直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我希望做一个回答用户问题的聊天机器人,如何用rag来做

回答

要使用 RAG(Retrieval-Augmented Generation,检索增强生成)来做一个回答用户问题的聊天机器人,可以按照以下步骤进行:

  1. 加载所需的库和模块:包括用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。
  2. 从订阅源获取内容:通过特定函数从指定的 RSS 订阅 URL 提取内容,如需接收多个 URL 可稍作改动。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接,最终将这些文档合并成一个列表用于后续处理。
  3. 为文档内容生成向量:使用文本向量模型 bge-m3(可从 https://huggingface.co/BAAI/bge-m3 下载,假设放置在某个路径 /path/to/bge-m3 ),通过 FAISS 创建一个高效的向量存储。
  4. 基于用户的问题,从向量数据库中检索相关段落,并根据设定的阈值进行过滤,最后让模型参考上下文信息回答用户的问题,从而实现 RAG。
  5. 创建网页 UI:通过 gradio 创建网页 UI 并进行评测。
  6. 技术栈选择:经过调研,可先采取 Langchain + Ollama 的技术栈作为 demo 实现,后续也可考虑使用 dify、fastgpt 等更直观易用的 AI 开发平台。
    • Langchain 简介:是当前大模型应用开发的主流框架之一,提供一系列工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。
    • Ollama 简介:是一个开箱即用的用于在本地运行大模型的框架。

总结:

  1. 本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署一个资讯问答机器人,同时结合 RSSHub 来处理和提供资讯。
  2. 上下文数据质量和大模型的性能决定了 RAG 系统性能的上限。
  3. RAG 通过结合检索技术和生成模型来提升答案的质量和相关性,可以缓解大模型幻觉、信息滞后的问题,但并不意味着可以消除。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

加载所需的库和模块。其中,feedparse用于解析RSS订阅源ollama用于在python程序中跑大模型,使用前请确保ollama服务已经开启并下载好模型|从订阅源获取内容下面函数用于从指定的RSS订阅url提取内容,这里只是给了一个url,如果需要接收多个url,只要稍微改动即可。然后,通过一个专门的文本拆分器将长文本拆分成较小的块,并附带相关的元数据如标题、发布日期和链接。最终,这些文档被合并成一个列表并返回,可用于进一步的数据处理或信息提取任务。|为文档内容生成向量这里,我们使用文本向量模型bge-m3。https://huggingface.co/BAAI/bge-m3bge-m3是智源研究院发布的新一代通用向量模型,它具有以下特点:支持超过100种语言的语义表示及检索任务,多语言、跨语言能力全面领先(M ulti-Lingual)最高支持8192长度的输入文本,高效实现句子、段落、篇章、文档等不同粒度的检索任务(M ulti-Granularity)同时集成了稠密检索、稀疏检索、多向量检索三大能力,一站式支撑不同语义检索场景(M ulti-Functionality)从hf下载好模型之后,假设放置在某个路径/path/to/bge-m3,通过下面函数,利用FAISS创建一个高效的向量存储。|实现RAG

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

基于用户的问题,从向量数据库中检索相关段落,并根据设定的阈值进行过滤,最后让模型参考上下文信息回答用户的问题,从而实现RAG。|创建网页UI最后,通过gradio创建网页UI,并进行评测。生成的Web UI如下:需要上述完整代码的读者,关注本公众号,然后发送fin,即可获取github仓库代码链接。问答测试对于同样的问题和上下文,我基于Qwen-7b、Gemma、Mistral、Mixtral和GPT-4分别进行了多次测试。下面是一些case:qwengemmamistralmixtralgpt4主要结论(只是针对有限的几次测试,个人主观评判)如下:👍 GPT-4表现最好,指令遵循能力很强,在回答的时候能附上引用段落编号✌️ Mixtral表现第二,但没有在回答的时候附上引用💪 Qwen-7b表现第三,也没有在回答的时候附上引用😅 Gemma表现一般,而且回答里面有一些幻觉😅 Mistral表现一般,使用英文回复,不过在回答的时候附上了引用段落编号总结1.本文展示了如何使用Langchain和Ollama技术栈在本地部署一个资讯问答机器人,同时结合RSSHub来处理和提供资讯。2.上下文数据质量和大模型的性能决定了RAG系统性能的上限。3.RAG通过结合检索技术和生成模型来提升答案的质量和相关性,可以缓解大模型幻觉、信息滞后的问题,但并不意味着可以消除。

