Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

能够读取文本数字最多的大模型是哪一个

Answer

目前能够读取文本数字较多的大模型有以下几种:

  • Claude-2 模型的上下文上限是 100,000 个 token。
  • ChatGPT-16k 模型的上下文上限是 16,000 个 token。
  • ChatGPT-4-32k 模型的上下文上限是 32,000 个 token。

需要注意的是,token 限制会同时对一次性输入和一次对话的总体上下文长度生效。例如,一次性输入的文本长度以及一次对话中累计的上下文长度都受到相应的限制。当达到上限时,并非停止对话,而是会遗忘最前面的对话内容。

Content generated by AI large model, please carefully verify (powered by aily)

References

关于 token 你应该了解……

从官方文档可以看到我们目前使用的模型有哪些,以及每个模型的token限制。除此之外,最直观能感受到各类模型token限制的其实是poe:在这里我们看到的16K、32K、100K就是指token上限。Claude-2-100 k模型的上下文上限是100k Tokens,也就是100000个tokenChatGPT-16 k模型的上下文上限是16k Tokens,也就是16000个tokenChatGPT-4-32 k模型的上下文上限是32k Tokens,也就是32000个token但似乎很多小伙伴不理解这个限制具体影响在哪些方面。所以我替你们问了一下GPT(真不懂你们为什么不自己问/手动狗头)从回答可以看出,这个token限制是同时对下述两者生效的:1、一次性输入2、一次对话的总体上下文长度,值得注意的是这个长度不是达到上限就停止对话,而是遗忘最前面的对话,你可以理解为鱼的记忆只有7秒,第8秒的时候他会忘记第1秒的事,第9秒的时候……(某些同学是不是恍然大悟了)

走入AI的世界

那么预训练阶段大模型就行学了些什么,又学了多少内容呢?以GPT-3为例,训练他一共用了4990亿token的数据集(约570GB文本),这其中绝大多数都是来源于高质量的网页、书籍数据库、维基百科等的内容,可能你对4990亿token这个数字没有直观的体感,那么我们不妨做个换算,它大概相当于86万本《西游记》,人生不过3万天,也就是说,即使你不吃不喝不睡,以每天读完一本《西游戏》的阅读速度去看这些资料,也大概要28.6辈子才能读完。转换器模型(Transformer):Transformer这个单词你可能很陌生,但它的另一个中文翻译“变形金刚”你一定不陌生,Transformer是一种处理文本内容的经典模型架构,图16中左半部分就是GPT-1所使用的Transformer架构图(右边则是经典的Diffusion模型架构图,用于图像生成)。图16 Transformer和Diffusion关于Transformer的具体细节,即使不清楚,也并不太会影响你用好大模型,因此我们不做更多展开讨论了,感兴趣的朋友可以移步这里:[【官方双语】GPT是什么?直观解释Transformer |深度学习第5章_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV13z421U7cs/?vd_source=951ca0c0cac945e03634d853abc79977)[Transformer Explainer:LLM Transformer Model Visually Explained](https://poloclub.github.io/transformer-explainer/)

大模型入门指南

数字化的好处是便于计算机处理。但为了让计算机理解Token之间的联系,还需要把Token表示成稠密矩阵向量,这个过程称之为embedding([3]),常见的算法有:基于统计Word2Vec,通过上下文统计信息学习词向量GloVe,基于词共现统计信息学习词向量基于深度网络CNN,使用卷积网络获得图像或文本向量RNN/LSTM,利用序列模型获得文本向量基于神经网络BERT,基于Transformer和掩码语言建模(Masked LM)进行词向量预训练Doc2Vec,使用神经网络获得文本序列的向量以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。大模型的“大”,指的是用于表达token之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如GPT-3拥有1750亿参数,其中权重数量达到了这一量级,而词汇表token数只有5万左右。参考:[How does an LLM"parameter"relate to a"weight"in a neural network?](https://datascience.stackexchange.com/questions/120764/how-does-an-llm-parameter-relate-to-a-weight-in-a-neural-network"How does an LLM"parameter"relate to a"weight"in a neural network?")

