直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

生成式搜索和知识问答的区别

回答

生成式搜索和知识问答存在以下区别:

  • 生成式搜索:
    • 采用大型语言模型技术,能更好地理解用户自然语言查询的语义,不仅仅是匹配关键词。
    • 可以生成通顺的自然语言回答,而非简单返回网页链接和片段,结果更易于理解和使用。
    • 能够根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。
    • 例如 Perplexity 等 AI 搜索引擎,通过收集各种来源的信息给出答案。
    • 但存在训练成本高、可解释性差、潜在偏差和不当内容等问题。
  • 知识问答:
    • 例如 RAG ,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。
    • 原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。
    • 一些知识问答系统能够支持在本地运行。

此外,为您推荐一些 AI 搜索引擎:

  • 秘塔 AI 搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能。
  • Perplexity:聊天机器人式搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术收集信息并给出答案。
  • 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。
  • 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持多模态搜索。
  • Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。
  • Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。
  • Phind:专为开发者设计的 AI 搜索引擎,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。

需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:Perplexity AI 如何?

Perplexity AI是一家专注于开发新一代AI搜索引擎的公司,创立于2022年8月,由前OpenAI研究科学家Aravind Srinivas与前Meta研究科学家Denis Yarats(Perplexity CTO)等合伙人共同创办。它的搜索引擎采用了大型语言模型(LLM)技术,可以更好地理解和回答用户的自然语言查询。优势理解能力强:Perplexity的LLM模型能够深入理解查询的语义,而不仅仅是匹配关键词,从而提供更准确和相关的结果。生成式回答:它可以生成通顺的自然语言回答,而不是简单返回网页链接和片段。这使得结果更易于理解和使用。个性化和上下文感知:Perplexity可以根据用户的历史查询和偏好来个性化结果,提供更加贴合需求的答复。劣势训练成本高:训练大型LLM模型需要大量的计算资源和高质量的训练数据,成本可能较高。可解释性差:LLM的工作原理较为黑箱,很难解释为什么会给出某个结果,缺乏透明度。潜在的偏差和不当内容:由于训练数据的局限性,LLM可能会产生偏见或不当内容。独特之处Perplexity将LLM技术应用于搜索引擎领域,试图颠覆传统的基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验。它还融合了个性化和上下文感知等功能,努力成为新一代的"智能助手"。总的来说,Perplexity凭借LLM的强大语义理解能力,为搜索引擎带来了新的可能性,但也面临着一些技术和伦理挑战。原问题:Perplexity AI如何?谁开发的?其优劣势是?有什么独特之处?

02-基础通识课

[heading2]总结大语言模型及多模态大模型的应用与原理RAG的原理和应用:RAG通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务,其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。RAG可在本地运行:RAG是一个检索生成框架,能够支持在本地运行。AI搜索的能力:AI搜索结合了多种能力,如fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容,一些AI搜索平台专注于特定领域,如为程序员提供代码搜索。多模态大模型的特点:多模态大模型像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。生成式模型和决策式模型的区别:决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。

问:AI 搜索引擎

以下是一些推荐的AI搜索引擎:1.秘塔AI搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。2.Perplexity:一款聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式AI技术从各种来源收集信息并给出答案。3.360AI搜索:360公司推出的AI搜索引擎,通过AI分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。4.天工AI搜索:昆仑万维推出的搜索引擎,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。5.Flowith:一款创新的AI交互式搜索和对话工具,基于节点式交互方式,支持多种AI模型和图像生成技术,提供插件系统和社区功能。6.Devv:面向程序员的AI搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。7.Phind:专为开发者设计的AI搜索引擎,利用大型语言模型提供相关的搜索结果和动态答案,特别擅长处理编程和技术问题。这些AI搜索引擎通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。内容由AI大模型生成,请仔细甄别

其他人在问
如何学习生成式人工智能?