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

经过调研,我决定先采取Langchain+Ollama的技术栈来作为demo实现,当然,后续我也会考虑使用dify、fastgpt等更加直观易用的AI开发平台。整体框架设计思路如下:另外,本次开发的运行环境是Intel Mac,其他操作系统也可以。下载模型等可能需要梯子。Langchain简介https://www.langchain.com/langchainLangchain是当前大模型应用开发的主流框架之一,旨在帮助开发者构建和部署基于大型语言模型(LLM)的应用。它提供了一系列的工具和接口,使得与LLM交互变得简单。通过Langchain,开发者可以轻松创建定制的高级应用,如聊天机器人、问答系统和多种智能应用。Langchain的核心在于其“链”概念,这是一个模块化的组件系统,包括Model I/O(模型输入输出)、Retrieval(数据检索)、Chains(链)、Agents(代理)、Memory(内存)、和Callbacks(回调)。这些组件可灵活组合,以支持复杂的应用逻辑。Model I/O模块负责处理与语言模型的直接交互,包括发送请求和解析响应。Retrieval模块用于增强语言模型的回答能力,通过向量数据库检索相关信息来支持回答生成。Chains模块则是多个组件的集成,用于构建更复杂的应用逻辑。Langchain的生态系统还包括LangSmith、LangGraph和LangServe等工具,这些工具能帮助开发者高效管理从原型到生产的各个阶段,以便优化LLM应用。Ollama简介https://ollama.com/Ollama是一个开箱即用的用于在本地运行大模型的框架。它的主要功能和特点包括:

其他人在问
RAG研究报告有哪些
以下是一些关于 RAG 的研究报告: 1. 《RAG 系统开发中的 12 大痛点及解决方案》:研究了开发检索增强生成(RAG)系统时遇到的 12 个主要难题,并提出了相应的解决策略。通过将挑战和解决方法并列在一张表中,更直观地展示了设计和实施 RAG 系统面临的复杂挑战。 2. 《小七姐:精读翻译《提示词设计和工程:入门与高级方法》》:提到在解决预训练大型语言模型(LLM)的限制方面,RAG 成为关键创新,通过动态整合外部知识扩展了 LLM。还介绍了 RAG 感知提示词技术,如 FLARE 以创新方法增强 LLM 性能。 3. 《通过增强 PDF 结构识别,革新检索增强生成技术》:包含对 PDF 识别对 RAG 影响的实验研究,通过列举 ChatDOC 在查询特斯拉用户手册中的具体案例,突出了 ChatDOC 解析方法在处理表格和呈现方式上的有效性。
2024-11-20
如何利用飞书构建RAG系统
以下是关于如何利用飞书构建 RAG 系统的相关内容: RAG 的常见误区: 随意输入任何文档就能得到准确回答:这是常见误区,RAG 流程包含离线环节(文档解析、切割及向量化写入向量数据库)和在线检索环节(用户问题理解、初步检索、重排序及大模型生成),任何环节都会影响最终质量,有效实现 RAG 系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等,需要专业知识和持续优化。 RAG 完全消除了 AI 的幻觉:虽然 RAG 可以显著减少幻觉,但并不能完全消除,只要有大模型参与,就有可能产生幻觉。 RAG 不消耗大模型的 Token 了:从大模型生成结果环节可以看出,最终还是将知识库中检索的结果给到 LLM,然后由 LLM 进行重新整理输出,所以 RAG 仍然消耗大模型的 Token。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 从订阅源获取内容,通过函数从指定的 RSS 订阅 url 提取内容,将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,使用文本向量模型 bgem3,从 hf 下载好模型后,通过函数利用 FAISS 创建高效的向量存储。 RAG 性能提升策略和评估方法(产品视角): 前言:RAG 是检索增强生成的缩写,是结合检索模型和生成模型的技术,核心目的是把知识告诉给 AI 大模型,让其“懂”我们,核心流程是根据用户提问从私有知识中检索相关内容,与用户提问一起放入 prompt 中提交给大模型,常见应用场景如知识问答系统。
2024-11-20
AGI 和RAG AGENT有什么区别
