直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

有什么辅助展陈设计的智能体

回答

以下是一些可能辅助展陈设计的智能体:

  • 摊位 41:MBTI 开运写真/头像。
  • 摊位 42:多模型、多平台 AI 对话软件,产品宣传+移动端 chatAI。
  • 摊位 43:主产品为 AI 脑筋急转弯和 AI 谜语问答,辅产品为提供关于 AI 绘画、AI 视频和 AI 智能体的相关困惑解答。
  • 摊位 44:技术与工具教学-agent 技巧,包括六种 agent 设计方法教学。
  • 摊位 45:一键定制专属徽章,可现场拍照或使用客户自备图片,通过 AI(SD,Comfy Ul 等)转绘风格并现场打印制作实物徽章。

具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。其核心在于智能体的“身体”或“形态”,涉及多个学科,在机器人、虚拟现实等领域有广泛应用,但仍面临诸多挑战。

关于扣子上的多 Agent 模式:配置包括全局设置(涉及角色设定与回复逻辑、记忆管理、对话体验等)和多个代理之间的编排协调。设计时要解决全局设置中的人物设定与回复逻辑填充问题,注重智能体的交互流程形成完整互动链条,采用循环机制而非单向流程,以旅游场景为例,可设计景点推荐、路线规划和食宿安排等智能体。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

摊位信息

|你的摊位活动主题和内容|摊位区域|摊位编号|摊位类型||-|-|-|-||MBTI开运写真/头像|D|41|照片||多模型,多平台AI对话软件,可以在电脑上,手机上实时与AI模型聊天,数据共通,支持语音输入,图片输入,文字输入.将AI融入生活,真正让AI成为生活的小助手.|D|42|产品宣传+移动端chatAI||主产品:【AI脑筋急转弯和AI谜语问答】<br>回答AI提出的脑筋急转弯题目或者谜语题目,如果回答正确任选摊位礼品,以资鼓励;如果回答错误也会有纪念奖,以作安慰。<br>辅产品:【摊位伙伴可提供关于AI绘画、AI视频和AI智能体的相关困惑解答】<br>预计一同前往3-4个人,分别对AI绘画、AI视频和AI智能体有一定的研究和理解。|D|43|脑筋急转弯||技术与工具教学-agent技巧。<br>六种agent设计方法教学<br>1.现场跑6种agent的设计demo-体验agent的魅力(10积分教学体验)<br>2.售卖教学资料u盘内含所有教学演示代码-直接带回家(60积分)|D|44|教学||一键定制你的专属徽章<br>我们分两种形式<br>1.现场拍照,AI(SD,Comfy Ul等)转绘想要的风格,现场打印制作实物徽章<br>2.客户自己准备的图片,AI(SD,Comfy Ul等)转绘想要的风格,现场打印制作实物徽章|D|45|徽章|

问:具身智能是什么?

具身智能(Embodied Intelligence)是人工智能领域的一个子领域,它强调智能体(如机器人、虚拟代理等)需要通过与物理世界或虚拟环境的直接交互来发展和展现智能。这一概念认为,智能不仅仅是处理信息的能力,还包括能够感知环境、进行自主导航、操作物体、学习和适应环境的能力。具身智能的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。这些身体不仅为智能体提供了与环境互动的手段,也影响了智能体的学习和发展。例如,一个机器人通过其机械臂与物体的互动,学习抓取和操纵技能;一个虚拟代理通过在游戏环境中的探索,学习解决问题的策略。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,具身智能关注的是如何设计能够自主行动和适应环境的机器人;在认知科学和神经科学中,研究者探索大脑如何处理与身体相关的信息,以及这些机制如何应用于人造智能系统;在计算机视觉中,研究者致力于开发算法,使智能体能够理解和解释视觉信息,从而进行有效的空间导航和物体识别。具身智能的一个重要应用是在机器人领域,特别是在服务机器人、工业自动化和辅助技术等方面。通过具身智能,机器人可以更好地理解和适应人类的生活环境,提供更加自然和有效的人机交互。此外,具身智能也在虚拟现实、增强现实和游戏设计等领域有着广泛的应用,通过创造更具沉浸感和交互性的体验,丰富了人们的数字生活。尽管具身智能在理论和技术上取得了显著进展,但它仍面临许多挑战。例如,如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变的环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。

