲染能力,以及巧妙的 noise schedule 解决高分辨率图加噪不彻底的问题。实测效果很不错,在看到 Kling 视频生成的强大表现,能体现快手的技术实力。
2025-01-24
2024 AI工具排行榜
以下是 2024 年部分 AI 工具的相关信息: 开发者工具: 23 年 12 月至 24 年 3 月的访问量排行榜中,非大厂的 Top1 公司是 Langchain,其 3 月 PV 为 356 万,单 PV 价值为 56.18 美元。 赛道方面,天花板潜力 TAM 为 120 亿美元,总体趋势平稳增长,月平均增速为 82 万 PV/月,原生产品占比高。 竞争方面,Top1 占 19%,Top3 占 54%,马太效应弱,网络效应强,大厂已入局,技术门槛中。 教育工具: 23 年 12 月至 24 年 3 月的访问量排行榜中,非大厂的 Top1 公司是 Quizlet,其 3 月 PV 为 1.3 亿。 赛道方面,天花板潜力 TAM 约为 30 亿,总体趋势快速增长,月平均增速为 1793 万 PV/月,原生产品占比低。 竞争方面,Top1 占 45%,Top3 占 76%,马太效应弱,网络效应弱,大厂未入局,技术门槛中。 此外,在展望 2025 时,AI 行业的创新机会方面,2024 年 9 月 OpenAI 发布了新一代语言模型 o1,业界推测其采用了全新的训练与推理方案,结合强化学习技术,显著增强了推理能力,可能借鉴了下围棋的 AlphaGo Zero 的技术思路。
2025-01-26
文生图模型打分的排行榜
以下是关于文生图模型打分的排行榜相关信息: SuperCLUEImage 测评基准首次公布,DALLE 3 以 76.94 分高居榜首,显示其在图像生成质量、多样性和文本一致性方面的卓越表现。百度文心一格和 vivo 的 BlueLMArt 位列国内前列,但与国际领先模型仍有差距。 在包含人工评估、机器评估的全面评测中,Kolors 具有非常有竞争力的表现,达到业界领先水平。构建了包含 14 种垂类、12 个挑战项、总数量为一千多个 prompt 的文生图评估集 KolorsPrompts。 人工评测方面,邀请了 50 个具有图像领域知识的专业评估人员对不同模型的生成结果进行对比评估,衡量维度为画面质量、图文相关性、整体满意度三个方面。Kolors 在整体满意度方面处于最优水平,其中画面质量显著领先其他模型。具体平均分如下: AdobeFirefly:整体满意度平均分 3.03,画面质量平均分 3.46,图文相关性平均分 3.84。 Stable Diffusion 3:整体满意度平均分 3.26,画面质量平均分 3.5,图文相关性平均分 4.2。 DALLE 3:整体满意度平均分 3.32,画面质量平均分 3.54,图文相关性平均分 4.22。 Midjourneyv5:整体满意度平均分 3.32,画面质量平均分 3.68,图文相关性平均分 4.02。 Playgroundv2.5:整体满意度平均分 3.37,画面质量平均分 3.73,图文相关性平均分 4.04。 Midjourneyv6:整体满意度平均分 3.58,画面质量平均分 3.92,图文相关性平均分 4.18。 Kolors:整体满意度平均分 3.59,画面质量平均分 3.99,图文相关性平均分 4.17。所有模型结果取自 2024.04 的产品版本。
2025-01-07
中国的国产ai排行榜
以下是关于中国国产 AI 排行榜的相关信息: 根据《2024 年度 AI 十大趋势报告》,在 APP 端,截至 2024 年 10 月,共 56 款产品的历史下载量超百万,8 款产品历史下载量超千万,夸克和豆包的历史总下载量已过亿。从单月新增来看,夸克、豆包和 Kimi 智能助手月增长可达到千万级,10 款产品可达百万级;DAU 方面,夸克 DAU 超过 2600 万,豆包、Kimi、天天跳绳和文小言 DAU 超百万;用户粘性方面,夸克和叨叨三日留存率超过 30%。 在 Web 端,AI 智能助手赛道外的所有赛道都基本处于停滞状态,用户规模方面,月总访问量超千万的共 7 款产品,包括夸克、腾讯文档、百度文库、Kimi 智能助手、文心一言、豆包和通义。在用户活跃度上,共 3 款产品——夸克、Notion 和百度文库的 MAU 超过千万,19 款产品 MAU 超过百万。仅有 14 款产品人均每月访问超过 5 次,13 款产品平均访问时长超过 10 分钟。 9 月的 AI 智库月度榜单中,部分产品如美趣 AI、说得相机提词器、AI 智能写作、创客贴 AI、360AI 搜索、图趣 AI、Molica AI、文案宝等在列,同时还有开拍、妙笔工坊、TalkAI 练口语、美图设计室、秘塔 AI 搜索、X Eva、快问 AI、我在 AI 等产品。
2024-12-29
目前ai工具排行榜