AGI(通用人工智能)、RAG(检索增强生成)和 Agent 存在以下区别: Agent: 本质是动态 Prompt 拼接,通过工程化手段将业务需求转述为新的 Prompt。 包含短期记忆(messages 里的历史 QA 对)和长期记忆(summary 之后的文本塞回 system prompt)。 可以通过工具触发检索和 Action,触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互。 如 Multi Agents ,主要是更换 system prompt 和 tools 。 为 LLM 增加工具、记忆、行动、规划等能力,目前行业主要使用 langchain 框架,在 prompt 层和工具层完成设计。 有效使用工具的前提是全面了解工具的应用场景和调用方法,学习使用工具的方法包括从 demonstration 中学习和从 reward 中学习。 在追求 AGI 的征途中,具身 Agent 强调将智能系统与物理世界紧密结合,能够主动感知和理解物理环境并互动,产生具身行动。 RAG: 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。 AGI:是一种更广泛和全面的智能概念,旨在实现类似人类的通用智能能力。 需要注意的是,这些概念的发展和应用仍在不断演进,想做深做好还有很多需要探索和解决的问题。
2024-11-19
如何对rag进行评估
对 RAG 进行评估可以从以下几个方面入手: 1. 使用 RAG 三角形的评估方法: 在 LangChain 中创建 RAG 对象,使用 RAGPromptTemplate 作为提示模板,指定检索系统和知识库的参数。 在 TruLens 中创建 TruChain 对象,包装 RAG 对象,指定反馈函数和应用 ID。反馈函数可使用 TruLens 提供的 f_context_relevance、f_groundness、f_answer_relevance,也可自定义。 使用 with 语句运行 RAG 对象,记录反馈数据,包括输入问题、得到的回答以及检索出的文档。 查看和分析反馈数据,根据 RAG 三角形的评估指标评价 RAG 的表现。 2. 建立评估框架将检索性能与整个 LLM 应用程序隔离开来,从以下角度评估: 模型角度(generation): 回答真实性:模型结果的真实性高低(减少模型幻觉)。 回答相关度:结果和问题的相关程度,避免南辕北辙。 检索角度(retrieval): 召回率(recall):相关信息在返回的检索内容中的包含程度,越全越好。 准确率(precision):返回的检索内容中有用信息的占比,越多越好。 3. 考虑以下评估方法和指标: 生成质量评估:常用自动评估指标(如 BLEU、ROUGE 等)、人工评估和事实验证,衡量生成文本的流畅性、准确性和相关性。 检索效果评估:包括检索的准确性、召回率和效率,其好坏直接影响生成文本的质量。 用户满意度评估:通过用户调查、用户反馈和用户交互数据了解用户对 RAG 系统的满意度和体验。 多模态评估:对于生成多模态内容的 RAG 系统,评估不同模态之间的一致性和相关性,可通过多模态评估指标实现。 实时性评估:对于需要实时更新的 RAG 任务,考虑信息更新的及时性和效率。 基准测试集:使用基准测试集进行实验和比较不同的 RAG 系统,涵盖多样化的任务和查询,以适应不同的应用场景。 评估方法和指标的选择取决于具体的任务和应用场景,综合使用多种评估方法可更全面地了解 RAG 系统的性能和效果,评估结果能指导系统的改进和优化,满足用户需求。此外,RAGAS 是一个用于 RAG 评估的知名开源库,可参考使用: 。需要注意的是,RAG 适合打造专才,不适合打造通才,且存在一定局限性,如在提供通用领域知识方面表现不佳,可能影响模型的风格或结构输出、增加 token 消耗等,部分问题需使用微调技术解决。
2024-11-13
RAG加速有什么好办法吗
以下是一些加速 RAG 的好办法: 1. 确保 LLM 以正确的格式回应:函数调用已成为确保 LLM 严格输出特定格式的相对靠谱的新方法,推荐使用此方法提升性能。可参考结构化输出文档,其中高层次的 LangChain API 展示了不同 LLM 如何调用工具和函数。 2. 使用参考样例:在实际操作中,将输入和对应输出的样例纳入其中通常大有裨益,这些样例有时比指示本身更能有效指导 LLM 处理特定情况。在提取用例文档中可找到更多细节,助您从 LLMs 中提取更好的性能。 此外,LangChain 携手 NVIDIA 为 RAG 加速带来了新的篇章: 1. 将 NVIDIA NIM 与 LangChain 结合使用:新增了支持 NIM 的集成包,安装专门的集成包后可导入所需模型,并通过示例展示如何构建应用程序,包括安装额外的包、加载数据源、初始化嵌入模型等一系列操作。 2. NVIDIA NIM 介绍:NVIDIA NIM 是一系列用户友好的微服务,旨在加速企业内部生成式 AI 的部署进程,支持广泛的 AI 模型,基于强大的推理引擎和技术构建,提供无缝的 AI 推理体验,是实现大规模、高性能生成式 AI 推理的最佳选择。其具有自托管特性,能保证数据安全;提供预构建的容器,方便选择和使用最新模型;具有可扩展性。开始使用 NIM 非常简单,在 NVIDIA API 目录中可轻松访问多种 AI 模型,NIM 是 NVIDIA AI Enterprise 的一部分,可通过相关博客获取详细指南。