以下是学习生成式人工智能的一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,台湾大学李宏毅教授的生成式 AI 课程也是很好的学习资源。该课程主要介绍了生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容,共分为 12 讲,每讲约 2 小时。通过学习本课程,您可以掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。课程的学习内容包括: 1. 什么是生成式 AI:生成式 AI 的定义和分类、生成式 AI 与判别式 AI 的区别、生成式 AI 的应用领域。 2. 生成式模型:生成式模型的基本结构和训练方法、生成式模型的评估指标、常见的生成式模型及其优缺点。 3. 生成式对话:生成式对话的基本概念和应用场景、生成式对话系统的架构和关键技术、基于生成式模型的对话生成方法。 4. 预训练语言模型:预训练语言模型的发展历程和关键技术、预训练语言模型的优缺点、预训练语言模型在生成式 AI 中的应用。 5. 生成式 AI 的挑战与展望:生成式 AI 面临的挑战和解决方法、生成式 AI 的未来发展趋势和研究方向。 学习资源包括: 1. 教材:《生成式 AI 导论 2024》,李宏毅。 2. 参考书籍:《深度学习》,伊恩·古德费洛等。 3. 在线课程:李宏毅的生成式 AI 课程。 4. 开源项目:OpenAI GPT3、字节跳动的云雀等。 学习方法可以根据个人情况进行选择和调整。
2024-11-08
什么是生成式人工智能?
生成式人工智能是一种能够生成新内容的人工智能技术。生成的内容可以是多模式的,包括文本、图像、音频和视频等。它能够在给出提示或请求时,帮助完成各种任务,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助和呼叫中心机器人等。 生成式人工智能通过从大量现有内容(如文本、音频、视频等)中学习进行训练,训练的结果是一个“基础模型”。基础模型可用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练,以解决特定问题,从而得到一个量身定制的新模型。 Generative AI 可以应用于广泛的场景,如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 此外,Google Cloud 提供了多种工具,如 Vertex AI 这一端到端机器学习开发平台,帮助开发人员构建、部署和管理机器学习模型。 Gen AI/Generative AI 是“生成式人工智能”的正式称呼,而 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。
2024-11-08
现在国内语言生成式AI有多少个在做的,比如说百度的文心一言和阿里的通义
目前国内在做语言生成式 AI 的有不少,例如百度的文心一言、阿里的通义千问、讯飞的讯飞星火、智谱华章的智谱清言、字节跳动的豆包、腾讯的元宝、昆仑万维的天工 AI 等。 此外,还有一些在特定时间上线的大模型,如 8 月正式上线的包括北京的百度(文心一言)、抖音(云雀大模型)、智谱 AI(GLM 大模型)、中科院(紫东太初大模型)、百川智能(百川大模型),上海的商汤(日日新大模型)、MiniMax(ABAB 大模型)、上海人工智能实验室(书生通用大模型)。 需要注意的是,不同的大模型具有各自的特点和功能,在使用和应用场景上可能存在差异。
2024-11-06
生成式AI和AIGC是什么,有什么区别和联系?