一文读懂扣子上的多 Agent 模式

首先,让我们一起深入探索扣子上的多智能体模式设置。这个配置主要包括两个核心部分。第一部分是全局设置,涉及角色设定与回复逻辑、记忆管理以及对话体验等全局性因素。第二部分则关注于多个代理之间的编排和协调。这两大设置共同构成了多智能体模式的详细框架。那么,我们首先需要解决的问题是:在全局设置中,人物设定与回复逻辑应如何填充?简单来说,我们需要在“人物设定与回复逻辑应”中明确整体的人物设定,这更侧重于角色的塑造,而非仅仅是业务流程的描述。(因为这是偏向于全局的设置)接下来,我们来考虑一下智能体的交互流程。我们的设计思路的关键在于,让这些节点形成一个完整的互动链条,而不单单是一次性互动。同时,当用户的意图尚未满足跳转条件时,应保持与当前智能体的沟通和对话。所以,我们的设计思路大概是这样的(见下图)此外,在观察这张图时,大家还可以发现一个关键点:我们在图中实现的是一个循环机制,而不是单向的流程。如果仅仅采用单向流程,那么将像工作流一样,随着对话的进行逐步跳转,直至最后一个智能体。在这种情况下,将无法从最后一个智能体跳转回初始状态。因此,在设计需要多轮协作的智能体时,我们应该在多智能体编排页面中,设计这些智能体的交互为一个闭环结构。这确保了用户在整个对话过程中能够自由地在不同智能体之间切换,克服了单向交互的限制。让我们通过一个具体的例子来更好地理解这一概念。以旅游场景为例,我们将设计三个智能体:分别负责景点推荐、路线规划和食宿安排。让我们先把提示词写出来。同时,我们还应做好全局人物设定:当准备好提示词后,就可以开始在扣子上进行编排了,这里我省略了创建和填充的步骤,最终呈现的效果是这样的:

其他人在问
怎么通过AI辅助创作一个小程序
以下是通过 AI 辅助创作小程序的步骤: 1. 基础小任务 让 AI 按照最佳实践为您写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,从而学会必备的调试技能。 如果使用 o1mini,可以在提示词最后添加“请生成 create.sh 脚本(Windows 机器则是 create.cmd),运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本”,勤勉的 o1mini 会为您生成代码并给出提示,复制粘贴并执行即可一次性生成多个目录和文件。 2. 明确项目需求 通过与 AI 的对话,逐步明确项目需求。如果您是训练有素的产品经理,可以忽略这一步。 让 AI 帮助梳理出产品需求文档,包含影响技术方案选择的细节,后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 案例参考 您可以参考以下案例获取更多灵感和方法: 使用 GPT 的视觉功能和 TTS API 处理和讲述视频:这个笔记本演示了如何通过视频使用 GPT 的视觉功能。GPT4 不直接将视频作为输入,但可以使用视觉和新的 128 K 上下文 widnow 来同时描述整个视频的静态帧。 开发:GLM 等大模型外接数据库:可以调整 prompt,匹配不同的知识库,让 LLM 扮演不同的角色,如上传公司财报充当财务分析师、上传客服聊天记录充当智能客服、上传经典 Case 充当律师助手、上传医院百科全书充当在线问诊医生。 开发:微信小程序:手把手教如何利用 chatgpt 来实现微信小程序的搭建,包括注册和开发上线。 开发:知识库/聊天机器人搭建安全提示词 prompt 。 需要注意的是,在开发过程中可能会遇到挫折,如问题描述不清楚导致得到错误指引、AI 给出的方案复杂或代码正确但其他配置错误等。小白最好通过 AI 能直接搞定的小项目先学明白背后的原理,在此基础上开发复杂项目,同时最好有人类导师将任务拆解到足够小,针对性地设计学习路径,并密切关注随时帮助解决问题。
2024-11-18
帮助修改论文,提供科研论文辅助, 有哪些推荐,
以下是一些在论文写作和修改方面的推荐: 一、文献管理和搜索 1. Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 2. Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 二、内容生成和辅助写作 1. Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升论文语言质量。 2. Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 三、研究和数据分析 1. Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 2. Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 四、论文结构和格式 1. LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 2. Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 五、研究伦理和抄袭检测 1. Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 2. Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 如果您是医学课题需要修改意见,以下工具可供考虑: 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 2. Scholarcy:可提取文档结构化数据,生成文章概要,包含关键概念等板块内容。 3. ChatGPT:强大的自然语言处理模型,能提供修改意见。 此外,对于学术论文辅助创作,还可参考以下步骤:作为资深研究者和教授,先请求数据集和研究领域,分析数据后制定至少三个研究假设,进行文献综述并修正假设,使用 Code Interpreter 技术进行假设检验,最后撰写包含理论、文献综述、研究方法和研究结果的论文并以 Word 文档形式提交。内容原文地址:https://www.moreusefulthings.com/prompts 。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。
2024-11-18
适合辅助英语教学的AI助手或者提示词
