Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

借助人工智能技术的诈骗方式为什么不容易被人们所察觉,它一般法采用哪些人工智能技术

Answer

很抱歉,当前提供的知识库内容中没有直接针对“借助人工智能技术的诈骗方式为什么不容易被人们所察觉,它一般采用哪些人工智能技术”这一问题的准确回答。但一般来说,借助人工智能技术的诈骗不易被察觉可能是因为其具有高度的仿真性和隐蔽性。例如,利用自然语言处理技术生成逼真的虚假信息,或者通过机器学习算法分析用户行为和偏好,从而精准实施诈骗。然而,具体采用的人工智能技术可能因诈骗场景和手段的不同而有所差异。

Content generated by AI large model, please carefully verify (powered by aily)

References

入门 | 机器学习研究者必知的八个神经网络架构

选自Medium作者:James Le机器之心编译参与:白悦、黄小天我们为什么需要「机器学习」?机器学习对于那些我们直接编程太过复杂的任务来说是必需的。有些任务很复杂,以至于人类不可能解决任务中所有的细节并精确地编程。所以,我们向机器学习算法提供大量的数据,让算法通过探索数据并找到一个可以实现程序员目的的模型来解决这个问题。我们来看两个例子:写一个程序去识别复杂场景中照明条件下新视角的三维物体是很困难的。我们不知道编写什么程序,因为我们并不了解它在我们大脑中运作的机制,即便知道如何实现,写出来的程序也可能会非常复杂。写一个程序去计算信用卡诈骗的概率是很困难的。因为可能没有任何既简单又可靠的规则,我们需要结合大量的弱规则去判别。欺骗是可以转移目标的,程序需要不断更改。接着出现了机器学习方法:我们不需为每个特定的任务手动编程,只要收集大量的样本,为给定的输入指定正确的输出。机器学习算法利用这些样本去生成完成指定工作的程序。学习算法产生的程序可能与典型的手写程序非常不同,它可能包含数百万个数字。如果我们做得正确,这个程序将像处理训练集上的样本一样来处理新样本。如果数据改变,程序也可以通过训练新数据改变。你应该注意到,目前大量的计算比支付给程序员编写一个特定任务的程序便宜。鉴于此,机器学习最适用任务的例子包括:模式识别:真实场景中的物体,面部识别或面部表情,口语。异常识别:不寻常的信用卡交易序列,核电站传感器读数的异常模式。预测:未来股票价格或货币汇率,一个人喜欢什么电影。什么是神经网络?

拜登签署的AI行政命令_2023.10.30

Require that developers of the most powerful AI systems share their safety test results and other critical information with the U.S.government.In accordance with the Defense Production Act,the Order will require that companies developing any foundation model that poses a serious risk to national security,national economic security,or national public health and safety must notify the federal government when training the model,and must share the results of all red-team safety tests.These measures will ensure AI systems are safe,secure,and trustworthy before companies make them public.Develop standards,tools,and tests to help ensure that AI systems are safe,secure,and trustworthy.The National Institute of Standards and Technology will set the rigorous standards for extensive red-team testing to ensure safety before public release.The Department of Homeland Security will apply those standards to critical infrastructure sectors and establish the AI Safety and Security Board.The Departments of Energy and Homeland Security will also address AI systems’ threats to critical infrastructure,as well as chemical,biological,radiological,nuclear,and cybersecurity risks.Together,these are the most significant actions ever taken by any government to advance the field of AI safety.Protect against the risks of using AI to engineer dangerous biological materials by developing strong new standards for biological synthesis screening.Agencies that fund life-science projects will establish these standards as a condition of federal funding,creating powerful incentives to ensure appropriate screening and manage risks potentially made worse by AI.Protect Americans from AI-enabled fraud and deception by establishing standards and best practices for detecting AI-generated content and authenticating official content.The Department of Commerce will develop guidance for content authentication and watermarking to clearly label AI-generated content.Federal agencies will use these tools to make it easy for Americans to know that the communications they receive from their government are authentic—and set an example for the private sector and governments around the world.