生成式 AI(Generative AI)是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。目前典型的生成式 AI 包括 OpenAI 推出的语言模型 ChatGPT、GPT4、图像模型 DALLE 以及百度推出的文心一言、阿里云推出的通义千问等。 AIGC(人工智能生成内容)指利用生成式 AI 创建的内容,如图像、视频、音频、文本和三维模型。AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,在内容创作、广告、媒体等领域有着广泛的应用。 生成式 AI 和 AIGC 的联系在于:AIGC 实际上是生成式 AI 的应用结果。 区别在于:生成式 AI 侧重于技术本身,强调生成新内容的能力;AIGC 侧重于生成的内容,是生成式 AI 所产生的具体成果。
2024-11-04
我计划编写一本关于生成式人工智能的书籍,但是在开始前,我需要确定一个合适的大纲框架来组织我的思路。这个框架应该包括那些部分,以及如何将各个部分连接起来,以便读者能够理解掌握AIGC的概念和应用
以下是为您编写关于生成式人工智能书籍提供的大纲框架建议: 一、引言 介绍编写本书的目的和背景,引导读者进入生成式人工智能的世界。 二、基础概念 1. 什么是生成式人工智能(AIGC) 定义和特点 与传统人工智能的区别 2. 相关技术名词 AI(人工智能) 机器学习(包括监督学习、无监督学习、强化学习) 深度学习(神经网络、神经元) 生成式 AI(可生成文本、图片、音频、视频等内容形式) LLM(大语言模型) 三、AIGC 的应用领域 1. 文字生成(如使用大型语言模型生成文章、故事、对话等) 2. 图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等) 3. 视频生成(如使用 Runway、KLING 等模型生成动画、短视频等) 四、AIGC 与其他内容生成方式的关系 1. AIGC 与 UGC(用户生成内容) 区别与联系 各自的优势和适用场景 2. AIGC 与 PGC(专业生成内容) 区别与联系 相互的影响和融合 五、技术原理 1. Transformer 模型 自注意力机制 处理序列数据的优势 2. 技术里程碑(如谷歌团队发表的《Attention is All You Need》论文) 六、实际案例分析 展示不同领域中成功的 AIGC 应用案例,分析其实现过程和效果。 七、挑战与展望 1. 面临的挑战(如数据隐私、伦理问题等) 2. 未来发展趋势和前景 八、结论 总结全书重点内容,对 AIGC 的未来发展进行展望。 各个部分之间可以通过逻辑递进、案例引用、对比分析等方式进行连接,使读者能够逐步深入理解掌握 AIGC 的概念和应用。
2024-10-23
生成式AI商业落地白皮书
以下是关于生成式 AI 商业落地的相关信息: 2024 年 7 月 29 日,《》由火山引擎、RollingAI 和 InfoQ 研究中心联合发布,为 CXO 提供 AI 转型战术指南。该白皮书分析了生成式 AI 在各行业的应用现状和挑战,并提供了企业 AI 转型的趋势展望和最佳实践。书中通过 240 个应用场景地图,展示了 AI 在消费零售、金融、汽车等行业的落地案例,探讨了 AI 基础设施构建、项目落地准备和快速补齐能力差距等关键问题,并提出了八步实施大模型接入的方法论。 其它相关报告: 《》 《》 《》 《》 《》 2024 年 8 月 17 日,最近上传的一些报告: 爱分析发布的《》聚焦于 AI Agent 开发管理平台市场,特别评估了火山引擎的 HiAgent 平台。报告指出,AI Agent 作为大模型应用的主流形态,正重塑科技和商业领域。 《》白皮书由 Denodo Technologies 发布,强调了生成式人工智能(Gen AI)在商业和财务价值实现中的潜力。书中指出,Gen AI 应用的可靠性依赖于数据质量,而数据管理是实施 AI 的关键挑战。 《》 《》 此外,关于游戏中的生成式 AI 革命:生成式 AI 是一种机器学习类别,计算机可以根据用户的提示生成原始的新内容。目前,文本和图像是这项技术的最成熟应用,但几乎在每一个创意领域都有工作在进行,从动画、音效、音乐,甚至到创造具有完整性格的虚拟角色。AI 在游戏中并不是新鲜事,早期游戏中的虚拟敌人只是简单脚本程序,不能学习,能力取决于程序员。现在由于更快的微处理器和云技术,有了更多计算能力,可以构建大型神经网络,在高度复杂领域识别模式和表示。这篇博文分为两部分,第一部分包括对游戏领域生成式 AI 的观察和预测,第二部分是对该领域的市场地图,概述各个细分市场并确定每个市场的关键公司。
