直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

ai现状

回答

2024 年人工智能现状如下:

  • 研究方面:
    • OpenAI 的 o1 模型在推动深度强化学习推理方面表现出色,但每个 token 的成本较高。
    • Meta 用 15 万亿 token 训练出 Llama 3.1 模型,但其开放程度有待定义。
    • 存在数据污染闹剧,一些模型的出色表现可能是因为训练集被基准数据污染。
  • 未来预测:
    • 预计明年会有团队花费超 10 亿美元训练单个大型模型,生成式 AI 热潮持续且更“奢华”。
    • 政府和大型科技公司将继续承受计算需求逼近电网极限的压力。
    • 需警惕 AI 介入选举的影响。
  • 其他情况:
    • OpenAI 的 o1 模型重新定义 AI 在数学、科学和推理方面的极限。
    • 中国的模型无视制裁正在崛起。
    • 生成式 AI 初创公司盈利丰厚,但可持续性存疑。

相关报告链接:

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

2024 年人工智能现状:辉煌、戏谑和“牛市”

亲爱的读者们,热烈欢迎踏入这篇关于2024年人工智能现状的奇妙文章——《AI现状报告》第七版!这里不仅展示了AI领域的辉煌成就和艰巨挑战,还穿插了一些让人捧腹大笑的荒诞画面。这份报告就像是一碗热辣辣的四川火锅,麻辣鲜香,让人欲罢不能。[heading3]研究篇:边缘竞赛(及以后)[content]OpenAI的o1模型:这个新来的“壮汉”正在疯狂推动深度强化学习的推理,代价嘛,就是和现在全球都在降本增效的“降本”格格不入。它解决问题的能力一流,但每个token的成本,都让你自我怀疑,是的“世界上只有一种病,就是穷病”而“日渐见底的荷包,显然是你我的问题,不是它的问题……”毕竟一个一心进取、不断自我突破的OpenAI有什么坏心眼呢,是吧!🙂Meta的Llama 3:Meta这次可是拼了,不顾一切(甚至忘了Chinchilla最优限制),用15万亿token训练出了Llama 3.1模型。Llama的力量现在是大白于天下,但“开放”的程度嘛,得看你怎么定义“开放”🙂数据污染闹剧:是的!一些模型的出色表现可能是因为……作弊,而且方法既不先进也不高端——训练集被基准数据污染。因此目前的通用测试对它们来说,就是明晃晃的开卷考试。看起来AI正在追随“每个有天赋的孩子”的脚步,通过已经给了答案的内定考试?!

2024 年人工智能现状:辉煌、戏谑和“牛市”

更多资金,更多问题:预计明年会有团队花费超过10亿美元来训练单个大型模型。生成式AI的热潮不会消退,只会变得更加“奢华”。😱计算压力的挑战:政府和大型科技公司将继续承受计算需求的压力,这些需求已经逼近电网的极限。这就像一个健身网红的体重增长超过了突破了牛顿定理、超过了人类健身房的承重能力——总有一天,天花板可能会真的塌下来。😱AI介入选举:虽然预期的AI对选举和就业的影响尚未成真,但这并不意味着我们可以掉以轻心。但请记住,AI的影响就像潘多拉魔盒:一旦打开,将会在接下来的几年里、几十年甚至百年亦或是人类此后的历史中都无处不在。而众所周知,诚如百年前的黑格尔所预言的那样,我们人类啊!从历史中获得唯一的教训就是……我们没有从历史中获得任何教训!🤔总而言之,言而总之,人工智能领域依然是一个充满惊喜、伦理挑战和很多真金白银的奇妙世界。在这个舞台上,OpenAI、Meta和来自东方的神秘力量等各方势力竞相角逐,2024年的AI领域更像是一场激动人心的UFC(无限制综合格斗冠军赛)比赛而非平静的学术研讨会。所以,请准备好你的爆米花和GPU吧——新的一年里,AI将继续突破界限、挑战极限,甚至可能重新定义一些我们熟悉的词汇!