以下是一些适合辅助英语教学的 AI 助手和提示词相关的信息: AI 助手: Grammarly:可进行英语写作和语法纠错,改进英语表达和写作能力。 Call Annie:用于口语练习和发音纠正,提供实时反馈和建议。 Duolingo:自适应学习平台,为用户量身定制学习计划,提供个性化英语学习内容和练习。 ChatGPT:可进行英语会话练习和对话模拟,提高交流能力和语感。 提示词: 提示词设计公式之——RTFC: 角色:指定 AIGC 所扮演的角色。 任务:明确告诉 AIGC 要完成什么任务。 要求:概述这个任务需要遵守的规则、标准和实现的结果。 说明:提供更多关于任务和要求的详细具体上下文信息。 生成式人工智能教学应用举例(1):收集整理语料: 帮我列举场景下的常用【英语】词汇 50 个。 把以上词汇转换成表格形式输出。 到【医院就医】的时候,常用的【英语】句型有哪些? 用【英语】表达【心情】【不愉快】的句式有哪些? 在【英语高考作文试题】中,常用的表达句型有哪些?并给出例句。 请你给中学生介绍《论语》的主题思想,并将《论语》的 10 条名句翻译成英语。 注:可以把蓝色字体替换成不同的语种和场景,教师根据不同的教学场景,设计恰当的提示词,用生成式人工智能辅助教学。
2024-11-15
适合辅助教学的AI助手或者提示词
以下是一些适合辅助教学的 AI 助手和提示词相关的内容: 教师的 AI 减负指南中提到,提示词技能是教师用好人工智能的基本教学技能。提示词技能指用户设计提供给生成式人工智能大模型的一段文字或文本的技能,其内容决定了 AIGC 生成内容的质量。提示词设计公式为 RTFC,包括指定 AIGC 所扮演的角色、明确告诉 AIGC 要完成的任务、概述任务需要遵守的规则、标准和实现的结果,以及提供更多关于任务和要求的详细具体上下文信息。例如,生成式人工智能教学应用举例中,教师可以设计提示词“帮我列举场景下的常用【英语】词汇 50 个”“把以上词汇转换成表格形式输出”等。 对于 SD 新手,有一些提示词相关的资源,如 Majinai: 等。 沃顿商学院给教师和学生提供了提示词库,教师专用提示中提到,作为教学助理,要协助教师规划课程,先向老师介绍自己并询问教学科目及学生层次,等待回复。然后根据老师的情况,如是否有教学大纲等,进行后续的沟通和建议。
2024-11-15
我想请教一些问题 1:目前有哪些AI教育类产品 2:目前有哪些AI辅助学习类产品 3:有哪些AI辅助学习的好用的方法
以下是关于您所提出问题的回答: 目前的 AI 教育类产品和 AI 辅助学习类产品有: 语言学习方面:Speak、Quazel、Lingostar 等是由 AI 驱动的语言老师,能够实时交流并给予发音或措辞反馈;Grammarly 可进行英语写作和语法纠错。 数学学习方面:Photomath、Mathly 可指导学生解决数学问题;Khan Academy 有自适应学习系统。 综合学习方面:Duolingo 是自适应学习平台,能为用户提供个性化学习内容和练习。 AI 辅助学习的好用方法包括: 英语学习:利用智能辅助工具如 Grammarly 改进写作和语法;通过语音识别应用如 Call Annie 练习口语和纠正发音;使用自适应学习平台如 Duolingo 获得个性化学习计划;借助智能对话机器人如 ChatGPT 进行会话练习。 数学学习:运用自适应学习系统如 Khan Academy 获取精准推荐;使用智能题库和作业辅助工具如 Photomath 获得问题解答和解题步骤;借助虚拟教学助手如 Socratic 解答问题、观看教学视频和获得答疑服务;参与交互式学习平台如 Wolfram Alpha 进行数学建模和问题求解。
2024-11-12
AI创作辅助工具对创作效率提升的对比图。
以下是一些关于 AI 创作辅助工具对创作效率提升的相关信息: ChatGPT 命令工具上线,提供搜索、图像、O1 推理三种命令,使普通模型具备高级推理能力,所有模型均支持命令调用,显著提升了 ChatGPT 的整体能力。相关链接: ChatGPT 4.0 Canvas 功能助力写作,提供思路、润色语言、内容扩展,支持快速修改与撤回版本,极大提升写作效率,成为写网文赚钱的有力工具,未来或将支持多人协作、数据图表生成、甚至直接生成 PPT。相关链接: 基于《救猫咪》的研究表明,让 AI 写小说存在一些问题,如上下文长度限制、忘记要求、文笔简略、一致性难以保证等。但人类可能会犯的一些问题,AI 不容易犯。同时,AI 对叙述方式敏感,写 prompt 时需保持用词一致。AI 只是辅助创作,最后仍需人工加工修改。可辅助创作的 AI 工具包括擅长构思的 ChatGPT、文笔好于 ChatGPT 的 Claude,还有彩云小梦、Kimi、MidReal 等以及其他开源模型。
2024-11-11
如何将传统知识库通过LLM能力转化成更智能与精细化的知识库?包括但不限于分段、QA问答和图片解析描述和总结