Others are asking
AI在读取国内电商网址时由于限制经常读取失败,有什么解决办法吗
目前对于 AI 在读取国内电商网址时因限制而经常读取失败的情况,暂时没有明确有效的通用解决办法。这可能涉及到复杂的网络规则、电商平台的安全策略以及技术限制等多种因素。但您可以尝试以下几种可能的途径: 1. 检查网络设置,确保网络连接稳定且没有被限制。 2. 确认您使用的 AI 工具是否符合相关法律法规和平台规定,避免违规操作。 3. 联系电商平台的客服,咨询关于读取限制的具体政策和可能的解决方案。 4. 探索使用经过授权或合法合规的接口来获取所需数据。
2025-02-12
gpt拒绝读取文件怎么办
GPT 拒绝读取文件可能是由于多种原因导致的。以下是一些可能的解决方法: 1. 检查提示的准确性和完整性,确保清晰明确地告知 GPT 需要读取文件以及相关的具体要求。 2. 对于简单提示修正可能解决问题,例如更准确地描述读取文件的目的、格式等。 3. 注意模型在处理复杂任务时可能出现的错误模式,如运行不正确的命令等,及时进行纠正和调整。 同时,在与 GPT 交互时,为了获得更好的效果,可以参考以下最佳实践: 1. 编写清晰的指令: 如果输出不符合期望,如过长或过简单,明确提出要求。 不喜欢某种格式时,展示期望的格式。 减少模型的猜测,提高获得满意结果的可能性。 2. 包含详细信息: 确保请求中提供重要的细节或上下文,以获得高度相关的回复。 3. 要求模型扮演角色: 通过指定角色,使模型的回答更具特色和针对性,提升输出质量。
2025-01-21
可以读取excel数据,编写程序的ai工具
以下是一些可以读取 Excel 数据并编写程序的 AI 工具相关内容: 1. 自制微博指数爬虫工具:通过分析微博话题页面,找到真实数据地址,明确规则后让 AI 帮忙写代码。需求是抓取微博话题 30 天的分日数据,在执行代码时 topic_name 由用户手动输入,在 colab 上运行并将数据存储到 Excel 自动下载到本地。 2. 用 AI 撰写专业区域经济报告:信息收集时利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。内容拆分时针对报告需求将内容拆分,数据处理借助传统工具如 Excel 结合 AI 指导高效操作数据筛选与图表生成,分析与撰写时通过整理数据利用 AI 辅助分析后撰写报告初稿,最终内容需人工主导校验。 3. 金融服务业中生成式 AI 的应用:生成式 AI 可以帮助金融服务团队改进内部流程,如在预测方面帮助编写 Excel、SQL 和 BI 工具中的公式和查询,发现模式并为预测建议输入;在报告方面帮助自动创建文本、图表、图形等内容,并根据不同示例调整报告;在会计和税务方面帮助综合、总结并提出可能答案;在采购和应付账款方面帮助自动生成和调整合同、采购订单和发票以及提醒。
2025-01-16
可以读取excel数据并且编写小波分析代码的ai
以下是为您整合的相关内容: 应用开发方面: 自制微博指数爬虫工具:通过分析微博话题页面,找到真实数据地址,明确规则后让 AI 帮忙写代码,可在 colab 上运行,爬取数据后存储到 excel 并自动下载到本地。 Markdown 分页策略: LangChain 提供多种文本分页策略,包括按 Headers 或“章”划分、合并相邻较小部分、对大的“章”按“节”继续拆分、对大的“节”按“段”“句”“词”逐步拆分,直到满足长度要求。 处理结构化数组对象数据: 让 AI 更好地处理结构化数组对象数据的建议包括提供数据结构描述、用必要的示例数据、明确说明分析需求、让 AI 编写代码完成分析。Claude 和 ChatGPT 支持直接运行代码,处理结构化数据更高效。 金融服务业与生成式 AI: 生成式 AI 可帮助金融服务团队改进内部流程,简化日常工作流程。 预测方面:帮助编写 Excel、SQL 和 BI 工具中的公式和查询,发现模式,为预测建议输入并适应模型。 报告方面:自动创建文本、图表、图形等内容,并根据不同示例调整报告。 会计和税务方面:帮助综合、总结税法和潜在扣除项。 采购和应付账款方面:帮助自动生成和调整合同、采购订单和发票以及提醒。
2025-01-16
推荐一个AI工具,帮助我每天自动执行以下步骤:从本地上传文件给大模型,该文件内含有新闻网页链接,大模型读取链接并汇总内容
