Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你好,什么事comfyui LLM party

Answer

ComfyUI LLM Party 相关内容如下:

  • 作为 ComfyUI 插件的开发者,主要目的是讲解 LLM(大语言模型)与 ComfyUI 结合的基础、进阶和高阶用法,个人将 ComfyUI 中 LLM 应用粗略分为四大类:文本方面(提示词扩写、润色、对话)、图像视觉方面(图像提示词反推、OCR、LoRA 训练集图像打标)、LLM Agent(工具调用、长期/短期记忆、本地/API 大语言模型调用、封装 ComfyUI 工作流等)、其他独立于这些之外的 LLM 节点或功能。
  • 对于 ComfyUI 和 ComfyUI LLM Party 的下载:
    • 如果是 AI 绘图工作者,对 ComfyUI 不陌生。若未接触过,可在 GitHub 上拉取项目,或在 B 站下载整合包,如秋叶大佬的绘世整合包或者只剩一瓶辣椒酱的铁锅炖整合包。
    • ComfyUI LLM Party 是以 ComfyUI 作为前端的节点库,用于 LLM 智能体以及 LLM 工作流的无代码开发,功能类似于 coze、dify、flowise 等,与 ComfyUI 生态下的绝大部分节点相辅相成,有着无缝接入 SD 图像流的特色。可通过以下方法安装:
      • 方法一:在comfyui 管理器中搜索 comfyui_LLM_party,一键安装,然后重启 comfyui。
      • 方法二:导航到 ComfyUI 根文件夹中的 custom_nodes 子文件夹,使用克隆此存储库 git clone https://github.com/heshengtao/comfyui_LLM_party.git 。
Content generated by AI large model, please carefully verify (powered by aily)

References

ComfyUI & LLM:如何在ComfyUI中高效使用LLM

Hello!大家好。我是科林,是comfyui LLM party插件的开发者。这个栏目的主要目的是讲解LLM(大语言模型)与ComfyUI结合的基础、进阶和高阶用法,主要围绕GitHub中已有中的LLM节点以及comfyui_LLM_party(说明:根植于ComfyUI的大语言模型智能体节点)的应用场景。个人目前将ComfyUI中LLM应用粗略分为四大类:第一类:文本方面;第二类:图像视觉方面——VLM(带视觉的LLM);第三类:LLM Agent(大语言模型智能体);最后一类:其他,这一部分是独立于这些之外的LLM节点或功能。1.文本:提示词扩写、提示词润色、与LLM对话;2.图像:图像提示词反推(Joy Caption、Florence)、OCR、LoRA训练集图像打标;3.LLM Agent:除上述所拥有的功能外,还有海量功能:如工具调用、长期/短期记忆(RAG、GraphRAG等)、本地/API大语言模型调用、封装ComfyUI工作流等。

AI 女友麦洛薇(0 代码 comfyui 搭建,知识图谱稳定人设,无限上下文,永久记忆,可接入飞书)

如果你是一个AI绘图工作者,你一定对Comfyui并不陌生。如果你从来没有接触过Comfyui,你需要先到GitHub上拉取Comfyui这个项目,或者你可以在B站下载整合包,例如:秋叶大佬的绘世整合包或者只剩一瓶辣椒酱的铁锅炖整合包。[heading2]2、Comfyui LLM party下载[content]Comfyui LLM party是一个以Comfyui作为前端的节点库,用于LLM智能体以及LLM工作流的无代码开发。功能类似于coze、dify、flowise等。但由于可以在Comfyui中直接使用,与Comfyui生态下的绝大部分节点都相辅相成,有着无缝接入SD图像流的特色。今天所介绍的麦洛薇,就是用这套节点库开发完成的。项目地址如下:使用以下方法之一安装:方法一:1.在[comfyui管理器](https://github.com/ltdrdata/ComfyUI-Manager)中搜索comfyui_LLM_party,一键安装2.重启comfyui方法二:1.导航到ComfyUI根文件夹中下的custom_nodes子文件夹2.使用克隆此存储库。git clone https://github.com/heshengtao/comfyui_LLM_party.git