将传统知识库通过 LLM 能力转化为更智能和精细化的知识库是一个复杂但可行的过程,以下是一些关键步骤和方法: 1. 数据预处理:对传统知识库中的内容进行清理、格式化和标准化,确保数据的质量和一致性。 2. 内容分段:根据主题和逻辑结构,将长篇的知识内容合理分段,使信息更易于理解和处理。 3. 提取关键信息:从文本中提取重要的概念、实体和关系,为后续的问答和总结做准备。 4. 构建 QA 问答对:分析知识库中的内容,设计有针对性的问题和准确的答案,形成问答对,以方便用户快速获取所需信息。 5. 图片解析描述:对于包含图片的内容,使用图像识别技术提取关键元素,并进行详细的描述和解释。 6. 总结归纳:对分段后的内容进行总结,提炼核心要点,帮助用户快速了解主要内容。 在实施过程中,需要不断优化和调整方法,以确保转化后的知识库能够满足用户的需求,提供更高效和准确的服务。
2024-11-18
智能客服
智能客服相关信息如下: GPT 智能客服: GPTs 是 GPT 的一种 ID 账号形态,类似微信公众号,用户可开发自己垂类应用。其开放门槛低,基本是 0 代码,开发方式包括自然语言(prompt)、知识库(knowledge)、第三方 API 对接(Action)。GPTs 实现了目前最强的智能客服,具有对话流畅、多观点融合、答案准确等特点,但不太擅长推理计算。实现原理是将 FAQ 上传到知识库,让 GPTs 具有客服应答能力。猜测类似检索增强生成技术(RAG),将知识库(knowledge)和问题(prompt)一起做 embedding,扔给 LLM 作答。 源地址: 零成本、零代码搭建智能微信客服: 平台选择扣子(官网地址:https://www.coze.cn)。扣子是新一代一站式 AI Bot 开发平台,无论是否有编程基础,都可以在扣子平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话,还可以将搭建的 Bot 发布到各类社交平台和通讯软件上。
2024-11-18
一个大学生,如果要了解学习通用人工智能,提高其通用人工智能素养,请给出你的建议
以下是给大学生了解学习通用人工智能、提高通用人工智能素养的建议: 1. 从编程语言入手学习: 可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续学习打下基础。 2. 尝试使用 AI 工具和平台: 体验如 ChatGPT、Midjourney 等 AI 生成工具,了解其应用场景。 探索百度的“文心智能体平台”、Coze 智能体平台等面向大学生的平台。 3. 学习 AI 基础知识: 掌握 AI 的基本概念、发展历程。 熟悉主要技术,如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注权威媒体和学者,了解最新进展。 思考 AI 技术对未来社会的影响,培养思考和判断能力。 6. 深入学习数学知识: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 7. 掌握算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解基本概念。 8. 了解评估和调优: 性能评估:学会评估模型性能的方法,如交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 9. 学习神经网络基础: 网络结构:理解前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-17
典型的通用人工智能应用有哪些
以下是一些典型的通用人工智能应用: 1. 医疗保健: 医学影像分析:用于辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出贷款决策。 投资分析:辅助投资者决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:根据客户数据推荐产品。 搜索和个性化:改善搜索结果和提供个性化体验。 动态定价:根据市场需求调整价格。 聊天机器人:回答客户问题和解决问题。 4. 制造业: 预测性维护:预测机器故障。 质量控制:检测产品缺陷。 供应链管理:优化供应链。 机器人自动化:提高生产效率。 5. 交通运输:暂未提及具体应用。 此外,通用人工智能模型还具有以下特点: 大型生成式人工智能模型可以灵活生成文本、音频、图像或视频等内容,适应各种不同任务。 当通用人工智能模型集成到人工智能系统中,该系统可服务于各种目的。 通用人工智能模型的提供者在人工智能价值链中具有特殊作用和责任,应提供适度的透明度措施和相关文件。
2024-11-17
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前,AGI 还只是一个理论概念,尚未有任何 AI 系统能达到这种通用智能水平。实现 AGI 是人工智能研究的长期目标,这需要开发出在各种任务和环境中都能够进行推理、学习、理解和适应的 AI 系统。 OpenAI 在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是处理人类的自然语言。 LLM:大型语言模型(Large Language Model),数据规模很大,耗费资金多。
2024-11-17
你觉得人工智能带给人类的到底是提升还是毁灭呢?