2024-11-12
搜索DragGAN
DragGAN 于 2023 年 6 月 25 日开源。喜欢 AI 绘画的对它应该不陌生,期待它带来更大的惊艳。此外,相关论文中增加了微软研究院新发布的多模态 AI 助手;学习路径中增加了适合初学者的深度学习课程 fast.ai ;AI 名词增加到 80 多个,补充了很多技术名词。您可以通过以下链接获取更多详细信息:
2024-11-11
如何学习开源机器人,要求是ROS操作系统,如何购置相应的机器人
学习开源机器人并基于 ROS 操作系统购置相应机器人,您可以从以下几个方面入手: 1. 控制系统:负责处理传感器数据、规划路径和执行任务,并与其他子系统协作。通常由嵌入式计算设备或工业计算机组成,通过运行控制算法(如 PID 控制、深度学习模型等)决定机器人运动和操作。 2. 伺服驱动系统:负责驱动机器人关节和执行机构,实现精确运动控制。一般包括伺服电机、伺服驱动器和指令机构。伺服电机作为执行机构实现运动,伺服驱动器作为功率电源控制电机运动,指令机构发出脉冲或速度信号配合工作。能进行速度与转矩控制,以及精确、快速、稳定的位置控制,其结构通常包括电流环、速度环和位置环三个闭环控制。 3. 交互设备:常见的有麦克风、遥控器等,尤其是带屏遥控器,集成了显示屏和控制功能,允许用户直接在遥控器上查看实时图像和进行各种操作。 4. 软件中间件:机器人操作系统中间件负责硬件抽象、设备驱动、库函数、可视化、消息传递和软件包管理等。最常用的元操作系统是 ROS(Robot Operating System),它并非真正的操作系统,而是运行在 Ubuntu 上的软件框架。ROS 将机器人软件功能封装为节点,支持节点间分布式、点对点通信,并由主节点(master)管理调度网络中各节点通信过程。不同节点可使用不同编程语言,可分布式运行在不同主机,这种设计使机器人各模块能松耦合协同工作,便于模块化修改和升级,提高系统容错能力。 在购置相应机器人时,您需要考虑机器人的功能需求、性能指标、价格预算等因素,选择适合您学习和研究的型号。
2024-11-19
怎么制作一个桌面智能机器人
制作桌面智能机器人可以参考以下步骤: 1. 利用 RPA 技术: 可以通过拖拉拽指令控件来构建机器人任务。例如,以在京东查询感冒灵并采集价格为例,包括打开浏览器、填写搜索框、点击搜索、采集数据等步骤。 采集数据后会生成数据表格,编辑器有拖拉拽功能适合业务人员,也可切换为 Python 界面写代码,还封装了很多控件,如 Excel 控件等。 RPA 机器人可通过触发器设置,像搭建奥康 1700 多个脚本的案例还有方太 450 多个基线等,交付的是动态能力。 RPA 加上 AI 效率极大提升,数字化分标准化、自动化、RPA 加 AI 三个阶段。 2. 使用 Coze 平台: 准备一个 Coze 账号,这是一个免费的 AI 机器人搭建平台。 准备一台能够上网的电脑。 用 Coze 搭建的 AI 机器人目前可以发布在“微信(订阅号/服务号/微信客服)、飞书、豆包、Bot Store、掘金”几个渠道,也可以通过网页地址的形式分享。 需要注意的是,不同的方法和平台可能有其特定的要求和特点,您可以根据自己的需求和技术水平选择适合的方式。
2024-11-19
使用coze搭建一个心理咨询机器人,将机器人接入自己开发的应用后,如何再进一步实现让ai把每个用户每天的聊天内容,总结成日记,并传回给应用展示日记
目前知识库中没有关于使用 Coze 搭建心理咨询机器人,并将用户每天聊天内容总结成日记传回应用展示的相关内容。但一般来说,要实现这个功能,您可能需要以下步骤: 1. 数据采集与存储:在机器人与用户交互过程中,采集并妥善存储聊天数据。 2. 自然语言处理与分析:运用相关的自然语言处理技术,对聊天内容进行理解和分析,提取关键信息。 3. 内容总结:基于分析结果,使用合适的算法和模型将聊天内容总结成日记形式。 4. 数据传输:建立与应用的稳定接口,将总结好的日记数据传输回应用。 这只是一个大致的思路,具体的实现会涉及到很多技术细节和开发工作。
2024-11-15
最近AGI机器人特别火,请帮我找出相关新闻
以下是一些与 AGI 机器人相关的新闻: :随着 OpenAI 聊天机器人 ChatGPT 的热潮持续,探讨其如何帮助创建用户体验调查问卷或其他调查问卷。 :给 25 个 AI 代理人动机和记忆,并将它们放在模拟城镇中,其行为被评价比人类角色扮演更“人类化”。 :ChemCrow 是一个 LLM 化学代理,能在合成、药物发现和材料设计等领域执行任务,并集成 13 个专家设计的工具以增强性能。 :OpenAI 发布 GPT4 被证明是生成 AI 的一小步,对 AGI 而言是一大步,自 2022 年 11 月发布以来吸引众多用户和媒体关注,此工作是对 ChatGPT 的首次全面审查。 :有人让 AutoGPT 查找最近一个月的开源相关新闻并汇总成 word 文件,还有人在相关项目基础上做了改进和增强的新项目,如 TeenageAGI、BabyAGIasi、TypeScript 版本的 AutoGPT 等。 :特斯拉训练机器人“Optimus”抓取物体,通过人类示范学习。还提到当训练比 GPT4 大 100 倍的模型时在图像识别、生成图像和视频等方面的预测。