2024-10-23
如何将传统知识库通过LLM能力转化成更智能与精细化的知识库?包括但不限于分段、QA问答和图片解析描述和总结
将传统知识库通过 LLM 能力转化为更智能和精细化的知识库是一个复杂但可行的过程,以下是一些关键步骤和方法: 1. 数据预处理:对传统知识库中的内容进行清理、格式化和标准化,确保数据的质量和一致性。 2. 内容分段:根据主题和逻辑结构,将长篇的知识内容合理分段,使信息更易于理解和处理。 3. 提取关键信息:从文本中提取重要的概念、实体和关系,为后续的问答和总结做准备。 4. 构建 QA 问答对:分析知识库中的内容,设计有针对性的问题和准确的答案,形成问答对,以方便用户快速获取所需信息。 5. 图片解析描述:对于包含图片的内容,使用图像识别技术提取关键元素,并进行详细的描述和解释。 6. 总结归纳:对分段后的内容进行总结,提炼核心要点,帮助用户快速了解主要内容。 在实施过程中,需要不断优化和调整方法,以确保转化后的知识库能够满足用户的需求,提供更高效和准确的服务。
2024-11-18
用20个字概括AI问答和搜索
AI 问答和搜索包括联网检索、多种引擎及检索原理 存在联网检索的 AI 及相关工具。 推荐多种 AI 搜索引擎。 介绍知识库检索的原理和步骤。
2024-11-13
国内关于问答最好的AI
以下是国内一些在问答方面表现较好的 AI: 出门问问:是一家以生成式 AI 和语音交互为核心的人工智能公司,为全球多个国家和地区提供 AI 智能硬件、AI 政企服务,以及面向创作者的 AIGC 工具。致力于打造国际领先的通用大模型,通过 AI 技术、产品及商业化三位一体发展,成为全球 AI CoPilot 的引领者。 跃问:原生聊天机器人,在国内 A2409 月度榜单中排名靠前。 智能口语大师:原生教育类产品。 AI 写作猿:原生写作软件。 AI 外教:原生教育类产品。 造梦次元:原生情感陪伴产品。 AI 写作专家:原生写作软件。 必剪:功能为视频编辑。 AI 写作助手:原生写作软件。 AI Mate:原生图片生成产品。 通义千问:最大亮点是强大的推理能力,在国内推理评测中表现出色,能处理复杂任务和逻辑推理,在科研、商业分析等领域有应用前景,允许用户创建自定义智能体,但在语义理解方面略显逊色。
2024-11-06
在一个设定中,使用阿里千问模型,设定角色为“美嘉”,知识库为《爱情公寓》全季剧情,实现问答。
在一个设定中,使用阿里千问模型,将角色设定为“美嘉”,知识库设定为《爱情公寓》全季剧情来实现问答。 大语言模型就像一个学习过无数本书、拥有无穷智慧的人,对公共知识、学识技能、日常聊天很擅长,但在工作场景中需要提示词来告诉它角色和专注技能,变成所需的“员工”。知识库则相当于给这个“聪明员工”发放的工作手册,比如知道老板娘吃饭要打三折等特定信息。 这里的设定为:AI 模型使用阿里千问模型,提示词设定的角色是“美嘉”,按照其人设、背景和对话风格设定,知识库是《爱情公寓》全季剧情,让“美嘉”拥有过往“记忆”。 例如,提问“你是谁?你和子乔在台球厅吵架那次是为了什么吵架?”,回复是“我是陈美嘉,那次在台球厅和吕子乔吵架是因为他约会被人撞见,我讽刺他脸大影响信号,他还反击我。后来谈到过去的事情,我指责他忘恩负义,他就说我平。最后,我伤心地说要分手,因为他之前甩过我。” 然而,有时回答会不准确,比如提问“一菲为美嘉找了一份助教工作”,AI 可能未根据正确的知识库内容回答,这是常见的错误场景,在严肃场景中不能接受。优化 AI 更准确回答问题的过程称为 RAG(RetrievalAugmented Generation),即检索增强生成,由检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统,能提供详细准确的回答。
2024-10-29
如何在自己的电脑上搭建一个类似ChatGPT的问答网站?