【法律法规】《促进创新的人工智能监管方法》.pdf

transformative developments yet tocome.27LLMs provide substantial opportunities to transformthe economy and society.For example,LLMs can automate the process of writing code andTransport apps like Google Maps,and CityMapper,use AI.Artificial Intelligence in Banking Industry:A Review on Fraud Detection,Credit Management,and Document Processing,ResearchBerg Review of Science and Technology,2018.Accelerating fusion science through learned plasma control,Deepmind,2022; Magnetic control of tokamak plasmasthrough deep reinforcement learning,Degrave et al.,2022.Why Artificial Intelligence Could Speed Drug Discovery,Morgan Stanley,2022.AI Is Essential for Solving the Climate Crisis,BCG,2022.General Purpose Technologies – Handbook of Economic Growth,National Bureau of Economic Research,2005.The UK Science and Technology Framework,Department for Science,Innovation and Technology,2023.In 2022 annual revenues generated by UK AI companies totalled an estimated £10.6 billion.AI Sector Study 2022,DSIT,2023.DSIT analysis estimates over 50,000 full time workers are employed in AI roles in AI companies.AI Sector Study 2022,DSIT,2023.For example,AI can potentially improve health and safety in mining while also improving efficiency.See AI on-side:howartificial intelligence is being used to improve health and safety in mining,Axora,2023.Box 1.1 gives further examples of AIdriving efficiency improvements.Large Language Models Will Define Artificial Intelligence,Forbes,2023; Scaling Language Models:Methods,Analysis &Insights from Training Gopher,Borgeaud et al.,2022.A pro-innovation approach to AI regulationfixing programming bugs.The technology can support genetic medicine by identifying linksbetween genetic sequences and medical conditions.It can support people to review and