无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能

如果你是一个AI绘图工作者,你一定对Comfyui并不陌生。如果你从来没有接触过Comfyui,你需要先到GitHub上拉取Comfyui这个项目,或者你可以在B站下载整合包,例如:秋叶大佬的绘世整合包或者只剩一瓶辣椒酱的铁锅炖整合包。[heading2]2、Comfyui LLM party下载[content]Comfyui LLM party是一个以Comfyui作为前端的节点库,用于LLM智能体以及LLM工作流的无代码开发。功能类似于coze、dify、flowise等。但由于可以在Comfyui中直接使用,与Comfyui生态下的绝大部分节点都相辅相成,有着无缝接入SD图像流的特色。今天所介绍的麦洛薇,就是用这套节点库开发完成的。项目地址如下:使用以下方法之一安装:方法一:1.在[comfyui管理器](https://github.com/ltdrdata/ComfyUI-Manager)中搜索comfyui_LLM_party,一键安装2.重启comfyui方法二:1.导航到ComfyUI根文件夹中下的custom_nodes子文件夹2.使用克隆此存储库。git clone https://github.com/heshengtao/comfyui_LLM_party.git

Others are asking
anythingllm安装包
以下是关于 AnythingLLM 安装包的相关信息: 安装地址:https://useanything.com/download 。 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 在 AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。配置流程包括: 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式和 Query 模式。Chat 模式大模型会根据训练数据和上传的文档数据综合给出答案,Query 模式大模型仅依靠文档中的数据给出答案。 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中, 是一个可打造成企业内部知识库的私人专属 GPT,能将任何文档、资源或内容转换为大语言模型(LLM)知识库,在对话中引用其中内容。
2025-02-06
AnythingLLM 怎么用,好用吗
AnythingLLM 是一款功能强大的软件,具有以下特点和使用方法: 功能:包含了所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型和向量数据库。 安装和配置:安装地址为 https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 构建本地知识库:其中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并进行文本嵌入,接着选择对话模式,提供了 Chat 模式(大模型根据训练数据和上传文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案),最后进行测试对话。 相关评价:被认为是一个可打造成企业内部知识库的私人专属 GPT,能将任何文档、资源或内容转换为大语言模型(LLM)知识库,支持多用户使用,可设权限,兼容多种 LLM 和数据库。 总的来说,AnythingLLM 的使用效果因人而异,需要您亲自实践和体验来判断其是否好用。
2025-02-04
如何从零到一学习LLM上层AI应用开发
从零到一学习 LLM 上层 AI 应用开发,您可以参考以下步骤: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 以下是一些相关的学习资源: 面向开发者的 LLM 入门课程: 提示工程指南: LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: LLMs 九层妖塔: 在课程方面,欢迎来到针对开发者的 AIGPT 提示工程课程。该课程将分享软件开发最佳实践的提示,涵盖常见用例,包括总结、推理、转换和扩展,并指导使用 LLM 构建一个聊天机器人。在大型语言模型或 LLM 的开发中,大体上有基础 LLM 和指令调整后的 LLM 两种类型。基础 LLM 已训练出根据文本训练数据预测下一个单词,通常在大量数据上训练,以找出接下来最有可能的单词。
2025-01-28
从零到一的 LLM 学习教程
以下是从零到一学习 LLM 的教程: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 了解 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 运用 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 进行模型评估和可解释性研究。 实现模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 此外,为您推荐以下 LLM 开源中文大语言模型及数据集集合的学习资源: 1. 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,主要包括:吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版,吴恩达《Building Systems with the ChatGPT API》课程中文版,吴恩达《LangChain for LLM Application Development》课程中文版等。 