2024-11-10
用Coze创建AI,打造自己的图像生成AI机器人
以下是使用 Coze 创建自己的图像生成 AI 机器人的步骤: 1. 注册 Coze 账号: 访问 Coze 官网,可选择中文版(https://www.coze.cn/,支持大模型:kimi、云雀)或英文版(https://coze.com/,支持大模型:chatgpt4)进行快速注册。 产品定位为新一代 AI 原生应用开发服务平台。 2. 创建机器人: 登录 Coze,可使用抖音或手机号登陆,登陆后选择“创建 Bot”,起一个响亮的名字。 工作空间选“个人空间”。 小技巧:“图标”AI 可以自动生成,先在“Bot 名称”用文字描述想要的图标,满意后再把“Bot 名称”改为简洁版名称。 3. 具体创建 AI Bot: 首先打开扣子的首页(https://www.coze.cn/home),直接点击左上角的创建 AI Bot 按钮。 直接在弹窗输入 Bot 的相关信息,完成创建后细化其功能。 设计人设与回复逻辑,根据功能需求设计提示词。 调整模型设置,比如基于聊天为主的需求,将对话轮数记录改为 20 轮。 选择插件,如英文名言警句(get_one_eng_word & get_many_eng_words)随机获取英语名言,Simple OCR(ocr)识别图片中的文字。 设置开场白和预置问题,预置问题有参考价值。 最后设置语音,若为英语陪练 AI Bot,选择亲切的英语音色。
2024-11-09
用 Coze 免费打造自己的图像生成 AI 机器人
以下是用 Coze 免费打造自己的图像生成 AI 机器人的步骤: 1. 注册 Coze 账号 访问 Coze 官网,快速注册,开启智能之旅。 Coze 中文名扣子,字节跳动出品。 中文版:https://www.coze.cn/(支持大模型:kimi、云雀)——本次教程使用中文版 Coze。 英文版:https://coze.com/(支持大模型:chatgpt4) 产品定位:新一代 AI 原生应用开发服务平台,Nextgeneration AI chatbot building platform。 2. 创建你的机器人 登录 Coze,可使用抖音或手机号登陆,登陆后选择“创建 Bot”,然后起一个响亮的名字。 登录页面、首页、创建 Bot 时,工作空间选“个人空间”即可。 小技巧:“图标”AI 可以自动生成,先在“Bot 名称”那里用文字描述你想要的图标,图标生成满意后,再把“Bot 名称”改为简洁版名称。 此外,在实际体验中: 测试 AI Bot 时,可能会出现回答不完整的情况,如部分信息未给出,这是因为 Coze 国内版刚发布不久,有些官方和第三方插件的 API 调用和返回结果不太稳定。但官方会尽快解决。 成功的回答是根据提示词和插件+工作流的组合,结果非常详细。若加上自己的知识库甚至定制化使用数据库功能,AI Bot 的使用场景会更丰富。 国外版有免费的 GPT4 大模型使用,插件和工作流功能更丰富稳定,还有更多自定义插件和工作流功能,能更灵活定制 AI Bot。 作者演示上述步骤后发布的 AI Bot,其 ID 是:7333630516673167394,有兴趣可在 Coze 平台上搜索这个 ID 来体验。
2024-11-09
如何用coze搭建一个总结聊天记录的功能
以下是用 Coze 搭建一个总结聊天记录功能的步骤: 1. 设计 Bot 目的:明确 Bot 的用途,例如作为一个 AI 学习助手,帮助职场专业人士提升在人工智能领域的知识和技能,并提供高效的站内信息检索服务。 2. 了解 Coze 平台常用概念和功能:包括提示词(设定 Bot 的身份和目标)、插件(通过 API 连接集成各种平台和服务)、工作流(设计复杂的多步骤任务)、触发器(创建定时任务)、记忆库(保留对话细节,支持外部知识库)、变量(保存用户个人信息)、数据库(存储和管理结构化数据)、长期记忆(总结聊天对话内容)。 3. 进行 Bot 基础设置:根据机器人的作用,设计人设和回复逻辑,限制机器人的功能使其更专注于 AI 相关的知识回答和服务,还可以加入长期记忆功能来总结聊天对话内容以更好地响应用户消息,以及设计更加美观的 Bot 开场白。 注:Coze 官方使用指南见链接:https://www.coze.cn/docs/guides/welcome ,遇到疑问也可以查官方指南。
2024-11-15
搭建一个总结聊天记录的ai