2024 年人工智能现状:辉煌、戏谑和“牛市”

探索人工智能的过山车之旅,充满着《让子弹飞》(嗯,中文世界的非物质文化遗产)中那些越品越有的梗,过度解读?低估还是唱衰唯有时间这条长河可以给予我们终极答案……[heading2]太长不看![content]但如果有空!还是请看我顶着高烧,在抖包袱又表面平和、不断搜寻脑海中的词汇、尝试用滑稽的幽默来博君一笑努力吧!again,以下内容anti-AI!人工撰写by 🦄ChaXOpenAI的o1模型主导:OpenAI最新推出的o1模型正在重新定义AI在数学、科学和推理方面的极限,使竞争对手困惑甚至“破产”。中国的AI崛起:无视制裁,中国的模型凭借坚韧和战略智慧正在“屠榜”,证明他们也仍然在牌桌之上……生成式AI的数十亿繁荣:AI初创公司正赚得盆满钵满,但可持续性仍然像一个能理解细微差别的聊天机器人一样难以捉摸。报告链接:[The State of AI 2024](https://www.stateof.ai/)(友情提示,报告212页)|[报告的中文翻译版](https://waytoagi.feishu.cn/record/QdFmrUoueeS3Tucpm8Icntf1nJh)英文解读链接:[The State of AI 2024:Brilliance,Banter,and Bull Runs](https://esg4lgjwa43v.sg.larksuite.com/wiki/RXn1wNWgJifxcDkgsDWl8UjAgFb?from=from_copylink)