以下为您推荐的 AI 工具可能有助于您实现每天自动执行从本地上传文件给大模型,并让大模型读取文件内新闻网页链接并汇总内容的需求: 1. AI 拍立得(Pailido): 特点:即拍即得,简化流程,操作直观高效。 体验方式:微信小程序搜索“Pailido”。 交互逻辑:用户选择拍摄场景类型并拍照,AI 自动识别和分析照片内容信息,依据预设场景规则迅速生成符合情境的反馈。 实现场景: 图片转成文本:用户上传图片后,大模型根据选择的场景生成相关文字描述或解说文本,可用于生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:用户上传图片后,大模型按照指定风格快速生成图像的转绘版本,适应不同风格和场景需求,如图片粘土风、图片积木风、图片像素风等。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-21
读取视频的AI
以下是一些常见的读取视频的 AI 工具和工作流程: 1. 完整工作流: 概念设定:MJ 剧本+分镜:ChatGPT AI 出图:MJ、SD、D3 AI 视频:Runway、pika、PixVerse、Morph Studio 对白+旁白:11labs、睿声 音效+音乐:SUNO、UDIO、AUDIOGEN 视频高清化:Topaz Video 字幕+剪辑:CapCut、剪映 2. 方法 4【SD 出图+出视频】: 下载 SD 的分支版本 CONTROLNET 大佬开发的 Forge,特点是支持图生视频、图生 SD,对低端显卡支持良好。下载链接:https://github.com/lllyasviel/stablediffusionwebuiforge/releases/download/latest/webui_forge_cu121_torch21.7z 。解压到英文文件夹,解压后优先运行 update.bat 进行升级,然后运行 run.bat,打开的界面和 SD 基本一样,核心区别在于 FORGE 增加了 SVD【图生视频】和 Z123【图生 3D】两个王炸功能,且很多 CONTROL 作者研发的新功能直接内置。 相关作者信息:来来,联系方式:laiweb3(添加请注明 AI 视频),公众号/视频号/小红书/B 站:来来说 AI,个人标签:20 年设计师,10 年大学设计老师,电商设计公司创始人 10 年,AI 图书作者《一本书读懂 AI 绘画》《一本书读懂 AIGC 提示词》《一本书读懂 AIGC 提示词 2》。
2024-12-14
文本打标工具
以下是关于文本打标工具的相关信息: OpenAI API 可应用于多种自然语言、代码或图像任务,提供不同能力级别的模型,可微调自定义模型,适用于内容生成、语义搜索和分类等领域。模型通过将文本分解为标记(Token)来理解和处理,Token 可以是单词或字符块,在给定的 API 请求中处理的 Token 数量取决于输入和输出长度,可查看分词器工具了解更多。 对于某些文本打标任务,如根据问题的主要主题为文本打标签,有相应的指示和选项,如根据问题围绕的对象选择不同的标签类别。 在语音合成中,标注是常见问题,一般利用文本前端产生基线的音素序列和音素时长,再由人类参与检查,包括音素层级、单词层级、句子层级等方面,标注人员可采用 Praat 进行可视化标注和检查,不同场景的标注可能有细微变化。
2025-02-18
文本检查提示词
以下是关于文本检查提示词的相关内容: 在输入侧的防御方面,传统防御手段可用,结合大模型特性可进行意图识别、语义匹配、提示词语义结构分析等,综合判断用户输入是否恶意。 模型侧的防御,对于有能力的厂商应增强安全性,如对抗训练、安全微调、多任务学习、上下文动态感知等,但要平衡安全性与性能。对于开发者,应在开发中带着安全意识优化应用和系统的提示词,加入安全引导和禁止内容。 输出侧的防御,传统防御和内容过滤手段均可使用,基于大模型特点可进行提示词、私有数据泄露等检查,以及针对大模型幻觉问题,判断是否有事实性错误、脱离话题、乱码文本、不正确格式、错误代码等。 此外,如Claude2可用于多种类型文本的分析,包括评估文本相似度和回答有关文本的问题。 OpenAI API中,设计提示词本质是对模型进行“编程”,通过提供指令或示例完成,其模型通过将文本分解为标记(Token)来理解和处理文本,处理的Token数量取决于输入和输出长度,有一定的限制。
2025-02-18
有免费好用的文本转语音工具吗