要在自己的电脑上搭建一个类似 ChatGPT 的问答网站,可以参考以下几种方法: 1. 方法一: 搭建 ,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型。同时了解如何白嫖大模型接口。 搭建 ,这是一个知识库问答系统。将知识文件放入,并接入上面的大模型作为分析知识库的大脑,用于回答问题。若不想接入微信,搭建到此即可,它有问答界面。 搭建 ,其中的 cow 插件能进行文件总结、MJ 绘画等。 2. 方法二: 推荐使用云原生服务 ,注意使用的域名是 https://laf.dev/,只有这个 dev 域名才能调用 ChatGPT 的服务,可能是风控方面的考虑。 Laf 是一个 Serverless 框架,提供开箱即用的云函数、云数据库、对象存储等能力。 后端接口部分: 添加环境变量,输入您的 apikeys,apikeys 的获取地址:https://platform.openai.com/ 。注意是否有免费流量,注意流量是否过期,否则无法调用。 开始写代码。 前端上传资源部分: 上传打包后的前端静态资料代码,上传后直接访问右侧的域名即可。 3. 搭建原因: 方便为亲戚朋友提供无需注册、无需魔法上网且能免费使用的网站,避免逐个指导注册和登录的繁琐。 为自身引流,让更多人看到相关使用文档。 帮助更多人快速搭建网站。 自定义网站可扩展功能更丰富,如一键导出对话、把对话生成图片、内置提示词等。 4. 搭建步骤: 第一步:找到一个 ChatGPT 源码,如 https://github.com/Chanzhaoyu/chatgptweb(Vue 版本),支持下载聊天数据为图片;https://github.com/Yidadaa/ChatGPTNextWeb/,一键导出所有聊天记录,支持 markdown 格式;https://github.com/zuoFeng59556/chatGPT(Vue 版本),简化版本不支持创建多个聊天框。 第二步:找到免费的云服务器并写后端代码。项目上线需要涉及购买服务器、云存储空间、域名、数据库(本项目简单做,未用到)。
2024-10-26
问答机器人搭建
以下是关于搭建问答机器人的相关信息: 飞书方面: 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的情况,包括成立愿景、目标、知识库和社区在飞书平台的状况。探讨了利用 AI 技术帮助用户检索知识库内容,引入 RAG 技术,通过机器人快速检索。介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,能快速给大模型补充新知识和内容。还介绍了使用飞书的智能伙伴功能搭建 FAQ 机器人以及智能助理的原理和使用方法,以及企业级 agent 方面的实践。 「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用,推动业务创新和效率提升。 本地部署方面: 经过调研,可先采取 Langchain+Ollama 的技术栈作为 demo 实现,后续也会考虑使用 dify、fastgpt 等更直观易用的 AI 开发平台。整体框架设计思路如下。运行环境是 Intel Mac,其他操作系统也可行,下载模型可能需要梯子。 Langchain 是当前大模型应用开发的主流框架之一,提供一系列工具和接口,其核心在于“链”概念,是模块化的组件系统,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,可灵活组合支持复杂应用逻辑。其生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具,帮助开发者高效管理从原型到生产的各个阶段,优化 LLM 应用。 Ollama 是一个开箱即用的用于在本地运行大模型的框架。 Coze 方面: 在利用 Coze 搭建知识库时,需要如下流程:收集知识、创建知识库、创建数据库用以存储每次的问答、创建工作流、编写 Bot 的提示词、预览调试与发布。收集知识通常有三种方式,包括企业或个人沉淀的 Word、PDF 等文档,企业或个人沉淀的云文档(通过链接访问),互联网公开一些内容(可安装 Coze 提供的插件采集)。海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html ,国内官方文档:https://www.coze.cn/docs/guides/use_knowledge 。
2024-10-22