Others are asking
人工智能与机器学习具体是什么
人工智能是一种目标,旨在让机器展现智慧,简称 AI。它包括多种实现方法,如自上而下的方法,即对推理过程进行建模,将其形式化为计算机程序,依赖于知识表示和推理;自下而上的方法,模拟大脑中的神经元,构建人工神经网络,通过举例让其学习解决问题。 机器学习是人工智能的一个子领域,是一种让机器自动从资料中找到公式的手段。机器学习模型分为监督和无监督两种,监督模型使用标记的数据学习并预测未来值,无监督模型则专注于发现原始数据中的模式。深度学习是机器学习的一个子集,使用人工神经网络处理更复杂的模式,可使用标记和未标记的数据进行半监督学习。 生成式人工智能是人工智能的一个子集,试图学习数据和标签之间的关系以生成新内容,如自然语言、图像或音频等,其输出不是数字或类别。生成式人工智能模型使用统计模型预测预期响应,并根据训练数据生成新内容,但可能产生幻觉,即无意义或语法错误的单词或短语。 大语言模型是具有大量参数的“深度学习”模型。ChatGPT 是基于大型语言模型的对话机器人,是 AIGC 技术在文本生成领域的一个应用实例。AIGC 是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。
2025-02-25
给我30份中央人民政府网站和工业和信息部网站2020~2023年期间发布的重要的国家层面与人工智能相关政策文件,列个清单
以下是中央人民政府网站和工业和信息部网站 2020 2023 年期间发布的部分重要的国家层面与人工智能相关政策文件清单: 1. 互联网信息服务算法推荐管理规定(算法推荐规定),于 2023 年 3 月 1 日生效。 2. 互联网信息服务深度合成管理规定(深度合成规定),于 2023 年 1 月 10 日生效。 3. 生成式人工智能服务管理暂行办法(生成式 AI 办法),于 2023 年 7 月 13 日公布并于 2023 年 8 月 15 日生效。 4. 生成式人工智能服务安全基本要求(征求意见稿),于 2023 年 10 月 11 日公开征求意见,意见反馈截止日期为 2023 年 10 月 25 日。 5. 科技伦理审查办法(试行)(征求意见稿)(伦理审查办法(草案)),于 2023 年 4 月 14 日公开征求意见,意见反馈截止时间为 2023 年 5 月 3 日。 6. 国家人工智能产业综合标准化体系建设指南(征求意见稿),于 2024 年 1 月 17 日公开征集意见,意见反馈截止时间为 2024 年 1 月 31 日。 由于未能获取到 30 份相关政策文件,建议您通过中央人民政府网站和工业和信息部网站的搜索功能,以获取更全面和准确的信息。
2025-02-25
有没有一个人工智能工具,可以针对某个网站的更新内容进行分析
以下是为您找到的一些可能针对网站更新内容进行分析的人工智能工具: 1. NotebookLM:可以综合不同材料生成笔记,但存在交互设计不够清晰的问题。 2. Excel 中的 Copilot:能帮助写复杂公式、创建可视化图表及书写 Python 代码完成复杂任务。 3. Loop:可以生成对应内容的表格和其他 Office 软件链接。 4. Stream 中的 Copilot:能够帮助理解视频内容,询问并跳转到对应时间点。 5. Bard:推出了英语版 Bard Extensions,可从 Google 工具中查找并显示相关信息,还能使用“Google it”按钮核实答案,分享聊天时可继续对话并询问。 6. PaLM 2 模型:根据用户反馈应用强化学习技术训练,更加直观和富有想象力。 7. Youtube 的 AI 工具:包括 Dream Screen 可添加背景、YouTube Create 编辑手机视频、AI Insights 获取创意和大纲建议、Aloud 自动配音、创作者音乐中的辅助搜索找到配乐。 8. Dzine:更新了 Insert Character 能力,可快速替换画面角色。 9. 谷歌 IOS 中 Google Lens:在手机 Chrome 浏览器中可更快视觉搜索,还将 AI Overviews 广泛集成到搜索结果中。
2025-02-24
怎么进入人工智能这个行业
要进入人工智能行业,可以从以下几个方面入手: 1. 学习基础知识:了解人工智能的发展历史、基本概念和原理,包括神经网络、机器学习等。 2. 掌握相关技能:例如编程(如 Python)、数学(如线性代数、概率论)等。 3. 深入研究特定领域:如计算机视觉、自然语言处理等,选择自己感兴趣的方向进行钻研。 4. 实践项目:通过实际参与项目,积累经验和提升能力。 5. 持续学习:人工智能领域发展迅速,要不断跟进最新的技术和研究成果。 人工智能作为一个领域始于二十世纪中叶,最初符号推理流行,后因方法局限性出现“人工智能寒冬”。随着计算资源便宜和数据增多,神经网络方法在多个领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。