以下是一些免费好用的文本转语音工具: 1. Eleven Labs:https://elevenlabs.io/ 这是一款功能强大且多功能的 AI 语音软件,能生成逼真、高品质的音频,可高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ 这是一款人工智能驱动的文本转语音工具,可将文本转换为音频文件,能作为 Chrome 扩展、Mac 应用程序、iOS 和 Android 应用程序使用,适用于收听网页、文档、PDF 和有声读物。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal 这是一套服务,赋予应用程序“听懂、理解并与客户进行对话”的能力,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 4. Voicemaker:https://voicemaker.in/ 这一 AI 工具可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 此外,还有日语文本转语音软件 VOICEVOX,它提供多种语音角色,适用于不同场景,可调整语音的语调、速度、音高,开源且可商用。链接: 内容由 AI 大模型生成,请仔细甄别。
2025-02-12
我现在通过ai文本输出这一幅画的描述,那我通过什么软件或者是网站能让它形成一幅图,那最关键的是我形成的这幅图可以在ai或者是ps这种绘图软件上直接进行每一个元素的编辑。怎样我才能最快的做出来。
以下是一些可以根据您的 AI 文本描述生成图片,并能在 AI 或 PS 等绘图软件上直接编辑每个元素的软件和网站: 1. Stable Diffusion 模型:可以根据您输入的文本指令生成图片,生成的图片样式取决于您输入的提示词。 2. Anifusion:这是一款基于人工智能的在线工具,您只需输入文本描述,其 AI 就能将其转化为完整的漫画页面或动漫图像。具有以下功能和特点: AI 文本生成漫画:根据输入的描述性提示生成漫画。 直观的布局工具:提供预设模板,也支持自定义漫画布局。 强大的画布编辑器:可在浏览器中直接优化和完善生成的艺术作品。 多种 AI 模型支持:高级用户可访问多种 LoRA 模型实现不同艺术风格和效果。 商业使用权:用户对创作的作品拥有完整商业使用权。 在进行 AI 作图时,还需注意以下创作要点: 1. 注重趣味性与美感的结合,趣味性可通过反差、反逻辑、超现实方式带来视觉冲击,美感要在美术基础不出错的前提下实现形式与内容的结合。 2. 像纹身图创作要强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。 3. 编写提示词时要用自然语言详细描述画面内容,避免废话词,例如 Flux 对提示词的理解和可控性较强。
2025-02-11
长文本理解能里较强的AI
以下是一些长文本理解能力较强的 AI 模型: 1. 智谱·AI 的 ChatGLM26B32k:这是第二代 ChatGLM 长上下文对话模型,在 ChatGLM26B 的基础上进一步强化了对于长文本的理解能力,能够更好地处理最多 32K 长度的上下文。在实际使用中,如果上下文长度基本在 8K 以内,推荐使用 ChatGLM26B;如果需要处理超过 8K 的上下文长度,推荐使用 ChatGLM26B32K。此外,还有 ChatGLM26B32kint4 版本,它是 ChatGLM26B32K 的 int4 版本。 2. 通义千问的 Qwen2.51M:推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速。首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息。其开源平台包括 Huggingface(https://huggingface.co/spaces/Qwen/Qwen2.51MDemo)和 Modelscope(https://www.modelscope.cn/studios/Qwen/Qwen2.51MDemo)。
2025-02-09
文本整理