请介绍图片搜索最好用的AI工具
以下为您介绍一些在图片搜索相关方面表现出色的 AI 工具: 图片去水印工具: 1. AVAide Watermark Remover:在线工具,支持多种图片格式,操作简单,可去除水印、文本、对象等。 2. Vmake:可上传最多 10 张图片,自动检测并移除水印,适合快速处理。 3. AI 改图神器:能一键去除图片中的多余物体、人物或水印,支持粘贴或上传手机图像。 图生图产品: 1. Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感。 2. Retrato:将图片转换为非凡肖像,有 500 多种风格选择。 3. Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:将上传照片转换为芭比风格。 图片生成 3D 建模工具: 1. Tripo AI:在线 3D 建模平台,能利用文本或图像快速生成高质量 3D 模型。 2. Meshy:支持文本、图片生成 3D 及 AI 材质生成。 3. CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 可通过手绘草图实时设计 3D 形象。 4. Sudo AI:通过文本和图像生成 3D 模型,适用于游戏领域。 5. VoxCraft:免费工具,能将图像或文本快速转换成 3D 模型,提供多种功能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。这些工具各有特点,您可以根据具体需求选择最适合您的工具。
2024-11-21
360AI搜索
以下是关于 360AI 搜索的相关信息: 360AI 搜索是 360 公司推出的 AI 搜索引擎,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 其定位是新一代答案引擎,在传统搜索的网页检索能力基础上,结合大型语言模型意图识别、信息提炼、归纳整理、生成文案等一系列技术能力,学习人类的思维和语言组织模式,生成有理有据、逻辑清晰的优质答案。 具有以下特点: 针对模糊问题,可通过反问和几轮交互理解问题,给出答案。 搜索全网上万条相关内容,深度阅读 20+网页,生成的答案非常丰富。 对比大模型产品特别是聊天机器人,回答更具时效性。 通过主动追问帮助用户延展学习,了解更多周边信息。 功能包括阅读提炼全网内容,并归纳总结,相当于替用户读了几十个精选网页,并进行归纳总结。其工作流程为:分析问题语义→提炼搜索关键词→查询全网相关内容→精选出参考价值较高的网页→进行结构化总结,重点突出,详略得当。 在国内总榜中排名第 3,4 月访问量为 1134 万次,相对 3 月变化为 13。 Web 端和 H5 端的网址为: ,手机端可扫码下载 360 AI 搜索 APP。
2024-11-21
我没有知识库,如何让AI就某一问题穷尽搜索
要让 AI 就某一问题进行穷尽搜索,一般会涉及以下步骤: 1. 文档向量化:知识库中的文档需要被转换成向量形式,以便在数值级别上与问题向量进行比较。使用知识库工具上传文档时,会完成文档的向量化,这依靠 Embedding Model 实现。 2. 知识库检索: 相似性计算:使用相似性度量方法(如余弦相似性)计算问题向量和各个文档向量之间的相似度,以找出与问题内容最接近的文档。 排序与选择:根据相似性得分对所有文档进行排序,通常会选择得分最高的几个文档,认为这些文档与问题最相关。 信息抽取:从选定的高相关性文档中抽取具体的信息片段或答案,可能涉及进一步的文本处理技术,如命名实体识别、关键短语提取等。 3. 信息整合阶段:将检索到的全部信息连同用户问题和系统预设整合成一个全新的上下文环境,为生成回答提供基础。 此外,像生物进化中通过自然选择的方式,从特定规则开始逐步改变(可能随机),在每一步保留最有效的规则并丢弃其他,这种方法不是我们通常定义的“人工智能”(更像是“遗传算法”),但在高维规则空间中往往比低维规则空间效果更好,因为维度越多,陷入局部最小值的可能性越小。 同时,给 AI 配备随时更新的“活字典”即知识库是一个好方法。知识库就像 AI 随时可查阅的百科全书,当 AI 遇到不确定问题时,可从知识库中检索相关信息给出更准确回答。比如建立包含最新新闻、科技发展、法律法规等内容的知识库,或者利用整个互联网的实时数据作为知识库,通过搜索引擎获取最新信息。
2024-11-13
我想搜索全面彻底的搜索某方面客观存在的事实信息,有什么工具可以实现