2. 提示工程指南: 地址: 简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。 3. LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:Langchain 的中文文档,由是两个在 LLM 创业者维护,希望帮助到从刚进入 AI 应用开发的朋友们。 4. LLMs 九层妖塔: 地址: 简介:ChatGLM、ChineseLLaMAAlpaca、MiniGPT4、FastChat、LLaMA、gpt4all 等实战与经验。 关于 LLM 的预测原理: LLM 接触了包括教科书、文章、网站等在内的庞大数据集。在训练阶段,它们学会了理解语言的上下文和流动性,掌握了包括语法、风格,甚至是文本的语调等方面。当您用一个句子或问题来指导 LLM 时,它便利用自己所学的知识,预测接下来最可能的一个或几个词。这不仅是基于它在训练期间观察到的模式和规则的推测。 在提示工程方面,鉴于 LLM 的概率本质,提示工程师面临的挑战是如何引导 LLM 向着高度可预测和准确的结果方向发展。在相关课程中,您将学习许多技巧,这些技巧将帮助您掌握高度可预测的 LLM 输出结果的艺术和科学。但在深入学习之前,可以先从一些简单的练习开始,激活思维。
2025-01-28
llm cookbook 有资源吗
以下是关于 LLM 学习资源和 OpenAI Cookbook 的相关信息: 学习大型语言模型(LLM)开发的资源和路径: 1. 掌握深度学习和自然语言处理基础: 机器学习、深度学习、神经网络等基础理论。 自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: Transformer 模型架构及自注意力机制原理。 BERT 的预训练和微调方法。 掌握相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 大规模文本语料预处理。 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 模型压缩、蒸馏、并行等优化技术。 模型评估和可解释性。 模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 OpenAI Cookbook 资源: 如需更多灵感,请访问,其中包含示例代码以及指向第三方资源的链接,例如: 1. 2. 3. 4. 此外,还有 LLM 开源中文大语言模型及数据集集合中的相关资源: HuggingLLM: 地址: 简介:介绍 ChatGPT 原理、使用和应用,降低使用门槛,让更多感兴趣的非 NLP 或算法专业人士能够无障碍使用 LLM 创造价值。 OpenAI Cookbook: 地址: 简介:该项目是 OpenAI 提供的使用 OpenAI API 的示例和指导,其中包括如何构建一个问答机器人等教程,能够为从业人员开发类似应用时带来指导。
2025-01-14
Llm studio 联网搜索
以下是关于 LLM studio 联网搜索的相关内容: Cursor 方面: Cursor 适用于多种编程场景,如问答。在问答场景中,LLM 支持联网功能后,如 Claude、ChatGPT、Perplexity 等平台可咨询技术问题,能自动提炼关键字、联网搜索并总结分析搜索结果返回简洁答案,但答案置信率不高,而 Cursor 的上下文符号引用能力(如@Codebase 符号索引整个仓库)弥补了这一点,其将整个仓库 Embedding 成向量数据库供 LLM 消费,具备极强的私域知识理解能力,还能高效地帮用户分析总结各类项目的底层原理。 LLM Agent 方面: 工作步骤包括接收指令(用户通过文本、语音等方式发出指令或提出问题)、数据处理与理解(利用内部大语言模型解析用户输入,提取关键信息)、生成响应与执行任务(根据用户需求生成回答或采取行动,如查询数据库、搜索网络等)、输出结果(通过文本或语音将生成的结果反馈给用户)。 AIGC Weekly34 方面: 提出将 LLM 与互联网上的高质量内容结合来修复信息生态系统的问题,如 Metaphor 希望恢复搜索的神奇感,发布了 Metaphor API 用于将 LLM 连接到互联网。 介绍了 StarCraft II 作为强化学习环境的相关论文,提出了 AlphaStar Unplugged 基准测试。 提到了名为 Glean 的 AI 搜索工具能帮助用户在工作场景中进行搜索和优化,还讨论了人工智能人格模拟相关内容,如语言模型如何模拟和改变人格等。
2025-01-13
comfyui 官网
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以把它想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势在于: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 ComfyUI 的官方链接为:https://github.com/comfyanonymous/ComfyUI 。 关于 ComfyUI 的学习资料,有以下几个网站提供相关教程: 1. ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。网站为:https://www.comfyuidoc.com/zh/ 。 2. 优设网:提供了详细的入门教程,适合初学者。教程地址是:https://www.uisdc.com/comfyui3 。 3. 知乎:有用户分享了部署教程和使用说明,适合有一定基础并希望进一步了解的用户。地址:https://zhuanlan.zhihu.com/p/662041596 。 4. Bilibili:提供了一系列从新手入门到精通的视频教程。地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 。 此外,在知乎的“深入浅出完整解析 Stable Diffusion(SD)核心基础知识”中,也有关于零基础使用 ComfyUI 搭建 Stable Diffusion 推理流的内容。