以下是关于文本整理的相关内容: 总结类应用: 大型语言模型在概括文本方面的应用令人兴奋,可在 Chat GPT 网络界面中完成,也可通过代码实现。包括对产品评论的摘要任务,还介绍了文字总结的不同类型,如 4.1 文字总结、4.2 针对某种信息总结、4.3 尝试“提取”而不是“总结”、4.4 针对多项信息总结。 创建并使用知识库: 创建知识库并上传文本内容的上传方式及操作步骤: Notion:在文本格式页签下选择 Notion,依次进行授权、登录选择页面、选择数据、设置内容分段方式(自动分段与清洗或自定义)等操作,最后完成内容上传和分片。 自定义:在文本格式页签下选择自定义,输入单元名称,创建分段并输入内容,设置分段规则,最后保存。 本地文档:在文本格式页签下选择本地文档,拖拽或选择要上传的文档(支持.txt、.pdf、.docx 格式,每个文件不大于 20M,一次最多上传 10 个文件),选择内容分段方式(自动分段与清洗或自定义),完成上传和分片。
2025-02-07
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大模型产品对比
以下是对一些大模型产品的对比介绍: 智谱清言:由智谱 AI 和清华大学推出,基础模型为 ChatGLM 大模型。2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。 模型特点:在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。更擅长专业能力,但代码能力有优化空间,知识百科稍显不足,是很有竞争力的大模型。 适合应用:场景广泛,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及长文本记忆相关场景,在较复杂推理应用上效果不错,也适用于广告文案、文学写作。 其他大模型产品: OpenAI 发布 GPT4 科大讯飞发布星火 1.0 及升级至星火 3.0 百度发布文心一言 1.0 及升级至 V3.5 清华开源 ChatGLM 360 发布 360 智脑 1.0 及升级至智脑 4.0 复旦开源 MOSS 元语开源 ChatYuan 阿里云发布通义千问 1.0 及开源 Qwen7B 商汤科技发布商量 1.0 及升级至商量 2.0、商量 3.0 昆仑万维发布天工 1.0 出门问问发布序列猴子 华为发布盘古 3.0 西湖心辰发布西湖大模型 云从科技发布从容大模型 理想汽车发布 MindGPT OPPO 发布 AndesGPT vivo 发布 BlueLM 小米发布大模型 MiLM 元象科技开源 XVERSE13B Google 发布多模态大模型 Gemini 上海人工智能实验室开源 InternLM20B 百川智能发布 Baichuan2—Turbo 关于大模型在营销方面的应用: 大模型在实体类产品的营销标语生成上表现较好,虚拟类产品相对欠佳。可能是因为大模型训练数据中实体类语料多,更能调用已有知识加工,而虚拟类产品非标准品,大模型认识不足。 情绪价值在营销领域有很多用武之地,除快消商品外,很多产品的营销需要反复沟通,虚拟产品对感性成交依赖更大,大模型在这方面仍有很大发展空间。
2025-02-18
我想创业,花多少钱,能够搭建一个视频领域的AI模型
在视频领域搭建 AI 模型的成本因多种因素而异。对于创业者或小公司来说,这个领域存在一定的挑战。 腾讯的混元 AI 视频模型目前只支持文生视频,且已开源免费。 在模型供应商方面,不同供应商的特点和成本有所不同: 智谱 GLM4V 是通用视觉类大模型,为拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,调用成本为 0.05 元/千 tokens。 阿里云百炼 qwenvlplus 也是通用视觉类大模型,是拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为 0.008 元/千 tokens,训练成本为 0.03 元/千 tokens。 阶跃星辰是通用视觉类大模型,响应速度快,支持视频理解,输入成本为 0.005 0.015 元/千 tokens,输出成本为 0.02 0.07 元/千 tokens。 百度 PaddlePaddle 是 OCR 垂直小模型,文本识别能力补齐增强,私有化部署有服务费,API 调用在 0.05 0.1 元/次。 此外,获取高质量数据的难度较高,大厂在该领域的护城河深厚。大公司在争取大模型 API 客户方面更具优势,且开源大模型的发展可能会影响创业公司的业务。去年为大客户定制一个大模型的最高订单额可达 1000 万元,而今年则快速降到了百万元级别乃至更低。
2025-02-18
你的底层大模型用的是哪个?