2025-02-20
2024 年中国人工智能+产业规模
目前关于 2024 年中国人工智能+产业规模的相关信息如下: 国家统计局数据显示,2022 年全国研究与试验发展(R&D)经费投入总量首次超过 3 万亿元,达到 30782.9 亿元,比上年增加 2826.6 亿元,增长 10.1%,表明国家对科技创新和算力设施的重视和持续投入。我国算力设施产业链规模巨大,已达到万亿元级别。2022 年我国算力核心产业规模达到 1.8 万亿元,预计到 2023 年,中国算力产业规模将超过 3 万亿元。 在企业数量方面,截至 2024 年 3 月,全国算力存量企业共有 75,343 家。其中,广东省、北京市和江苏省的企业数量位居前三,分别有 10,315 家、7,167 家和 6,728 家。此外,人工智能企业数量也超过 4400 家。 德勤的报告指出,中国 AI 产业快速发展,得益于政策支持、经济增长和技术创新。成长型 AI 企业作为产业创新的重要力量,数量占比高达九成,活跃于各行业领域。预计到 2025 年,中国人工智能核心产业规模将突破 5000 亿元。 在影视行业,若假设 2027 年 AI 影视市场可以获得国内总市场份额的 10%,则国内 AI 影视总市场规模预计将达约 380 亿元以上;若假设 2030 年可以获得 25%以上市场份额,则国内 AI 影视总市场规模将达千亿级别。 营销行业或成生成式 AI 最早实现商业化落地的行业之一,未来,AI 技术还将持续推动营销行业的深刻变革。
2025-02-20
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
稍微技术点的科普书,机器学习一类的
以下为您推荐两本关于机器学习的科普书: 1. 《入门|机器学习研究者必知的八个神经网络架构》 神经网络是机器学习文献中的一类模型,受到生物神经网络的启发,目前深度神经网络效果很好,可应用于任何从输入到输出空间复杂映射的机器学习问题。 学习神经计算的三个理由:了解大脑工作原理、了解受神经元及其适应性连接启发的并行计算风格、使用受大脑启发的新颖学习算法解决实际问题。 一般来说,神经网络架构可分为三类:前馈神经网络(是实际应用中最常见的类型,若有多个隐藏层则称为“深度”神经网络)、循环网络(连接图中定向了循环,动态复杂,更具生物真实性)。 2. 《这是一份「不正经」的深度学习简述》 深度学习是使用不同类型神经网络的表征学习,通过优化网络的超参数来获得对数据的更好表征。 列举了几个经典案例,如反向传播(相关参考阅读:、A theoretical framework for BackPropagation——Yann Lecun:http://yann.lecun.com/exdb/publis/pdf/lecun88.pdf)、更好的初始化网络参数(初始化策略需根据所使用的激活函数选择)。
2025-02-25
养老场景实时健康监测与风险预警在技术上怎么实现,用AI大模型实现,请给出一个可行的方案
以下是一个利用 AI 大模型实现养老场景实时健康监测与风险预警的可行方案: 首先,需要明确相关的概念和技术名词。AI 即人工智能,机器学习是电脑找规律学习,包括监督学习、无监督学习和强化学习。监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。无监督学习是在无标签数据中自主发现规律,例如聚类。强化学习是从反馈中学习以最大化奖励或最小化损失,类似训小狗。深度学习参照人脑,具有神经网络和神经元,因层数多被称为深度,神经网络可用于多种学习方式。生成式 AI 能生成文本、图片、音频、视频等内容形式,LLM 是大语言模型,生成图像的扩散模型不属于大语言模型,像谷歌的 BERT 模型可用于语义理解,如上下文理解、情感分析、文本分类。 在技术里程碑方面,2017 年 6 月谷歌团队发表的《Attention is All You Need》论文首次提出了 Transformer 模型,其完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。 对于养老场景的实时健康监测与风险预警,可利用传感器收集老人的生理数据,如心率、血压、血糖等。这些数据通过物联网传输到服务器,利用深度学习算法对数据进行分析和处理。例如,使用基于 Transformer 模型的大模型,对历史健康数据和当前实时数据进行学习和分析,建立老人的健康模型。通过与正常健康指标的对比,及时发现异常情况,并结合无监督学习中的聚类算法,对不同健康状况的老人进行分类,以便提供个性化的预警和建议。同时,利用强化学习不断优化模型的预警准确性和及时性。 总之,通过整合传感器数据采集、物联网传输、深度学习算法分析和模型优化等环节,借助 AI 大模型实现养老场景的实时健康监测与风险预警。
2025-02-20
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