2025-01-23
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境:依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2025-01-23
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细信息: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2025-01-23
如何学习comfyui
以下是一些学习 ComfyUI 的途径和资源: 1. 官方文档:ComfyUI 官方文档提供了使用手册和安装指南,适合初学者和有经验的用户,可在获取相关信息。 2. 优设网:有一篇详细的 ComfyUI 入门教程,适合初学者,详细介绍了其特点、安装方法及生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到相关教程。 4. Bilibili:提供了一系列涵盖从新手入门到精通各个阶段的视频教程,可在找到。 此外,还有 ComfyUI 共学快闪的飞书学习群,其中包含了众多如 Stuart 风格迁移、红泥小火炉基础课程等各类课程和讲解,如郑个小目标针对于某个插件的深入讲解、波风若川报错解决等。 另外,有人因为以下原因学习使用 ComfyUI:更接近 SD 的底层工作原理;自动化工作流,消灭重复性工作;作为强大的可视化后端工具,可实现 SD 之外的功能,还能根据定制需求开发节点或模块。例如,有人为了工作室获取抠图素材的需求,基于创建了工作流,不仅能用于绿幕素材抠图,还能自动生成定制需求的抠图素材,全程仅需几秒。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-23
ComfyUI_LayerStyle
ComfyUI_LayerStyle 相关内容如下: 加载模型部分: 下好工作流中的所需三张图片“SeasonYou_Reference、BG、MASK”以及上传自己所需的照片到 Input 部分。右上角放自己的人像图片(非人像会报错提示“no face detected”)。 对于 vae 加载器部分,选择 xl 版本(因为大模型用的 xl)的 vae 即可。 对于 ipadater 部分,倘若加载器部分报错说 model 不存在,将文中画圈部分修改调整到不报错。 Pulid 部分,除了下载好对应的节点以及参考官方网站最下面的安装对应要求外,还要注意对应安装一些内容,具体要求可查看云盘中命名为“pulid 插件模型位置.png”及对应的云盘链接:PulID 全套模型 链接:https://pan.baidu.com/s/1ami4FA4w9mjuAsPK49kMAw?pwd=y6hb 提取码:y6hb ,否则将会报错。 爆肝博主 ZHO 的更新记录: 3 月 7 日:ComfyUI 支持 Stable Cascade 的 Inpainting ControlNet,ComfyUI 作者在示例页面给出了说明和工作流:https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/ ,博主自己也整理了一版,分享在:https://github.com/ZHOZHOZHO/ComfyUIWorkflowsZHO ,说明第二个 inpainting+composite 是将原图帖回到重绘之后的效果,是非必要项,按需使用。 3 月 6 日:国内作者把 ps 很多功能都迁移到了 ComfyUI 里,项目是:https://github.com/chflame163/ComfyUI_LayerStyle 。最新版 ComfyUI 支持了一系列图像形态学处理,包括 erode 腐蚀(去除小噪点/分离相邻对象)、dilate 膨胀(填补小洞/连接临近对象)、open 开(先腐蚀后膨胀)、close 闭(先膨胀后腐蚀)、gradient 梯度(膨胀与腐蚀之差)、top_hat 顶帽(原图与开之差)、bottom_hat 底帽(原图与闭之差)。使用方法为:1)更新 ComfyUI;2)右键 image/postprocessing/ImageMorphology;3)接上图像输入和输出即可。
2025-01-15
在comfyUI中可以接入哪些api,又和3D相关的吗
在 ComfyUI 中可以接入以下与 3D 相关的 API: 1. @CSM_ai:可以将文本、图像或草图转换为 3D 素材,并直接应用于游戏中,无需后期处理。体验地址:https://cube.csm.ai ,https://x.com/xiaohuggg/status/1763758877999587757?s=20 2. Move AI 推出的 Move API:可以从 2D 视频生成 3D 运动数据,支持多种 3D 文件格式导出,为 AR 应用、游戏开发等提供高质量 3D 运动数据。链接:https://move.ai/api ,https://x.com/xiaohuggg/status/1761590288576061573?s=20 3. ComfyUI 3D Pack 引入 3D 图像处理:可以快速将图片转换为 3D 模型,支持多角度查看,使用 3D 高斯扩散技术提升模型质量,支持多种格式导出,集成先进 3D 处理算法。