人工智能带给人类的影响既有提升也有潜在的挑战,但并非必然导致毁灭。 从提升的方面来看: 技术上可以解决类似于社会歧视等问题,如通过 RLHF 等方法。 优化工作效率,虽然可能导致某些岗位的调整,但实际每个工作的组成部分不是单一的,人可以和人工智能更好地协同。例如放射科医生的案例,解读 X 光照片只是其工作的一部分,实际并未失业。 可以成为解决气候变化和大流行病等问题的关键。 作为自主的个人助理,代表人们执行特定任务,如协调医疗护理。帮助构建更好的下一代系统,并在各个领域推动科学进展。 潜在的挑战和担忧包括: 可能放大人类的负面影响,需要在技术层级加以解决。 导致失业,但能掌握人工智能的人会取代不会的人。 存在人类毁灭的担忧,不过目前此类观点缺乏具体的说明和论证。 对于强人工智能,目前 ChatGPT 的崛起引发了相关讨论,但通用技术并非等同于强人工智能。对于复杂的神经网络和黑箱模型的研究仍在进行,如何使用和控制这些模型是业界和社会争论的热点。科技公司倾向于训练辅助人类的超级智能助手,而非自我改进升级的超级智能体,以推动新一轮的工业革命和经济增长。 总之,人工智能的发展带来了巨大的机遇和挑战,需要我们聪明而坚定地采取行动,以实现其正面影响并应对潜在风险。
2024-11-16
我是一个有着20年logo设计经验的资深设计师,我想为一个心理精神科诊所设计一套VI,请推荐一个AI软件
目前在 VI 设计方面,有一些常用的 AI 软件,比如 Adobe Illustrator ,它具有强大的绘图和编辑功能,能够满足您对高质量图形设计的需求;还有 Sketch ,其界面简洁,操作相对便捷。不过,具体选择哪款软件还需根据您的个人使用习惯和具体设计要求来决定。
2024-11-18
产品经理功能设计prompt
以下是为您整理的关于产品经理功能设计的相关 prompt: 创建客户旅程:帮您写一段客户旅程,该产品功能为{功能描述},用户画像是{用户特征描述,如年龄、性别等};为{具有功能的产品}创建针对{受众人口统计,如性别、年龄组等}的客户旅程。客户旅程应该包括用户角色、场景、目标和期望,以及接触点的体验。此外,提供有助于改善客户旅程的机会和问题等见解。 竞争对手分析:帮您分析几个竞争对手,可以列出产品名字;通过研究提供类似产品或功能的公司,分析{产品/功能}的竞争对手。使用表格格式组织调查结果:公司名称|资金来源|投资者|客户|目标市场。 API 集成问题:帮您确定需要哪些 API 来实现以下的功能;请提供在将第三方 API 集成到此特定功能的{产品}中时需要询问的技术问题列表。 用户测试问题:帮您编写一份用户测试问题,实现以下的功能;编写{产品/功能}的用户测试说明,用用户目标和目的代替逐步指导。用相关问题总结说明,以收集用户的反馈。 商业计划书:您的商业目标是{……},为您撰写一份商业计划书,包括想法名称、简短的一句话、目标用户角色、用户要解决的痛点、主要价值主张、销售和营销渠道、收入来源、成本结构、关键活动、关键资源、关键合作伙伴、想法验证步骤、估计的第一年运营成本,以及需要寻找的潜在业务挑战。将结果以 Markdown 形式写在表格中。 写 PRD:您作为一名产品经理,根据{具体需求}撰写一份 PRD。包括主题、介绍、问题陈述、目标和目的、用户故事、技术要求、好处、关键绩效指标、开发风险、结论。 行业洞察分析:对行业现状、趋势和未来发展方向进行深入研究和预测。 方法论专家:精通各类管理和研发方法论,能根据具体情况选择和应用最佳方法。 头脑风暴:团队成员自由提出各种想法和见解,快速产出创意解决方案。 需求文档设计:根据产品特性和用户需求,设计产品需求文档。 功能价值分析:评估产品各项功能的重要性和价值,辅助优化资源配置。 竞品分析报告:对竞争对手的产品进行全面的分析比较,找出优劣势。 流程图/图表设计:直观地呈现业务流程、组织结构或统计数据。 思维导图设计:以树状图形式展示思路和知识框架。 解决方案专家:根据问题分析,提供切实可行的解决方案。 周报生成器:自动化生成工作周报,提高工作效率。 学习 Prompt 提示词可以参考:https://www.promptingguide.ai/zh
2024-11-18
现在有关UX设计的AI工具有哪些?
以下是一些有关 UX 设计的 AI 工具: Midjourney 和 Figma 结合用于 AI 驱动的 UI 设计,如设计和原型应用程序。 Generative UI Design: Einstein, Galileo, and the AI Design Process Uizard 自动设计器 Replit Future Tools CodeDesign.ai XR 设计 CoPilot Designer AIPowered NoCode Content Authoring Tool 用户研究工具:Synthetic user 搜索工具:perplexity Figma 平台的 AI 插件,如 Ando Your design copilot、Magician for Figma、Diagram 未来设计师的 AI 设计工具、QoQo your user experience AI companion 此外,目前有一些基于人工智能生成内容的工具(AIGC)可用于产品原型设计,如: UIzard:利用 AI 技术生成用户界面。 