目前常见的大型语言模型多采用右侧只使用 Decoder 的 Decoderonly 架构,例如我们熟知的 ChatGPT 等。这些架构都是基于谷歌 2017 年发布的论文“attention is all you need”中提出的 Transformer 衍生而来,其中包括 Encoder 和 Decoder 两个结构。 大模型的特点在于: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 大模型之所以能有效生成高质量有意义的回答,关键在于“大”。例如 GPT1 的参数规模是 1.5 亿,GPT2 Medium 的参数规模是 3.5 亿,到 GPT3.5 时,参数规模达到惊人的 1750 亿,参数规模的增加实现了量变到质变的突破,“涌现”出惊人的“智能”。 大模型的预训练机制是指其“脑袋”里存储的知识都是预先学习好的,预训练需要花费相当多的时间和算力资源。在没有其他外部帮助的情况下,大模型所知道的知识信息总是不完备且滞后的。
2025-02-18
怎么用大模型构建一个属于我自己的助手
以下是用大模型构建属于自己的助手的几种方法: 1. 在网站上构建: 创建百炼应用获取大模型推理 API 服务: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认,也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 2. 微信助手构建: 搭建,用于汇聚整合多种大模型接口,并获取白嫖大模型接口的方法。 搭建,作为知识库问答系统,将大模型接入用于回答问题,若不接入微信,搭建完成即可使用其问答界面。 搭建接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。 3. 基于 COW 框架构建: COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 基于张梦飞同学的更适合小白的使用教程:。 实现功能包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用。 注意事项: 微信端因非常规使用有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保操作符合法律法规要求。 禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 支持多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 支持多部署方法,如本地运行、服务器运行、Docker 的方式。
2025-02-17
我想了解如何在微信公众号搭建一个能发语音的数字人
以下是在微信公众号搭建能发语音的数字人的相关步骤: 1. 照片数字人工作流及语音合成(TTS)API 出门问问 Mobvoi: 工作流地址:https://github.com/chaojie/ComfyUImobvoiopenapi/blob/main/wf.json 相关文件: 记得下载节点包,放进您的 node 文件夹里,这样工作流打开就不会爆红了!ComfyUI 启动后就可以将 json 文件直接拖进去使用了! 2. 「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人: 组装&测试“AI 前线”Bot 机器人: 返回个人空间,在 Bots 栏下找到刚刚创建的“AI 前线”,点击进入即可。 组装&测试步骤: 将上文写好的 prompt 黏贴到【编排】模块,prompt 可随时调整。 在【技能】模块添加需要的技能:工作流、知识库。 【预览与调试】模块,直接输入问题,即可与机器人对话。 发布“AI 前线”Bot 机器人: 测试 OK 后,点击右上角“发布”按钮即可将“AI 前线”发布到微信、飞书等渠道。 发布到微信公众号上: 选择微信公众号渠道,点击右侧“配置”按钮。 根据以下截图,去微信公众号平台找到自己的 App ID,填入确定即可。不用了解绑即可。 最后去自己的微信公众号消息页面,就可以使用啦。