其他人在问
好用的视频创作AI工具有哪些
以下是一些好用的视频创作 AI 工具: 1. 根据视频脚本生成短视频的工具: ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架,实现从文字到画面的快速转化。 PixVerse AI:在线 AI 视频生成工具,支持将多模态输入转化为视频。 Pictory:AI 视频生成器,用户提供文本描述即可生成相应视频内容。 VEED.IO:提供 AI 图像和脚本生成器,帮助从图像制作视频并规划内容。 Runway:将文本转化为风格化视频内容,适用于多种场景。 艺映 AI:专注人工智能视频,提供文生视频、图生视频、视频转漫等服务。 2. 给视频配音效的 AI 工具: Wavel Studio:支持 30 多种语言配音,音质自然流畅,能自动去除背景噪音和杂音,提供添加字幕和文本叠加层工具,界面友好且有多种自定义选项。 Elai.io:支持 65 多种语言配音,音色和语调真实,自动将唇形与语音同步,生成字幕提高视频可访问性,支持多位配音者。 Rask AI:支持 130 多种语言配音,包括稀有和濒危语言,采用先进语音合成技术,音质高保真,提供语音参数自定义和音效添加工具,与多种视频编辑平台和工作流程整合。 Notta:提供快速实惠的多语言配音解决方案,保留原声说话风格和细微差别,提供调整语音速度和音调工具,支持批量处理。 Dubverse:支持 60 多种语言配音,音质接近真人,提供文本转语音和语音克隆功能,提供语音参数自定义和情感添加工具,与多种视频平台和社交媒体渠道整合。 此外,在进行 AI 短片创作时,除了使用上述工具,还需考虑故事来源。比如原创,可基于自身或周围人的经历、做过的梦、想象的故事等;也可改编经典 IP、名著、新闻或进行二创。剧本写作方面,短片创作篇幅较小、情节和角色相对简单,可从自身或朋友经历改编入手,或对触动自己的短篇故事进行改编。多与他人讨论故事,有助于修改和进步。
2024-12-20
免费的可以进行excel数据处理的AI工具
以下是一些免费的可以进行 Excel 数据处理的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术新增了生成式 AI 功能,允许用户在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户可通过聊天形式告知需求,让 Copilot 自动完成如数据分析或格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户能通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 这些工具通过 AI 技术提升了 Excel 的数据处理能力,让用户能更高效地进行数据分析和决策。随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-20
excel数据整理的AI工具
以下是一些用于 Excel 数据整理的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术新增了生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了包括 Excel 在内的多种办公软件,用户通过聊天形式告知需求,Copilot 会自动完成任务,如数据分析、格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户能通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。但需注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-20
我的论文aicg率太高了,我如何降低aigc率
以下是一些常用的 AIGC 论文检测网站和工具,以及它们的功能和使用方法,可帮助您降低论文的 AIGC 率: 1. Turnitin: 功能:是广泛使用的学术剽窃检测工具,最近增加了检测 AI 生成内容的功能。 使用方法:用户上传论文,系统自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape: 功能:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。 使用方法:输入文本或上传文档,系统扫描网络以查找相似或重复内容。 3. Grammarly: 功能:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。 使用方法:将文本粘贴到 Grammarly 的编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck: 功能:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。 使用方法:上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. : 功能:专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。 使用方法:上传文档或输入文本,系统提供详细报告,包括可能的 AI 生成内容。
2024-12-20
制图ai
以下是一些关于制图 AI 的相关信息: 常用的 AI 绘图工具: 1. Creately:是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。具有智能绘图功能、丰富的模板库和预定义形状以及实时协作功能。官网:https://creately.com/ 2. Whimsical:专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。具有直观的用户界面、支持拖放操作以及多种协作功能。官网:https://whimsical.com/ 3. Miro:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。具有无缝协作、丰富的图表模板和工具以及支持与其他项目管理工具集成的特点。官网:https://miro.com/ 4. Lucidchart:强大的在线图表制作工具,集成 AI 功能,可自动化绘制流程图、思维导图、网络拓扑图等多种示意图。具有拖放界面、支持团队协作和实时编辑、丰富的模板库和自动布局功能。官网:https://www.lucidchart.com/ 5. Microsoft Visio:专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可帮助自动化布局和优化图表设计。集成 Office 365,方便与其他 Office 应用程序协同工作,具有丰富的图表类型和模板,支持自动化和数据驱动的图表更新。官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 6. Diagrams.net:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。支持本地和云存储(如 Google Drive、Dropbox),具有多种图形和模板,易于创建和分享图表,可与多种第三方工具集成。官网:https://www.diagrams.net/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:若需要团队协作,可邀请团队成员一起编辑。完成后导出并分享图表。 辅助创建 CAD 图的 AI 工具: 1. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件,能创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 生成设计工具:一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供基于 AI 的生成设计工具,可根据用户输入的设计目标和约束条件自动产生多种设计方案。 需要注意的是,这些工具通常需要一定的 CAD 知识和技能才能有效使用。对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。
2024-12-20
学习AI