以下是一些可以用于全面彻底搜索某方面客观存在的事实信息的工具和相关信息: Coze 手搓的极简版 Perplexity:它旨在结合搜索引擎和 LLM 的优势,提供更优的信息检索体验。但 LLM 本身作为知识问答工具存在缺陷,如无法实时获取最新信息、有“幻觉”问题、无法给出准确引用来源等,而搜索引擎返回的信息呈现形式原始,需要进一步处理。 基于嵌入的搜索:OpenAI 提出,如果作为输入的一部分提供,模型可以利用外部信息源,例如通过嵌入实现高效的知识检索。文本嵌入是衡量文本字符串相关性的向量,相似或相关的字符串距离更近,利用快速向量搜索算法,可将文本语料库分割成块进行嵌入和存储,给定查询后进行向量搜索找到最相关的文本块。相关示例实现可在中找到。关于如何使用知识检索来最小化模型编造错误事实的可能性,可参阅策略“指示模型使用检索到的知识来回答查询”。
2024-11-13
搜索DragGAN
DragGAN 于 2023 年 6 月 25 日开源。喜欢 AI 绘画的对它应该不陌生,期待它带来更大的惊艳。此外,相关论文中增加了微软研究院新发布的多模态 AI 助手;学习路径中增加了适合初学者的深度学习课程 fast.ai ;AI 名词增加到 80 多个,补充了很多技术名词。您可以通过以下链接获取更多详细信息:
2024-11-11
AI知识库工具
以下是为您提供的关于 AI 知识库工具的相关信息: WayToAGI(通往 AGI 之路): 这是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库。 大家贡献并整合各种 AI 资源,让人们能轻松学习 AI 知识,应用各类 AI 工具和实战案例。 提供一系列开箱即用的工具,如文生图、文生视频、文生语音等的详尽教程。 追踪 AI 领域最新进展并时刻更新,无论您是初学者还是行业专家,都能在此发掘有价值的内容。 网址:https://waytoagi.com/ 体验链接:https://waytoagi.com/ 知识库在 AI 模型中的作用: 知识库就像 AI 的“活字典”,是一个非常贴切的比喻。 能解决 AI 知识“过期”的问题,AI 可随时从更新的知识库中检索相关信息,给出更准确的回答。 例如可建立包含最新新闻、科技发展、法律法规等内容的知识库,让 AI 回答最新事件的问题。 像热门的 AI 搜索,就是将整个互联网的实时数据作为知识库,通过搜索引擎获取最新信息。 产品经理 AI 工具集: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(https://uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(https://www.hypertype.co/) 会议信息:AskFred(http://fireflies.ai/apps) 团队知识库:Sense(https://www.senseapp.ai/) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(https://www.ellie.ai/) 企业自动化:Moveworks(moveworks.com)
2024-11-22
知识库软件有什么推荐的吗
以下是为您推荐的一些知识库软件: 稿定 AI:国内设计工具稿定推出的 AI 创意工具合集,包括设计宣传图、绘图、素材、商品图、文案、AI 圈等功能,能切中国内内容营销的痛点,体验良好。 OpenCat:由开发,推出了付费订阅计划,每月 18 元可无限使用 GPT3.5 及一些软件的高级功能,如 iCloud 同步、AI 键盘等。 Tana:非常强大的知识管理软件,推出了 AI 相关功能,不仅能扩写文本,还能与您的所有数据交互并访问网上信息。 Read Speak:由开发的利用 ChatGPT 联系口语的 APP,支持与虚拟角色对话边学边练,具有实时发音评价、实时语法纠错等功能。 STUDIO AI:AI 驱动的无代码网页构建工具,能学习用户反馈并将设计转化为实际网站,内含 WebDesignAI,具有自动补全样式和内容的功能,支持语音控制编辑器完成日常设计任务。 Clarity:AI 驱动的分层阅读工具,提供分层的深度阅读功能,用户可从摘要开始掌握复杂主题,通过点击相应内容了解更多细节。 如果您想搭建个人知识库,还可以参考文章,忽略本地部署大模型环节,直接看其中推荐的软件。但使用时可能需要对接一些额外的 API,建议先了解 RAG 的原理再使用。
2024-11-22
有什么知识库的应用推荐?