作为前端开发人员,推荐学习哪些AI技术呢
作为前端开发人员,以下是一些推荐学习的 AI 技术: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习、自然语言处理等主要分支及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。 此外,如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 如果偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-18
我想了解diffusion技术相关的重要论文
以下是一些与 diffusion 技术相关的重要论文: 《HighResolution Image Synthesis with Latent Diffusion Models》:https://arxiv.org/abs/2112.10752 《Denoising Diffusion Probabilistic Models》:作者为 Ho、Jain、Abbeel,出自 Berkeley (2020)
2025-02-16
基于大模型的应用开发主要包括哪些方向和相应的技术栈?
基于大模型的应用开发主要包括以下方向和相应的技术栈: IaaS 层: 百度智能云百舸 AI 异构计算平台,解决大模型应用中的算力问题,提供从集群创建到模型训练、推理的完整算力管理方案,通过引入自动故障预测与任务迁移技术,确保高达 99.5%的有效训练时间,为大模型应用落地提供强大的算力支撑。 PaaS 层: 百度智能云千帆大模型平台,解决大模型的调用、开发和应用开发问题,支持调用文心大模型全系列模型,提供全面的工具链,支持定制化的模型开发。通过 AppBuilder,提供企业级 Agent 和企业级 RAG 开发能力,还能将企业应用中产生的数据经过评估和对齐进一步反馈到模型中,形成良性循环,持续优化模型性能。 SaaS 层: 百度智能云提供丰富的常用应用供客户选择,如数字人平台曦灵、智能客服应用客悦等。 此外,还有一些其他的技术栈和框架,如: Langchain:是当前大模型应用开发的主流框架之一,提供了一系列的工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 Ollama:是一个开箱即用的用于在本地运行大模型的框架。
2025-02-14
案例:借助人工智能技术的诈骗 一、案例材料 1.背景资料 (1)近期全国范围内出现了一种新型电信诈骗——AI换脸诈骗,该诈骗利用AI人工智能,通过“换脸”和“拟声”技术模仿受害人的朋友或亲戚的声音和外貌,以此骗取受害者的信任,进行网络诈骗,近日包头警方就根据一起典型案例,向大家发出了防范AI换脸诈骗的警示。 财联社5月22日讯,据平安包头微信公众号消息,包头警方发布了一起利用人工智能(AI)实施电信诈骗的典型案例,一家福州市科技公司的法人代表郭先生竟在短短10分钟内被骗走了430万元人民币。
以下是关于 AI 的相关内容: 律师如何写好提示词用好 AI: 对于不具备理工科背景的文科生,可将 AI 视为黑箱,只需知道其能模仿人类思维理解和输出自然语言。AI 就像似人而非人的存在,与传统道教的驱神役鬼拘灵遣将有相似之处。提示词应是相对完善的“谈话方案”,成果在与 AI 的对话中产生,要接受其存在的“不稳定性”,并在对话中限缩自己思维的模糊地带。 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未具体阐述)
2024-12-25
人工智能技术的诈骗方式一般采用哪些人工智能技术
人工智能的诈骗方式可能会运用以下技术: 1. 操纵技术:通过诱导人们做出决定来加以欺骗,例如采用潜意识成分,如人们无法感知的音频、图像、视频刺激,或者其他操纵或欺骗技术,以人们无法意识到的方式颠覆或损害人的自主、决策或自由选择。脑机界面或虚拟现实等也可能促进这种情况发生。 2. 利用个人或特定群体的弱点:例如针对年龄、残疾或特定的社会或经济状况,如生活在极端贫困中的人、少数民族或宗教少数群体,实质性地扭曲个人的行为,并对其或其他个人或群体造成重大危害。 此外,拜登签署的 AI 行政命令中提到,要保护美国人免受人工智能导致的欺诈和欺骗,建立检测人工智能生成内容和验证官方内容的标准和最佳实践。商务部将为内容认证和水印开发指导,以明确标记人工智能生成的内容。联邦机构将使用这些工具让美国人容易知道他们从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。
2024-12-08
借助人工智能技术的诈骗方式为什么不容易被人们所察觉,它一般法采用哪些人工智能技术