2025-02-18
数字人项目
以下是关于数字人项目的相关信息: 构建高质量的 AI 数字人: 建好的数字人模型可以使用 web 前端页面(如 Live2D 提供的 web 端 SDK)或者 Native 的可执行程序进行部署,最终以 GUI 的形式呈现给用户。 开源数字人项目(项目地址:https://github.com/wanh/awesomedigitalhumanlive2d)选择 live2d 作为数字人躯壳,原因是其驱动方式相比 AI 生成式更可控和自然,相比虚幻引擎更轻量和简单。卡通二次元形象的接受度更高,超写实风格在目前技术下易出现一致性问题和恐怖谷效应。Live2d 的 SDK 驱动方式可参考官方示例:https://github.com/Live2D 。 MimicMotion 项目: 腾讯发布的 MimicMotion 项目效果显著优于阿里,支持面部特征和唇形同步,不仅用于跳舞视频,也可应用于数字人。 相较阿里的方案,MimicMotion 的优化包括:基于置信度的姿态引导机制,确保生成视频更加连贯流畅;基于姿态置信度的区域损失放大技术,显著减少图像扭曲和变形;创新的渐进式融合策略,在可接受的计算资源消耗下,实现任意长度视频生成。项目地址:https://github.com/tencent/MimicMotion ,节点地址:https://github.com/AIFSH/ComfyUIMimicMotion 。 爱的传承·数字母亲: 内容负责人:朱睿电子酒 统筹负责人:张小琳电子酒 摄影:万阳 剪辑:萧川布丁子健 数字人:大萌子 使用工具:剪辑:剪映、imovie、美图秀秀;数字人:heygen 为完成数字人的拍摄,朱妈妈吃了 4 片吗啡。2 月 4 号制作完数字人,2 月 5 号拍摄,布丁川川子健凌晨开始剪辑,协调补拍追加了很多镜头,朱哥也熬了几个通宵来丰满素材。虽然最后呈现的效果不完美,但相信这部片子具有一定的社会价值。
2025-02-18
数字人
数字人是运用数字技术创造出来的人,目前业界还没有一个关于数字人的准确定义,但一般可根据技术栈的不同分为两类,一类是由真人驱动的数字人,另一类是由算法驱动的数字人。 真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要应用于影视行业以及现下很火热的直播带货,其表现质量与手动建模的精细程度及动捕设备的精密程度直接相关,不过随着视觉算法的不断进步,现在在没有昂贵动捕设备的情况下也可以通过摄像头捕捉到人体骨骼和人脸的关键点信息,从而做到不错的效果。 制作数字人的工具主要有: 1. HeyGen:是一个 AI 驱动的平台,可以创建逼真的数字人脸和角色。使用深度学习算法生成高质量的肖像和角色模型,适用于游戏、电影和虚拟现实等应用。 2. Synthesia:是一个 AI 视频制作平台,允许用户创建虚拟角色并进行语音和口型同步。支持多种语言,并可用于教育视频、营销内容和虚拟助手等场景。 3. DID:是一家提供 AI 拟真人视频产品服务和开发的公司,只需上传人像照片和输入要说的内容,平台提供的 AI 语音机器人将自动转换成语音,然后就能合成一段非常逼真的会开口说话的视频。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会随着时间和技术的发展而变化。在使用这些工具时,请确保遵守相关的使用条款和隐私政策,并注意保持对生成内容的版权和伦理责任。 每个人都可以用 10 分钟轻松制作 AI 换脸、AI 数字人视频,具体步骤如下: 在显示区域,拖动背景图的一个角,将图片放大到适合的尺寸,比如覆盖视频窗口。并将数字人拖动到合适的位置。 增加字幕,点击文本 智能字幕 识别字幕,点击开始识别,软件会自动将文字智能分段并形成字幕。 至此,数字人视频就完成了。点击右上角的“导出”按钮,导出视频以作备用。如果希望数字人换成自己希望的面孔,就需要用另一个工具来进行换脸。
2025-02-17
数字员工如何实现?