链接:https://github.com/MrForExample/ComfyUI3DPack/tree/main ,https://x.com/xiaohuggg/status/1755824687811346514?s=20 此外,ZHO 博主有关于 ComfyUI 的更新记录: 1. 4 月 18 日,ComfyUI Stable Diffusion 3 API 已更新为 V1.5 版,图生图和 SD3 Turbo 都可以正常使用,但 SD3 图生图模式不支持选择比例,SD3 Turbo 模型不支持负面提示词。使用方法是先申请 API,然后填入 config.json 文件即可(每账户 25 免费积分),SD3 每张图 6.5 积分(比较贵)。项目地址:https://github.com/ZHOZHOZHO/ComfyUIStableDiffusion3API ,SD3 API ComfyUI 节点测试成功。 2. 4 月 17 日,Stability AI 刚刚发布了 Stable Diffusion 3 和 Stable Diffusion 3 Turbo,现在已经可通过 Stability AI 开发者平台 API 使用,SAI 计划在不久的将来通过会员资格提供模型权重。详情:https://bit.ly/3W43FjY
2025-01-14
你好,你是什么模型?
您好,我是一名 AI 知识专家,能够为您提供全面的 AI 知识指导和解答相关问题。 关于模型方面的知识: LoRA 和 LyCORIS 都属于微调模型,常用于控制画风、生成的角色、角色姿势等。它们的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间,使用 LoRA 模型较多,LyCORIS 可调节范围更大,现在 SD 已内置。在 WebUl 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。 在 Tusiart 中,首页有模型、帖子、排行榜,展示了大手子炼成的模型和图片。生图必需基础模型(Checkpoint),任何生图操作必须选定一个 Checkpoint 模型才能开始,lora 是低阶自适应模型,可有可无,但对细节控制有价值。ControlNet 可控制图片中特定图像,VAE 类似于滤镜调整生图饱和度,选择 840000 即可。Prompt 提示词是想要 AI 生成的内容,负向提示词是想要 AI 避免产生的内容。还有图生图,即上传图片后 SD 会根据相关信息重绘。 如果您想搭建类似的群问答机器人,可以参考以下内容:
2025-01-28
你好,现在外网上面有没有免费的ai视频生成网站
以下是一些外网免费的 AI 视频生成网站: Pika:https://pika.art/ ,可控性强,可以对嘴型,可配音。 SVD:https://stablevideo.com/ ,对于景观生成效果较好。 Kaiber:https://kaiber.ai/ 。 更多的文生视频网站可以查看:https://www.waytoagi.com/category/38 。 此外还有以下网站可供选择: Runway:https://runwayml.com ,有网页有 app 方便,但收费。 即梦:https://dreamina.jianying.com/ ,剪映旗下,生成 3 秒,动作幅度有很大升级,最新 S 模型,P 模型。 Minimax 海螺 AI:https://hailuoai.video/ ,非常听话,语义理解能力非常强。 Kling:kling.kuaishou.com ,支持运动笔刷,1.5 模型可以直出 1080P30 帧视频。 Vidu:https://www.vidu.studio/ 。 haiper:https://app.haiper.ai/ 。 智谱清影:https://chatglm.cn/video ,开源了,可以自己部署 cogvideo 。 PixVerse:https://pixverse.ai/ ,人少不怎么排队,还有换脸功能。 luma:https://lumalabs.ai/ 。 还有一些其他网站,如: Morph Studio:https://app.morphstudio.com/ ,还在内测。 Heygen:https://www.heygen.com/ ,数字人/对口型。 Moonvalley:https://moonvalley.ai/ 。 Mootion:https://discord.gg/AapmuVJqxx ,3d 人物动作转视频。 美图旗下:https://www.miraclevision.com/ 。 Neverends:https://neverends.life/create ,操作傻瓜。 SD:Animatediff SVD deforum ,自己部署。 Leiapix:https://www.leiapix.com/ ,可以把一张照片转动态。 Krea:https://www.krea.ai/ 。 Opusclip:https://www.opus.pro/ ,利用长视频剪成短视频。 Raskai:https://zh.rask.ai/ ,短视频素材直接翻译至多语种。 invideoAI:https://invideo.io/make/aivideogenerator/ ,输入想法>自动生成脚本和分镜描述>生成视频>人工二编>合成长视频。 descript:https://www.descript.com/?ref=feizhuke.com 。 veed.io:https://www.veed.io/ ,自动翻译自动字幕。 clipchamp:https://app.clipchamp.com/ 。 typeframes:https://www.revid.ai/?ref=aibot.cn 。 内容由 AI 大模型生成,请仔细甄别。