以下是为您推荐的知识库应用: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库。其中提到大模型存在不准确和数据限制的问题,知识库可解决这些问题,典型应用如客服系统,公司可将用户问题及答案记录在文档中以知识库形式投喂给大模型,使大模型更准确回复用户。 01通往 AGI 之路知识库使用指南。涵盖智能纪要、总结等内容,包括关于 AI 知识库使用及 AIPO 活动的介绍、AIPO 线下活动及 AI 相关探讨、way to AGI 社区活动与知识库介绍、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。 张梦飞:【知识库】FastGPT + OneAPI + COW 带有知识库的机器人完整教程。包括创建知识库应用的步骤,如地址输入、模型选择、创建和上传文件等,以及安装并接入 cow 的操作流程。
2024-11-22
本群怎么实现的调用知识库
要实现本群对知识库的调用,可以通过以下两种方式: 1. 在 Bot 内使用知识库: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项。配置项说明如下: 最大召回数量:Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多。 最小匹配度:Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回。 调用方式:知识库的调用方式。自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回;按需调用:您需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据。 (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 2. 在工作流内使用 Knowledge 节点: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。
2024-11-21
AI知识库有什么
AI 知识库主要包括以下内容: 通往 AGI 之路:这是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。在这里,用户既是知识的消费者,也是知识的创作者。它不仅是一个知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。 特点: 由一群热爱 AI 的专家和爱好者共同建设。 大家贡献并整合各种 AI 资源,使大家可以轻松学习各种 AI 知识,应用各类 AI 工具和实战案例等。 提供一系列开箱即用的工具,如文生图、文生视频、文生语音等详尽的教程。 追踪 AI 领域最新的进展,时刻更新,让用户每次访问都能有新的收获。 链接: https://waytoagi.com/ 即刻体验:https://waytoagi.com/ 此外,还有关于 Coze 的知识库相关内容,如大圣撰写的文章,帮助非编程人士理解 AI 时代的知识库,包括其概念、实现原理、能力边界,以及在通往 AGI 之路大群中通过对话获取知识库中资料的原理,还有如何更好地使用 Coze 等 AI Agent 平台中的知识库组件来打造更加强大的智能体。
2024-11-21
如何将知识库里的文件进行分类清晰数据,使其变得更加智能化
以下是关于如何将知识库里的文件进行分类清晰数据,使其变得更加智能化的方法: 1. 在线知识库 点击创建知识库,创建一个画小二课程的 FAQ 知识库。 飞书在线文档中每个问题和答案以分割,可点击编辑修改和删除。 点击添加 Bot,并在调试区测试效果。 2. 本地文档 注意拆分内容,提高训练数据准确度,将海报的内容训练到知识库里面。 对于画小二这个课程,80 节课程分为 11 个章节,不能一股脑全部放进去训练。 首先将 11 章的大的章节名称内容放进来,章节内详细内容依次按固定方式进行人工标注和处理。 然后选择创建知识库自定义清洗数据。 3. 发布应用 点击发布,确保在 Bot 商店中能够搜到。 4. 飞书知识库 在飞书里面选择对应的文件夹,一次最多智能选择 20 个文件(若文件大于 20 个可多建几个知识库)。 可以选择自动进行数据清洗,数据清洗是把数据进行类结构化整理,内容中的图片资料也会保留。 测试对话,基本反馈正常,目前 coze 存在不稳定版本,需要不断调试完善。 5. Excel 知识库 可以增加其他形式的知识库。 上传表格的知识库不要过于复杂,不要有合并表格情况,同时系统不认不同的 Sheet。 数据处理完成会显示 100%进度,加工出来的数据,点击添加 Bot,就增加到知识库中,然后测试发布和返回。 6. 网页知识库 有自动采集和手动采集两种方式,手动采集需要安装插件,操作稍微有点小复杂。 选择批量添加,写入画小二官网的地址,可根据需求添加自己的网站。 将网站所有的页面都扫描出来,点击确认,将全站数据解析并保存到知识库里面,按照默认自动清洗数据。 7. 创建知识库并上传文本内容 本地文档:在文本格式页签下,选择本地文档,然后单击下一步。将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。目前支持上传.txt、.pdf、.docx 格式的文件内容,每个文件不得大于 20M,一次最多可上传 10 个文件。当上传完成后单击下一步。选择内容分段方式,包括自动分段与清洗(系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据)和自定义(手动设置分段规则和预处理规则,包括分段标识符、分段最大长度、文本预处理规则,如替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址)。单击下一步完成内容上传和分片。
2024-11-21