以下是一些目前常见的 AI 工具排行榜: 1. 创作方面: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 图片处理:DallE、Leonardo、BlueWillow、Midjourney 版权写作:Rytr、Copy AI、Wordtune、Writesonic 设计:Canva、Clipdrop、Designify、Microsoft Designer 网站搭建:10Web、Framer、Hostinger、Landingsite 视频处理:Klap、Opus、Invideo、Heygen 音频处理:Murf、LovoAI、Resemble、Eleven Labs SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope Logo 设计:Looka、LogoAI、Brandmark、Logomaster 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 自动化工具:Make、Zapier、Bardeen、Postman 市场营销 2. 访问量较大的工具: ChatGPT 以 140 亿次访问量领先,占分析流量的 60%以上。 Character AI 排名第二,访问量达到 38 亿次。 QuillBot 访问量达到 11 亿次。 过去一年,人工智能行业平均每月访问量为 20 亿次,过去 6 个月激增至 33 亿次。 分析的 50 个人工智能工具经历了 10.7 倍的增长率,平均每月访问量增加 2.363 亿次。 ChatGPT、Character AI 和 Google Bard 的净流量分别增长了 18 亿次、4.634 亿次和 6800 万次访问量。 Craiyon、MidJourney 和 Quillbot 在此期间面临最大的流量下降。 美国贡献了 55 亿人次访问量,占总访问量的 22.62%,而欧洲国家合计贡献了 39 亿人次访问量。 AI 聊天机器人工具最受欢迎,访问量达到 191 亿次。 超过 63%的 AI 工具用户通过移动设备访问。 性别数据揭示了一种差异:69.5%是男性用户,而 30.5%是女性用户。
2024-12-19
目前中国内地AI智能聊天应用排行榜
以下是中国内地部分 AI 智能聊天应用的排行榜信息: 移动应用榜单: ChatGPT 在移动领域占据榜首,月活跃用户数大约是排名紧随其后第二名微软 Edge 和第三名 Photomath 的 2.5 倍。 移动应用前五强还包括微软基于 AI 技术全新打造的搜索引擎 Bing,以及照片美化和虚拟形象制作工具 Remini。 有五家 AI 公司实现“双线作战”,其网页端、移动端应用双双跻身前 50 强榜单,包括 ChatGPT、Character.AI、chatbot 平台 Poe,以及图片编辑应用 Photoroom、Pixelcut。 国内月活榜(11 月): 绘影字幕:视频编辑,网址 huiyingzimu.com,活跃用户 9 万人,环比变化 0.2476,所属公司蓝色脉动。 360 智脑 Chat:原生聊天机器人,网址 chat.360.com,活跃用户 9 万人,环比变化 5.5675,所属公司 360。 阿里通义听悟:原生效率工具,网址 tingwu.aliyun.com,活跃用户 9 万人,环比变化 0.0561,所属公司阿里巴巴。 Reecho 睿声:原生文本转声音,网址 reecho.cn,活跃用户 9 万人。 GitMind 思乎:功能思维导图,网址 gitmind.cn,活跃用户 8 万人,环比变化 0.1791,所属公司网旭科技。 AI 改图神器:功能图片生成,网址 img.logosc.cn,活跃用户 8 万人,环比变化 0.011,所属公司个人开发者。 百川智能:原生聊天机器人,网址 baichuanai.com,活跃用户 8 万人,环比变化 0.1059。 钉钉宜搭:功能智能体,网址 aliwork.com,活跃用户 8 万人,环比变化 0.2724,所属公司阿里巴巴。 360 智图:功能图片编辑,网址 pic.360.com,活跃用户 8 万人,环比变化 0.434。 给小白的聊天对话类 AI 产品推荐: Kimi:具有超长上下文能力,最初支持 20 万字上下文,现已提升到 200 万字,适合处理长文本或大量信息任务,但文字生成和语义理解、文字生成质量方面可能不如国内其他产品,且不支持用户自定义智能体。 智谱清言:背后技术源自清华大学研发团队的科研成果转化,模型质量出色,以 ChatGPT 为对标打造用户体验,是国内首批开放智能体应用的 AI 公司之一,在逻辑推理和处理复杂提示词方面表现优势。
2024-12-13
文生图模型性能排行