以下是搭建一个总结聊天记录的 AI 的步骤: 1. 整理聊天记录为数据集: 如果导出了多个人的聊天记录,需手动将文件下的内容汇总到一起。 汇总完成后,保存汇总文件为“train.json”。 在当前文件夹下新建一个文本文档,重命名为“1.py”,用记事本打开并粘贴相应代码。注意标红的地方需要修改。 打开命令行窗口,输入“python 1.py”完成聊天记录整理,此步骤在后续第 31 步会用到。 2. 图文原文处理: 微信无法批量复制聊天内容,多选想要复制的聊天内容,转发到群里或文件传输助手。 收藏批量转发的聊天记录,打开收藏,点进笔记,点右上角三个点,转存为笔记,返回即可全选复制所有内容。 可使用能让电脑设备和手机设备剪切板共享的工具,避免在微信文件传输助手间折腾。 3. GPTs: 若重复做同一件事三次以上,应考虑优化步骤,可创建内容排版大师的 GPTs。 GPTs 链接:https://chat.openai.com/g/gt9dIHp4Ntneirongpaibandashi 。 该 GPTs 已加入 webpilot 的 actions,可直接将文章发给它总结内容。 4. 小卡片软件: 使用的卡片软件是小作卡片 app,官网链接:https://kosaku.imxie.club/ 。 操作步骤:打开软件,点击「自制卡片」,在「记录些什么...」中粘贴 AI 生成文本内容,点击右下角保存图标即可导出。
2024-11-15
数字人聊天
以下是关于数字人聊天的相关信息: 数字人脸创作方式: 1. 使用一系列逼真的照片或插图人脸,这些人脸经过优化,在添加语音和动作时能实现最佳效果。 2. 上传自己、朋友或家人的面部照片进行创作。 3. 利用 DID 自带的 Stable Diffusion 的能力生成想象中的人脸,如描述“一个外星女神”“一个微笑的十九世纪维多利亚绅士”等。 数字人像被添加到人脸库后,可重复使用,只需输入新脚本,就能让其说任何想让它说的话。 数字人说话方式: 1. 利用 GPT3 文本生成技术撰写脚本。 2. 先选好脸,再输入脚本。 3. 输入准备好的脚本,DID 中有数百种语言和口音,可选择想要使用的声音,并调整角色说话风格。 4. 上传自己的音频记录,或从电影、电视剧中剪辑喜欢的台词,甚至吟唱自编的歌曲。 AI 数字人类型和应用场景: 1. 二维/三维虚拟人:用于游戏、IP 品牌(如柳夜熙)、内容创作()等。 2. 真人形象数字人:用于直播卖货、营销/投流广告视频录制(Heygen)、语言学习(CallAnnie)等。 AI 数字人的价值: 1. 代替人说话,提升表达效率和营销效率,如真人无法 24 小时直播,数字人可以。 2. 创造真实世界无法完成的对话或交流,例如 AI talk 的实验探索,复活故去的亲人等。 AI 数字人面临的问题: 1. 平台限制:数字人水平参差不齐,平台担心直播观感,有一定打压限制。如抖音出台一些标准,微信视频号容忍度更低,人工检查封号。 2. 技术限制:形象只是皮囊,智能水平和未来想象空间依赖大模型技术提升。 3. 需求限制:直播带货是落地场景,但不够刚。“懂得都懂”的刚需场景,国内搞不了。目前更多是体验新鲜感。 4. 伦理/法律限制:声音、影像版权等,比如换脸、数字永生等。 面对大厂竞争的策略: 1. 大厂做产品有很多部门利益牵扯,法务合规等问题,不敢用野路子,开发上线产品效率低。 2. 大厂人工成本高,不少方向和领域都不会做,内部决策不一定靠谱。 3. 在电商领域,数字人不能也无法成为壁垒,跟数字人配套的运营服务才是,大厂一般不愿做重运营的事。
2024-11-04
用现有的搭建一个ai网站 实现绘画 聊天 会员 积分 等功能
以下是搭建一个具备绘画、聊天、会员、积分等功能的 AI 网站的步骤: 1. 搭建 OneAPI(https://github.com/songquanpeng/oneapi),用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时会告知如何白嫖大模型接口。 2. 搭建 FastGpt(https://fastgpt.in/),这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,最后回答问题。若不想接入微信,搭建到此即可,其有问答界面。 3. 搭建 chatgptonwechat(https://github.com/zhayujie/chatgptonwechat)接入微信,并配置 FastGpt 将知识库问答系统接入微信。建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程(https://waytoagi.feishu.cn/wiki/UADkwZ9B0iAWdTkFJIjcN7EgnAh),其中的 cow 插件能实现文件总结、MJ 绘画等能力。 在积分和会员方面,以下是一些相关的活动形式和积分设置示例: 吵爷帮助技能持有者在社区实现虚拟 IPO 审核服务。 Larkspur:扣子 bot 文案生图体验| 10 积分,扣子虚拟女友体验| 10 积分,帮你把 Siri 接入 Llama 3 70B |10 积分。 