生成式搜索和知识问答存在以下区别:
此外,为您推荐一些 AI 搜索引擎:
需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
Perplexity AI是一家专注于开发新一代AI搜索引擎的公司,创立于2022年8月,由前OpenAI研究科学家Aravind Srinivas与前Meta研究科学家Denis Yarats(Perplexity CTO)等合伙人共同创办。它的搜索引擎采用了大型语言模型(LLM)技术,可以更好地理解和回答用户的自然语言查询。优势理解能力强:Perplexity的LLM模型能够深入理解查询的语义,而不仅仅是匹配关键词,从而提供更准确和相关的结果。生成式回答:它可以生成通顺的自然语言回答,而不是简单返回网页链接和片段。这使得结果更易于理解和使用。个性化和上下文感知:Perplexity可以根据用户的历史查询和偏好来个性化结果,提供更加贴合需求的答复。劣势训练成本高:训练大型LLM模型需要大量的计算资源和高质量的训练数据,成本可能较高。可解释性差:LLM的工作原理较为黑箱,很难解释为什么会给出某个结果,缺乏透明度。潜在的偏差和不当内容:由于训练数据的局限性,LLM可能会产生偏见或不当内容。独特之处Perplexity将LLM技术应用于搜索引擎领域,试图颠覆传统的基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验。它还融合了个性化和上下文感知等功能,努力成为新一代的"智能助手"。总的来说,Perplexity凭借LLM的强大语义理解能力,为搜索引擎带来了新的可能性,但也面临着一些技术和伦理挑战。原问题:Perplexity AI如何?谁开发的?其优劣势是?有什么独特之处?
[heading2]总结大语言模型及多模态大模型的应用与原理RAG的原理和应用:RAG通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务,其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。RAG可在本地运行:RAG是一个检索生成框架,能够支持在本地运行。AI搜索的能力:AI搜索结合了多种能力,如fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容,一些AI搜索平台专注于特定领域,如为程序员提供代码搜索。多模态大模型的特点:多模态大模型像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。生成式模型和决策式模型的区别:决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。
以下是一些推荐的AI搜索引擎:1.秘塔AI搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。2.Perplexity:一款聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式AI技术从各种来源收集信息并给出答案。3.360AI搜索:360公司推出的AI搜索引擎,通过AI分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。4.天工AI搜索:昆仑万维推出的搜索引擎,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。5.Flowith:一款创新的AI交互式搜索和对话工具,基于节点式交互方式,支持多种AI模型和图像生成技术,提供插件系统和社区功能。6.Devv:面向程序员的AI搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。7.Phind:专为开发者设计的AI搜索引擎,利用大型语言模型提供相关的搜索结果和动态答案,特别擅长处理编程和技术问题。这些AI搜索引擎通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。内容由AI大模型生成,请仔细甄别