很抱歉,当前提供的知识库内容中没有直接针对“借助人工智能技术的诈骗方式为什么不容易被人们所察觉,它一般采用哪些人工智能技术”这一问题的准确回答。但一般来说,借助人工智能技术的诈骗不易被察觉可能是因为其手段更加隐蔽和复杂,例如利用自然语言处理技术生成逼真的虚假信息,或者通过机器学习算法分析用户行为和偏好来精准实施诈骗。常见采用的人工智能技术可能包括自然语言生成、图像识别伪装、大数据分析等。
2024-12-02
现阶段应对ai诈骗研究进展
现阶段应对 AI 诈骗的研究进展主要包括以下方面: 拜登签署的 AI 行政命令要求开发最强大 AI 系统的开发者与美国政府分享安全测试结果等关键信息。对于可能对国家安全、经济安全、公共卫生和安全构成严重风险的基础模型,开发公司在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以清晰标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和世界各国政府树立榜样。 OpenAI 提出通过“指令层次结构”修复“忽略所有先前指令”攻击的方法,并已在 GPT40 Mini 中部署。Anthropic 在多重越狱方面的工作表明了“警告防御”的潜力,在前面和后面添加警告文本以警示模型。Gray Swan AI 的安全专家试用“断路器”,专注于重新映射有害表示。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建了首个红队抵抗组织基准,Scale 根据私人评估推出了自己的稳健性排行榜。 除了常见的越狱攻击,还存在更隐蔽的攻击,如伯克利和麻省理工学院的研究人员创建的看似无害的数据集,会训练模型响应编码请求产生有害输出。
2024-12-02
ai诈骗现阶段研究进展及其成果
目前关于 AI 诈骗的研究进展及成果的相关内容较少。但在 AI 领域,以下方面的研究成果可能对理解 AI 诈骗有所帮助: 神经网络研究:自 2010 年左右,大型公共数据集的出现推动了神经网络的发展。2012 年卷积神经网络用于图像分类,错误率大幅下降。2015 年微软研究院的 ResNet 架构达到人类水平准确率。此后,神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中表现成功。 AI 幻觉应对:研究人员开发多种技术手段应对,如进行数据“体检”,包括数据清洗去除错误信息、补充缺失数据等,以及数据增强为模型提供更多丰富训练数据。 政策方面:拜登签署的 AI 行政命令中,要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息,制定确保 AI 系统安全可靠的标准、工具和测试,建立相关安全委员会,应对 AI 对关键基础设施的威胁,制定防范利用 AI 制造危险生物材料的新标准,建立检测 AI 生成内容和认证官方内容的标准及最佳实践以防范 AI 导致的欺诈和欺骗。
2024-12-02
人工智能与AI诈骗最新进展
以下是关于人工智能与 AI 诈骗的最新进展: 在 2024 年,AI 领域有诸多进展。在图像和视频方面,超短视频的精细操控,如表情、细致动作、视频文字匹配等有所发展,有一定操控能力的生成式短视频中,风格化、动漫风最先成熟,真人稍晚。AI 音频能力长足进展,带感情的 AI 配音基本成熟。“全真 AI 颜值网红”出现,可稳定输出视频并直播带货。游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式。AI 男/女朋友聊天基本成熟,在记忆上有明显突破,能较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈。实时生成的内容开始在社交媒体内容、广告中出现。AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验。AI 的商业模式开始有明确用例,如数据合成、工程平台、模型安全等。可穿戴全天候 AI 硬件层出不穷,虽然大多数不会成功。中国 AI 有望达到或超过 GPT4 水平,美国可能出现 GPT5,世界上开始出现“主权 AI”。华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代稍晚)。然而,AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧,AI 立法、伦理讨论仍大规模落后于技术进展。 在 3 月底的 23 个最新 AI 产品中,有室内装修自动渲染的 HomeByte,生成效果超赞的新视觉模型 Playground v1,“图生文”反向工具 Clip Interrogator 以及致力于解决电话诈骗的 GPTCHA 等。 在技术应用方面,LLMs 能自动化写代码等流程,交通应用如 Google Maps 和 CityMapper 也使用了 AI。AI 在银行业的欺诈检测、信用管理和文件处理等方面发挥作用。同时,AI 还在药物研发、解决气候危机等领域有重要应用。 总之,AI 技术在不断发展的同时,也带来了如诈骗等问题,需要关注和解决。
2024-12-02