勿忘心安 Dify 本地部署不成功不要积分 10 积分一次。 Penny 给你解梦,并还原场景 10 积分。 Rachel 倩敏 宠物照片变毛毡头像 5 积分一个,before after 合并呈现 10 积分一个。 梦飞 给全国所有的项目做聚合平台,用户体验一次抽成 3 5 积分。 David 为社区用户做积分银行,可超前消费,存 10 个积分,利息 1 个积分,贷 10 个积分,利息 2 个积分,并为项目 IPO 提供融资服务。 波大波吗 5 分钟,让你的微信变成 chatgpt + MJ + SD +....+ 新闻专家 20 积分一次。 琥珀川 教你用 ai 技能接单、创业 10 积分。 大满满 简约的 mj 转模型|随喜积分。 Matteo 工作日晚 8 11 点,提供微信 1 对 1 视频聊天 30min,互通获取 AI 信息的渠道 + 漫聊 AI 相关使用体验思考 1 积分。 桂大阳 风景壁纸一张 10 积分、手机壳图案 + 手机壳效果图 10 积分。 镜 教你画小鹿动画表情包一个 10 积分,5 个 60 积分,8 个 100 积分。教你如何手绘蒙娜丽莎 10 积分一次,一次 10 分钟。教你做小鹿角色 2 维转 3D 一个 20 积分。 易求无方 与你的虚拟人进行一次心灵交流 20 积分,与你进行一次心灵交流 10 积分。 游小言 虚拟 IP 打造,给视频换脸,一次 10 积分,支持以技能易技能。
2024-11-04
如何能让大模型自动读取到微信上的聊天内容。
要让大模型自动读取到微信上的聊天内容,可以参考以下几种方法: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,并可白嫖大模型接口。 2. 搭建,这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,最后回答问题。若不想接入微信,搭建完成即可使用其问答界面。 3. 搭建,其中的cow插件能进行文件总结、MJ绘画等。 此外,还有作者张梦飞的方法,即把自己微信中的聊天记录导出,用自己的聊天记录去微调一个模型,最终将这个微调后的模型接入微信中替您回复消息。 另外,在创作方面,鉴于聊天记录属于绝对的个人隐私,不适合接入第三方大模型提取信息,可本地化部署LLM。例如采用百川2的国产大模型开源,如Baichuan2作为底模,先用提示工程对聊天记录进行信息提取,并在此基础上使用自有数据进行模型微调。
2024-10-31
扣子的智能体如何在飞书中创建一个可以和用户会话的账号
要在飞书中创建一个可以和用户会话的扣子智能体账号,您可以按照以下步骤进行操作: 1. 创建扣子的令牌: 在扣子官网左下角选择扣子 API。 在 API 令牌中选择“添加新令牌”。 给令牌起一个名字。 为了方便选择永久有效。 选择制定团队空间,可以是个人空间、也可以选择团队空间。 勾选所有权限。 保存好令牌的 Token,切勿向他人泄露。 2. 获取机器人 ID: 在个人空间中找到自己要接入到微信中的机器人,比如画小二智能小助手。 点击对应的机器人进入机器人编辑界面。 在浏览器地址栏的 bot/之后的数据就是该机器人的 Bot ID。 3. API 授权: 点击右上角发布。 会发现多了一个 Bot as API,勾选 Bot as API。 确定应用已经成功授权 Bot as API。 4. 服务器设置: chatgptonwechat(简称 CoW)项目是基于大模型的智能对话机器人,支持微信公众号、企业微信应用、飞书、钉钉接入,可选择多种模型,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业 AI 应用。 点击“Docker”中的“编排模板”中的“添加”按钮。 将编译好的内容复制进来。 在“容器编排”中“添加容器编排”。 选择在“编排模板”里创建的“coze2openai”。 提示运行成功,如果无法正常启动,请看文档后面的“常见问题”。 5. 绑定微信: 需要提前准备一个闲置的微信,因为这种方法是非官方接口,有可能微信号会受到官方限制。 点击容器,可以看到运行的是两个服务。 点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。 手动刷新界面验证是否成功,点击“刷新日志”,看到 WeChat login success 提示微信登录成功。 为确保微信实时在线,点击“日志管理”的“wcandyaibot”的“刷新日志”,显示“wechat login seccess”则表示微信正常登录中。 6. 效果测试: 把绑定的微信号拉到群里或者单独对话,训练的数据越好,对话效果越好。您可以参考个人微信对话和微信群对话效果演示视频:
2024-11-19
有面向B端用户的个人助理产品吗