以下是一些文生图模型的性能排行相关信息: Kolors 是最近开源的文生图模型中表现出色的一个。它具有更强的中文文本编码器、高质量的文本描述、人标的高质量图片、强大的中文渲染能力以及巧妙解决高分辨率图加噪问题的 noise schedule,实测效果不错。 PIKA1.0 是一个全新的模型,文生视频和文生图的质量都有大幅度提升。在文生图方面稳定得令人惊讶,3D 和 2D 的动画效果出色。 为全面比较 Kolors 与其他模型的生成能力,构建了包含人工评估、机器评估的全面评测内容。在 KolorsPrompts 评估集中,Kolors 在整体满意度方面处于最优水平,其中画面质量显著领先其他模型。具体的平均分数如下: AdobeFirefly:整体满意度平均分 3.03,画面质量平均分 3.46,图文相关性平均分 3.84。 Stable Diffusion 3:整体满意度平均分 3.26,画面质量平均分 3.5,图文相关性平均分 4.2。 DALLE 3:整体满意度平均分 3.32,画面质量平均分 3.54,图文相关性平均分 4.22。 Midjourneyv5:整体满意度平均分 3.32,画面质量平均分 3.68,图文相关性平均分 4.02。 Playgroundv2.5:整体满意度平均分 3.37,画面质量平均分 3.73,图文相关性平均分 4.04。 Midjourneyv6:整体满意度平均分 3.58,画面质量平均分 3.92,图文相关性平均分 4.18。 Kolors:整体满意度平均分 3.59,画面质量平均分 3.99,图文相关性平均分 4.17。所有模型结果取自 2024.04 的产品版本。
2024-11-18
以图生图有什么好用的模型
以下是一些好用的以图生图模型和相关产品: 1. Tusiart: 首页包含模型、帖子、排行榜,可查看不同模型的详细信息,如checkpoint、lora等。 checkpoint是生图必需的基础模型,lora是低阶自适应模型,可有可无,常用于控制细节。 还有ControlNet用于控制特定图像,VAE类似于滤镜可调整饱和度,以及Prompt提示词和负向提示词。 图生图功能可根据上传图片和所选模型等信息重绘。 2. Artguru AI Art Generator:在线平台,能生成逼真图像,为设计师提供灵感,丰富创作过程。 3. Retrato:AI工具,可将图片转换为非凡肖像,有500多种风格选择,适合制作个性头像。 4. Stable Diffusion Reimagine:新型AI工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 5. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的AI工具,能将上传的照片转换为芭比风格。 需要注意的是,这些AI模型可能存在性能不稳定、生成内容不当等局限,使用时需仔细甄别。
2025-02-05
什么是AI大模型?
AI 大模型是一个复杂且涉及众多技术概念的领域。以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,经典任务如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2025-02-05
大模型在数据分析上的应用
大模型在数据分析上有广泛的应用。 首先,了解一下大模型的基本概念。数字化便于计算机处理,为让计算机理解 Token 之间的联系,需将 Token 表示成稠密矩阵向量,即 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”在于用于表达 token 之间关系的参数多,如 GPT3 拥有 1750 亿参数。 大模型因其强大能力,在多个领域有热门应用场景: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:进行自然对话,提供客户服务、日常任务提醒和信息咨询等。 3. 编程和代码辅助:自动补全、修复 bug 和解释代码,提高编程效率。 4. 翻译和跨语言通信:理解和翻译多种语言,促进不同语言背景用户的沟通和信息共享。 5. 情感分析和意见挖掘:分析社交媒体等中的文本,为市场研究和产品改进提供支持。 6. 教育和学习辅助:创建个性化学习材料、回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应图像,未来可能扩展到视频。 8. 游戏开发和互动体验:创建游戏角色对话、生成故事情节和增强玩家沉浸式体验。 9. 医疗和健康咨询:回答医疗相关问题,提供初步健康建议和医疗信息查询服务。 10. 法律和合规咨询:解读法律文件,提供合规建议,降低法律服务门槛。 大型模型主要分为两类:大型语言模型专注于处理和生成文本信息;大型多模态模型能处理包括文本、图片、音频等多种类型信息。二者在处理信息类型、应用场景和数据需求方面有所不同。大型语言模型主要用于自然语言处理任务,依赖大量文本数据训练;大型多模态模型能处理多种信息类型,应用更广泛,需要多种类型数据训练。 相对大模型,也有所谓的“小模型”,它们通常是为完成特定任务而设计。
2025-02-05
flux1-depth-dev模型存放路径
flux1depthdev 模型的存放路径如下: 1. 下载 flux1depthdev 模型放到 ComfyUI/models/diffusion_models/文件夹中。 夸克网盘:链接:https://pan.quark.cn/s/571d174ec17f 百度网盘:见前文 2. 也可以将 depth lora 模型存放到 ComfyUI/models/loras 文件夹中。 depth lora 模型:https://huggingface.co/blackforestlabs/FLUX.1Depthdevlora 3. 百度网盘中也有相关模型: 链接:https://pan.baidu.com/s/10BmYtY3sU1VQzwUy2gpNlw?pwd=qflr 提取码:qflr