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 体验 ChatGPT、Midjourney 等 AI 生成工具。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-20
国内C端AI设备现状及市场容量
目前国内 C 端 AI 设备市场正处于快速发展阶段,但具体的现状和市场容量会受到多种因素的影响。 在现状方面,C 端 AI 设备的种类日益丰富,涵盖了智能音箱、智能手表、智能家居设备等多个领域。这些设备在功能上不断创新和优化,为用户提供更加智能化、便捷化的服务。 然而,关于市场容量的确切数据会因市场调研机构、统计时间和方法的不同而有所差异。一般来说,随着消费者对智能化生活需求的增长,C 端 AI 设备的市场容量呈现出逐步扩大的趋势。但要获取准确、详细和最新的市场容量数据,建议参考权威的市场研究报告和专业的行业分析。
2024-12-18
ai的现状和未来发展趋势
目前人工智能的现状和未来发展趋势如下: 现状: 更多资金投入:预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮持续且更加“奢华”。 计算压力挑战:政府和大型科技公司承受着逼近电网极限的计算需求压力。 AI 介入选举:虽预期影响尚未成真,但需保持警惕。 未来发展趋势: 专业化细分:从通用能力转向专注特定领域或功能,如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理等,各细分领域不断提升核心能力,提供更精准高质量服务。 商业模式创新:包括 ToB 市场深耕(如针对内容创作者的 ReadPo)、新型广告模式(如天宫搜索的“宝典彩页”)等,从技术展示向解决用户痛点和创造商业价值转变。 应用场景不断扩展,包括但不限于: 自动驾驶,提高交通安全性和效率。 交通管理,优化信号灯和交通流量,缓解拥堵。 物流和配送,优化路线和计划,降低运输成本。 无人机送货,快速送达偏远地区。 教育,提供个性化学习体验。 农业,分析农田数据,提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用,提高能源效率。 未来人工智能将对我们的生活产生更加深远的影响。
2024-12-07
ai现状
2024 年人工智能现状如下: 研究方面: OpenAI 的 o1 模型在推动深度强化学习推理方面表现出色,但每个 token 的成本较高。 Meta 用 15 万亿 token 训练出 Llama 3.1 模型,但其开放程度有待定义。 存在数据污染闹剧,一些模型的出色表现可能是因为训练集被基准数据污染。 未来预测: 预计明年会有团队花费超 10 亿美元训练单个大型模型,生成式 AI 热潮持续且更“奢华”。 政府和大型科技公司将继续承受计算需求逼近电网极限的压力。 需警惕 AI 介入选举的影响。 其他情况: OpenAI 的 o1 模型重新定义 AI 在数学、科学和推理方面的极限。 中国的模型无视制裁正在崛起。 生成式 AI 初创公司盈利丰厚,但可持续性存疑。 相关报告链接: 英文解读链接:
2024-11-20
AGI发展现状
AGI(通用人工智能)的发展现状如下: OpenAI 自 2015 年成立以来,一直将 AGI 作为战略目标之一,随着技术发展,如 ChatGPT、多模态大模型和 AI Agent 等,我们似乎越来越接近这一目标。 AGI 有五个发展等级: 聊天机器人:具备基本对话能力,依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者:具备人类推理水平,能解决复杂问题,如 ChatGPT,可根据上下文和文件提供详细分析和意见。 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 组织:最高级别,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 AlphaGeometry 结合神经语言模型的预测功能和基于规则的推理引擎找出解决方案,并采用生成大量合成训练数据的方法解决数据短缺问题。 Sam 表示通用人工智能(AGI)的发展指日可待,但它对世界的影响可能比预期小。OpenAI 正在与美国军方合作开发开源网络安全软件,努力预防退伍军人自杀,且开发武器和有害工具不被允许。 2024 年内 AGI 的机会点包括:图片超短视频的精细操控;有一定操控能力的生成式短视频;AI 音频能力长足进展;“全真 AI 颜值网红”出现;游戏 AI NPC 有里程碑式进展;AI 男/女朋友聊天基本成熟;实时生成的内容开始在社交媒体内容、广告中出现;AI Agent 有明确进展;AI 的商业模式开始有明确用例;可穿戴全天候 AI 硬件层出不穷;中国 AI 达到或超过 GPT4 水平,美国出现 GPT5,世界上开始现“主权 AI”;华为昇腾生态开始形成,国内推理芯片开始国产替代;AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野并引发担忧;AI 立法、伦理讨论仍大规模落后于技术进展。 2025 2027 年的发展预测包括:AI 3D 技术、物理规则成熟;全真 AI 虚拟人成熟;AR/VR 技术大规模商用;接近 AGI 的技术出现;人与 AI 配合的工作方式成为常态,很多日常决策由 AI 执行;AI 生产的数据量超过全人类生产数据量,“真实”成为稀缺资源;具身智能、核聚变、芯片、超导、机器人等技术有明显进展突破;“人的模型”出现,出现“集中化 AGI”与“个人 AGI”的历史分叉;AI 引发的社会问题开始加重,结构性失业开始出现;AGI 对于地缘政治的影响开始显露。
2024-10-29
人工客服机器人发展现状
目前人工客服机器人的发展情况如下: 聊天机器人工作状况良好,可通过 LangSmith 跟踪检查其最新运行情况。 设计可能已满足需求,代码封闭,行为符合预期。 但存在潜在问题,对单个提示压力较大,若添加更多工具或工具更复杂,机器人使用工具的效率和整体行为可能受影响。 后续将展示如何通过根据用户意图将其引导至专业代理或子图,来更精确控制不同用户体验。
2024-09-10
帮我写一篇有关aigc的行业分析,标题为《AIGC行业洞察与概览》,其中框架内容包含以下部分,整体3万字 - 概念导入(AI、AIGC) - AI与人的区别 - AI衍生发展历程(诞生、发展、现状-中外各平台产品及语言模型介绍) - AI在社会各领域的应用实践 - AI技术的底层逻辑概览 - AI的弊端以及风险
以下是为您生成的《AIGC 行业洞察与概览》的部分内容: 一、概念导入 (一)AI 人工智能(Artificial Intelligence,简称 AI)是一种目标,旨在让机器展现智慧。 (二)AIGC GenAI(即生成式 AI)是一种能够从已有数据中学习并生成新的数据或内容的 AI 应用,利用 GenAI 创建的内容即 AIGC(全称 AIGenerated Content)。AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 二、AI 与人的区别 三、AI 衍生发展历程 (一)诞生 (二)发展 (三)现状 1. 中外各平台产品及语言模型介绍 (1)语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 GeminiUltra。 (2)图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,代表项目有 Stable Diffusion 和 StyleGAN 2。 (3)音视频生成利用扩散模型、GANs 和 Video Diffusion 等,代表项目有 Sora 和 WaveNet。 四、AI 在社会各领域的应用实践 AIGC 技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 五、AI 技术的底层逻辑概览 (一)机器学习:一种让机器自动从资料中找到公式的手段。 (二)深度学习:一种更厉害的手段,类神经网络,具有非常大量参数的函数。 (三)大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称 LLMs。 六、AI 的弊端以及风险 作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 由于篇幅限制,目前仅能为您提供约 2000 字的内容,距离 3 万字还有较大差距。后续还需要进一步丰富和完善各个部分的细节及案例分析等。
2024-09-03