Figma:基于云的设计工具,提供自动布局和组件库,其社区也有一些 AI 插件。 Sketch:提供插件系统,部分插件利用 AI 技术辅助设计。 在 CAD 图绘制方面,存在以下 AI 工具和插件: CADtools 12:Adobe Illustrator 插件,添加了 92 个绘图和编辑工具。 Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件。 nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 ParaMatters CogniCAD:根据用户输入自动生成 3D 模型。 主流 CAD 软件如 Autodesk 系列、SolidWorks 等提供的基于 AI 的生成设计工具。 需要注意的是,使用这些工具通常需要一定的 CAD 知识和技能,对于初学者建议先学习基本建模技巧再尝试使用。以上内容由 AI 大模型生成,请仔细甄别。
2024-11-18
我是一名高中历史老师,请问用什么大模型能帮我做教学设计
以下为您推荐一些利用大模型辅助高中历史教学设计的案例: 有一位历史老师使用 GPT 给学生讲课,通过 GPT 生成一个“沉浸式”历史片段游戏,让学生扮演一个角色“设身处地”地做决策,学生的作业是找出 GPT 的错误。例如明朝灭亡、南京、1645 年 5 月的相关案例,您可以参考:https://chat.openai.com/share/86815f4e674c4410893c4ae3f1b7412e/continue 。 对于历史专业的学生,当他们遇到像 ChatGPT 这样的语言模型时,已经训练有素能够识别一些常见的陷阱,如事实不准确等,并通过事实核查、分析体裁和受众、在相关来源中搜索等技能来解决这些问题。 语言模型对于历史学家和历史专业的学生是有益的,但对于历史老师和其他教育工作者在短期内可能会带来一些问题,需要重新思考许多作业的布置方式。 您可以尝试借鉴这些案例,根据您的教学需求和学生特点,对大模型的应用进行调整和优化。
2024-11-17
有没有可以免费设计包装的AI
以下是一些可以免费设计包装的 AI 工具: 1. Canva(可画):https://www.canva.cn/ ,是一个非常受欢迎的在线设计工具,提供大量模板和设计元素,用户通过简单拖放操作创建海报,其 AI 功能可帮助选择合适颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ ,稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ ,简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ ,通过简单拖放界面,用户可快速创建演示文稿、社交媒体帖子等视觉内容,还集成丰富模板库和自动图像编辑功能。 此外,以下是一些生成 Logo 的 AI 产品,也可能对包装设计有一定帮助: 1. Looka:是一个在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个 Logo 设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,提供 Logo 设计服务,通过回答系列问题生成 Logo 选项。 3. Designhill:Logo 制作器使用 AI 技术创建个性化 Logo 设计,用户选择元素和风格,AI 生成设计方案。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,利用 AI 辅助设计建议创建品牌标识。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成 Logo 设计方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术创建个性化 Logo。 您可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:
2024-11-15
包装设计AI
以下是关于包装设计 AI 的相关信息: 在批量制作单词卡片的工作场景中,可选用搞定设计来批量产图。模板设计借助 AI 加成相对容易制作,利用其批量生产功能时,需按一系列步骤操作,包括点击右上角三个点、选择批量套版等。在快速填入内容方面,可使用 ChatGPT 生成单词内容并整理放入 Excel 文件。 有“设计:包装设计”的案例,可通过相关链接进一步查看详情。 在游戏中,也涉及到将 AI 进行包装的策略,如通过 AI 实时生成服装供玩家挑选,并在游戏的关键设计上采用一些策略来吸引玩家消费和增加活跃度。
2024-11-15