目前面向 B 端用户的个人助理产品有 GPTs。GPTs 是 OpenAI 推出的一种工具,允许用户根据自身需求和偏好量身打造自己的 AI 助理,比如梳理电子邮件或提供创意灵感等。用户还可上传资料来自定义 GPTs,也能分享给他人或使用他人创建的 GPTs。不过目前 GPTs 的使用仅限于 ChatGPT Plus 的用户。 此外,在公开的案例中,Dot 是目前看到的最接近理想 AI Agent 形态的 C 端私人助理,它支持用户发送文本和图像、音频信息并理解内容,能够为用户制定计划、进行文件管理、推荐咖啡店,帮助用户访问互联网中的最新工具和服务。但其目前需要排队较久的 waitlist,官方也较少更新动态。 一位投资人认为,个人助理是国内外 C 端 Super App 的主要场景之一,也是最刚需、市场最大的一块。比如豆包最初的想法就是打造一个类似 Pi 的个人助理平台。
2024-11-18
使用AGI类工具时,用户应该注意些什么
使用 AGI 类工具时,用户应注意以下几点: 1. 理解工具:全面了解工具的应用场景和调用方法是有效使用的前提。利用 LLM 的 zeroshot learning 和 fewshot learning 能力,可通过描述工具功能和参数的 zeroshot demonstration 或特定工具使用场景和相应方法演示的少量提示来获取工具知识。面对复杂任务,应先将其分解为子任务,再组织和协调,这依赖于 LLM 的推理和规划能力以及对工具的理解。 2. 使用工具:学习使用工具的方法主要包括从 demonstration 中学习和从 reward 中学习。包括模仿人类专家行为,了解行为后果,并根据环境和人类的反馈做出调整。环境反馈包括任务完成结果和环境状态变化,人类反馈包括显性评价和隐性行为。 3. 关注工具选择:对于 Tools 类工具,开发者需选到合适的工具,并填写准确优秀的参数。可将业务上的 knowhow 转化为 Agent 的知识,提升工具使用的准确率,把精力放在这方面而非工程化上。
2024-11-10
用户体验设计与大模型的关系
用户体验设计与大模型密切相关。 在构建基于大模型的应用方面: 开发大模型应用复杂,涉及众多步骤和环节,包括框架选择、提示词设计等。 提示词的精心设计和调试至关重要,直接影响模型输出质量和应用效果。 构建有效的大型语言模型应用需要遵循一系列要点,如进行工程化、选择合适框架、了解业务需求、设计提示词、遵守安全和伦理标准、测试迭代、持续维护更新等。 在 AI 战场的发展趋势方面: 2023 年认为训练最好的模型就能吸引用户,但 2024 年大量消费者 AI 应用将通过提供最佳用户体验而非单纯提升模型性能来竞争,大模型可作为差异化优势之一,但老式护城河仍可能决定长期赢家。 关于大模型的道德观念: 大型语言模型本身不具有真正的道德观念或意识,它们是通过大量数据训练模拟语言统计规律的。 开发者和研究人员会采取多种方法确保模型输出符合社会道德和伦理标准,如数据清洗、算法设计、制定准则、保持透明度、用户反馈、持续监控、人工干预、教育和培训等,但这仍是复杂且持续的挑战。
2024-11-04
我想做一个知识库管理,用于用户累计只是,在此基础上打造属于用户个人的知识库,通过ai生成用户专属的答案。但是我不知道应该怎么设计这个软件,请为我建议
设计一个用于用户知识累计和生成专属答案的知识库管理软件,您可以考虑以下几个关键方面: 1. 数据存储与架构 选择合适的数据库系统,如关系型数据库(如 MySQL、PostgreSQL)或非关系型数据库(如 MongoDB、Cassandra),以有效存储用户的知识数据。 设计合理的数据表结构,包括用户信息表、知识条目表、知识分类表等,确保数据的组织和关联清晰。 2. 知识录入与编辑 提供直观的用户界面,方便用户录入知识,支持多种格式,如文本、图片、音频、视频等。 具备知识编辑功能,允许用户修改、更新和完善已录入的知识。 3. 知识分类与标签 建立灵活的知识分类体系,让用户能够将知识分类存放,便于查找和管理。 支持用户为知识添加自定义标签,提高知识检索的准确性。 4. 搜索与检索功能 实现强大的搜索功能,支持全文搜索、关键词搜索、模糊搜索等多种搜索方式。 优化搜索算法,确保快速返回准确的搜索结果。 5. AI 模型集成 选择适合的 AI 模型,如自然语言处理模型,用于理解用户的问题和生成答案。 对 AI 模型进行训练和优化,使其能够基于用户的知识库提供准确和有用的回答。 6. 用户权限管理 设定不同的用户权限级别,如管理员、普通用户等,控制用户对知识库的操作权限,保障数据安全。 7. 数据备份与恢复 定期自动备份知识库数据,以防止数据丢失。 提供数据恢复功能,确保在意外情况下能够快速恢复知识库。 8. 界面设计 设计简洁、美观、易用的界面,提高用户体验。 遵循用户习惯和人机交互原则,使操作流程简单直观。 9. 性能优化 对软件进行性能优化,确保在处理大量知识数据时仍能保持高效运行。 10. 测试与迭代 进行充分的测试,包括功能测试、性能测试、用户体验测试等。 根据用户反馈和实际使用情况,不断迭代优化软件功能。 希望以上建议对您有所帮助,祝您成功设计出满足需求的知识库管理软件!
2024-10-29