数字员工的实现方式主要包括以下步骤: 1. 声音克隆:先剪出音频,使用 https://elevenlabs.io/speechsynthesis 或使用 GPTsovits(GPTSoVITS 实现声音克隆)克隆声音,做出文案的音频。 2. 视频整合:使用 wav2lip 整合包,导入视频和音频,对口型得到视频。基础 wav2lip+高清修复整合包下载地址为 https://github.com/Rudrabha/Wav2Lip 。产品可参考 https://synclabs.so/ 。 从学习路径的角度来看,结合“一人公司”的愿景,需要大量的智能体(数字员工)替我们打工。未来的 AI 数字员工会以大语言模型为大脑,串联所有已有的工具和新造的 AI 工具。数字员工(agent)=学历(大模型)+察言观色(观察)+逻辑思维(推理)+执行(SOP)。创造者的学习也依照这个方向,用大语言模型和 Agent 模式把工具串起来,着重关注在创造能落地 AI 的 agent 应用。 Agent 工程(基础版)如同传统的软件工程学,有一个迭代的范式: 1. 梳理流程:梳理工作流程 SOP,并拆解成多个单一「任务」和多个「任务执行流程」。 2. 「任务」工具化:自动化每一个「任务」,形成一系列的小工具,让机器能完成每一个单一任务。 3. 建立规划:串联工具,基于 agent 框架让 bot 来规划「任务执行流程」。 4. 迭代优化:不停迭代优化「任务」工具和「任务执行流程」规划,造就能应对实际场景的 Agent。 在摊位信息方面,有摊位主题为“AI 数字员工”的展示,内容为为企业和个人提供数字劳动力,解决重复性、创意性工作难题。体验 demo 包括抖音运营、AI 客服、智能问诊、企业定制员工、定制知识库等。
2025-02-17
ai数字人
AI 数字人是运用数字技术创造出来的人,目前业界尚无准确定义,一般可根据技术栈分为两类: 1. 真人驱动的数字人:重在通过动捕设备或视觉算法还原真人动作表情,主要应用于影视行业及直播带货。其表现质量与手动建模精细程度及动捕设备精密程度直接相关,不过随着视觉算法进步,在无昂贵动捕设备时也能通过摄像头捕捉人体骨骼和人脸关键点信息达到不错效果。 2. 算法驱动的数字人:强调自驱动,人为干预更少,技术实现更复杂。其大致流程中的三个核心算法分别是: ASR(语音识别):能将用户音频数据转化为文字,便于数字人理解和生成回应。 AI Agent(人工智能体):充当数字人大脑,可接入大语言模型,拥有记忆模块等使其更真实。 TTS(文字转语音):将数字人依靠 LLM 生成的文字转换为语音,保持语音交互一致性。 此外,还有一些关于 AI 数字人的摊位活动,例如:为企业和个人提供数字劳动力,解决重复性、创意性工作难题的“AI 数字员工”体验 demo 包括抖音运营、AI 客服、智能问诊、企业定制员工、定制知识库等;“AIGC(图生图)趣味定制;AI 数字人定制”等。
2025-02-17
ai数字人
AI 数字人是运用数字技术创造出来的人,目前业界没有关于其的准确定义,但一般可根据技术栈分为两类: 1. 真人驱动的数字人:重在通过动捕设备或视觉算法还原真人动作表情,主要应用于影视行业及直播带货。其表现质量与手动建模精细程度及动捕设备精密程度直接相关,不过随着视觉算法进步,在无昂贵动捕设备时也能通过摄像头捕捉人体骨骼和人脸关键点信息达到不错效果。 2. 算法驱动的数字人:强调自驱动,人为干预更少,技术实现更复杂。其大致流程中的三个核心算法分别是: ASR(语音识别):能将用户音频数据转化为文字,便于数字人理解和生成回应。 AI Agent(人工智能体):充当数字人大脑,可接入大语言模型,拥有记忆模块等使其更真实。 TTS(文字转语音):将数字人依靠 LLM 生成的文字转换为语音,保持语音交互一致性。 此外,摊位活动中也有关于 AI 数字人的主题,如为企业和个人提供数字劳动力,解决重复性、创意性工作难题,包括抖音运营、AI 客服、智能问诊、企业定制员工、定制知识库等体验 demo。还有 AIGC 数字艺术挂画、AI 智能体应用、AI 数字人定制等相关内容。
2025-02-17