2025-01-16
你好,请问,哪家的智能体最适合处理excel表格
目前有以下几种智能体适合处理 Excel 表格: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,能通过聊天形式让用户告知需求,自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。但请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-02
你好,请问,什么是最强大的excel 表格 分析agi 服务
目前有以下几种可以增强 Excel 表格数据处理和分析能力的 AI 服务: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,能让用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了包括 Excel 在内的多种办公软件,用户通过聊天形式告知需求,Copilot 会自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 这些工具通过 AI 技术提升了 Excel 的数据处理能力,使用户能更高效地进行数据分析和决策。随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-02
你好,我怎么下载GPT,并且能用
以下是在苹果和安卓系统下载并使用 GPT 的方法: 苹果系统: 1. 在 AppleStore 下载 chatgpt:中国区正常下载不了,需要切换到美区才可以下载。美区 AppleID 注册教程参考知乎链接:。最终在 AppleStore 搜到 chatgpt 结果如下,下载安装即可,注意别下错啦。 2. 支付宝 购买苹果礼品卡 充值 订阅付费 App:打开支付,地区切换到【美区任意区】,往下滑,找到【品牌精选 折扣礼品卡】,点击进去,可以看到【大牌礼品卡】,往下滑找到【App Store&iTunes US】礼品卡,按需要的金额购买即可,建议先买 20 刀就行。具体步骤包括: 支付宝购买礼品卡。 在 apple store 中兑换礼品卡。 在 chatgpt 中购买订阅 gpt plus,如果中途不想继续订阅了,可到订阅列表中取消订阅即可。 安卓系统: 1. 安装 google play: 到小米自带的应用商店搜索 google play 进行安装。 安装好后,打开 GooglePlay,按照提示一步步操作,登录 GooglePlay。 2. 下载安装 chatgpt: 到谷歌商店搜索“ChatGPT”进行下载安装,开发者是 OpenAI,别下错了哦~可能遇到“google play 未在您所在的地区提供此应用”的问题,解决方法如下:在 google play 点按右上角的个人资料图标。依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。在这里看到账号没有地区,可以“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美。如果回到 google play 首页还搜不到 chatgpt,可以卸载重装 google play,操作过程保持梯子的 IP 一直是美,多试几次。 3. 体验 ChatGPT:如果只想体验 ChatGPT 3.5 版本,不升级 GPT4,直接登录第二部注册好的 ChatGPT 账号即可。 4. 订阅 GPT4 Plus 版本:先在 Googleplay 中的【支付和订阅】【支付方式】中绑定好银行卡,然后在区 chatgpt 里订阅 Plus。 使用 ChatGPT 4o: 1. 开启对话:打开 ChatGPT 应用或网页,点击开始对话。会员不管是在苹果还是安卓手机上购买的,电脑上都能登录。 2. 体验最新语音对话功能:版本切到 ChatGPT 4o,点击右下角“耳机🎧”图标,选择一个声音,就可以体验流畅的语音对话。
2025-01-01
你好,我怎么能用GPT
GPT 是 OpenAI 推出的一种工具,具有以下特点和使用方式: 1. GPTs 允许用户量身打造自己的 AI 助理,可根据需求和偏好创建完全定制的 ChatGPT,如帮忙梳理电子邮件或提供创意灵感等。目前已有几种现成的 GPTs 供 ChatGPT Plus 用户使用,如“The Negotiator”、“Game Time”等,用户还可上传资料来自定义 GPTs,并能分享给他人或使用他人创建的 GPTs。 2. 有推特博主的英语老师制作了基于 GPT 的英文学习工作流,具体使用方法为:先把特定 prompt 喂给 ChatGPT(建议开新对话专门用于学习英文),然后 ChatGPT 会扮演美国好朋友,对输入的英文和中文表达返回更地道的表达,并对俚语部分加粗,还会针对发送的话题举一反三,结合欧美流行内容给出更多例子,输入特定语句后 ChatGPT 会输出对话回顾并建议 3 个推荐任务,强化记忆。建议使用方式包括开窗口复制 prompt、手机端打开历史记录、点右上角耳机图标打电话等,打电话可同时练习口语和听力,结束后看回顾有助于阅读。 3. 像高手一样编写 GPT 时,以“找电影”为例,调用 themoviedb.org 需先注册申请 API KEY,注册后依次点击右上角头像账户设置API请求 API 密钥click here,选择 Developer 开发者,填写相关信息,提交后获得 API 密钥和 API 读访问令牌并记录备用。构建 GPT 时,新创建一个 GPT,填写相关内容并添加 Actions。
2025-01-01