2025-02-05
你目前使用的是哪个模型
以下是一些关于模型的信息: 在 Cursor Chat、Ctrl/⌘K 和终端 Ctrl/⌘K 中,您可以在 AI 输入框下方的下拉列表中选择要使用的模型。默认情况下,Cursor 已准备好使用的模型包括:、cursorsmall。您还可以在 Cursor Settings>Models>Model Names 下添加其他模型。cursorsmall 是 Cursor 的自定义模型,不如 GPT4 智能,但速度更快,用户可无限制访问。 在 Morph Studio 中,支持以下模型生成视频: TexttoVideoMorph0.1:内部文本到视频生成模型,默认具有逼真色调,可通过描述性形容词修改拍摄风格和外观。 ImagetoVideoMorph0.1:内部图像到视频生成模型,用文本提示引导效果更好,使用时可不输入文本,在角色特写和对象动画方面表现较好。 VideotoVideoMorph0.1:内部风格转换模型,支持在文本提示下进行视频到视频的渲染,可将视频风格更改为预设,同时保留原始视频的字符和布局。 ImagetoVideoSVD1.1:由 Stability.ai 提供支持的图像到视频模型,适用于构图中有清晰层次的镜头(风景镜头、B 卷等)。 文本到视频形态0.1 被设置为新创建射击卡的默认模型,型号选择会根据是否上传图像或视频而更改,每个模型有自己的一组参数可供调整,如相机运动(支持静态、放大、缩小、向左平移、向右平移、向上平移、向下平移、顺时针旋转和逆时针旋转,未来将支持一次选择多个相机移动选项)、时间(支持最多 10 秒的视频生成,默认持续时间为 3 秒)。 ComfyUI instantID 目前只支持 sdxl。主要的模型需下载后放在 ComfyUI/models/instantid 文件夹(若没有则新建),地址为:https://huggingface.co/InstantX/InstantID/resolve/main/ipadapter.bin?download=true 。InsightFace 模型是 antelopev2(不是经典的 buffalo_l),下载解压后放在 ComfyUI/models/insightface/models/antelopev2 目录中,地址为:https://huggingface.co/MonsterMMORPG/tools/tree/main 。还需要一个 ControlNet 模型,放在 ComfyUI/models/controlnet 目录下,地址为:https://huggingface.co/InstantX/InstantID/resolve/main/ControlNetModel/diffusion_pytorch_model.safetensors?download=true 。上述模型网络环境不好的,可在网盘 https://pan.baidu.com/s/1FkGTXLmM0Ofynz04NfCaQ?pwd=cycy 下载。
2025-02-05
图生图美食模型
以下是关于图生图美食模型的相关知识: 概念与功能说明: 首页模型、帖子、排行榜:展示其他用户生成的模型、图片。不同模型有 checkpoint 和 lora 两种标签,部分还有 SDXL 标签。点击可查看模型详情,下方有返图区。 基础模型(checkpoint):生图必需,任何生图操作都要先选定。 lora:低阶自适应模型,类似 checkpoint 的小插件,可控制细节,权重可调整。 ControlNet:控制图片中特定图像,如人物姿态、特定文字等,高阶技能。 VAE:编码器,类似滤镜,调整生图饱和度,可无脑选 840000。 Prompt 提示词:描述想要 AI 生成的内容。 负向提示词(Negative Prompt):描述想要 AI 避免产生的内容。 图生图:上传图片后,SD 会根据图片、所选模型、输入的 prompt 等信息重绘,重绘幅度越大,输出图与输入图差别越大。 简明操作流程(文生图): 定主题:确定生成图片的主题、风格和表达信息。 选择基础模型(checkpoint):按主题找贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找与生成内容重叠的 lora 控制图片效果和质量。 ControlNet:高阶技能,可控制特定图像。 局部重绘:下篇再教。 设置 VAE:选 840000。 Prompt 提示词:用英文写需求,单词、短语组合,用英文半角逗号隔开。 负向提示词(Negative Prompt):用英文写避免的内容,单词、短语组合,用英文半角逗号隔开。 采样算法:如选 DPM++2M Karras,留意 checkpoint 详情页作者推荐的采样器。 采样次数:根据采样器特征,选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据个人喜好和需求选择。
2025-02-04