直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型在本地生活应用

回答

大模型在本地生活中的应用主要包括以下方面:

AI 绘画

SDXL 模型

  • SDXL 的大模型分为两个部分:
    • 第一部分,base+refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对文生图生成的模型进行细化,生成细节更丰富的图片。
    • 第二部分,是 SDXL 还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。
  • 想要在 webUI 中使用 SDXL 的大模型,首先要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。然后将模型放入对应的文件夹中,base 和 refiner 放在“……\sd-webui-aki-v4.2\models\Stable-diffusion”路径下;vae 放在“……\sd-webui-aki-v4.2\models\VAE”路径下。

大语言模型

  • 部署大语言模型需要进行以下操作:
    • 下载并安装 Ollama:
      • 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download
      • 下载完成后,双击打开,点击“Install”
      • 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/
    • 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型):
      • 如果是 windows 电脑,点击 win+R,输入 cmd,点击回车。
      • 如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。
      • 复制相关命令行,粘贴进入,点击回车。
      • 下载完成后,大模型即可在本地运行,输入文本即可进行对话。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

SD新手:入门图文教程

模型能够有效地控制生成的画风和内容。常用的模型网站有:[Civitai | Stable Diffusion models,embeddings,hypernetworks and more](https://link.zhihu.com/?target=https%3A//civitai.com/)>[Models - Hugging Face](https://link.zhihu.com/?target=https%3A//huggingface.co/models)>[SD - WebUI资源站](https://link.zhihu.com/?target=https%3A//www.123114514.xyz/models/ckpt)>[元素法典AI模型收集站- AI绘图指南wiki(aiguidebook.top)](https://link.zhihu.com/?target=https%3A//aiguidebook.top/index.php/model/)>[AI绘画模型博物馆(subrecovery.top)](https://link.zhihu.com/?target=https%3A//aimodel.subrecovery.top/)[heading3]模型安装[content]下载模型后需要将之放置在指定的目录下,请注意,不同类型的模型应该拖放到不同的目录下。模型的类型可以通过[Stable Diffusion法术解析](https://link.zhihu.com/?target=https%3A//spell.novelai.dev/)检测。大模型(Ckpt):放入models\Stable-diffusionVAE模型:一些大模型需要配合vae使用,对应的vae同样放置在models\Stable-diffusion或models\VAE目录,然后在webui的设置栏目选择。Lora/LoHA/LoCon模型:放入extensions\sd-webui-additional-networks\models\lora,也可以在models/Lora目录Embedding模型:放入embeddings目录

【SD】向未来而生,关于SDXL你要知道事儿

SDXL的大模型分为两个部分:第一部分,base+refiner是必须下载的,base是基础模型,我们使用它进行文生图的操作;refiner是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。第二部分,是SDXL还有一个配套的VAE模型,用于调节图片的画面效果和色彩。这三个模型,我已经放入了云盘链接中,大家可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。想要在webUI中使用SDXL的大模型,首先我们要在秋叶启动器中将webUI的版本升级到1.5以上。接下来,将模型放入对应的文件夹中,base和refiner放在“……\sd-webui-aki-v4.2\models\Stable-diffusion”路径下;vae放在“……\sd-webui-aki-v4.2\models\VAE”路径下。完成之后,我们启动webUI,就可以在模型中看到SDXL的模型了。我们正常的使用方法是这样的:先在文生图中使用base模型,填写提示词和常规参数,尺寸可以设置为1024*1024,进行生成。我这边使用了一个最简单的提示词“1girl”,来看看效果。生成的图片大家可以看一下,我觉得是相当不错的。我知道大家心里可能会想——“就这,还好吧,也没有那么惊艳吧?”,那么,我用同样的参数再给你画一幅sd1.5版本的图像,你就能看出进步有多大了。是不是没有对比就没有伤害?SDXL,真香!还没完,我们到现在还只使用了一个base模型,接下来,将图片发送到图生图当中,大模型切换为“refiner”,重绘幅度开小一点,再次点击生成。

张梦飞:【全网最细】从LLM大语言模型、知识库到微信机器人的全本地部署教程

我们需要进行部署的有三大部分1、本地部署大语言模型2、本地部署FastGPT+OneAPI3、本地部署HOOK项目或COW[heading1]一、部署大语言模型[content]一、下载并安装Ollama1、点击进入,根据你的电脑系统,下载Ollama:https://ollama.com/download2、下载完成后,双击打开,点击“Install”3、安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成http://127.0.0.1:11434/二、下载qwen2:0.5b模型(0.5b是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)1、如果你是windows电脑,点击win+R输入cmd,点击回车如果你是Mac电脑,按下Command(⌘)+ Space键打开Spotlight搜索。输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。2、复制以下命令行,粘贴进入,点击回车:3、回车后,会开始自动下载,等待完成(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了)4、下载完成后你会发现,大模型已经在本地运行了。输入文本即可进行对话。

其他人在问
怎么训练自己的小说大纲模型
训练自己的小说大纲模型可以参考以下步骤: 步骤一:创建数据集 1. 进入厚德云模型训练数据集,网址为:https://portal.houdeyun.cn/sd/dataset 。 2. 在数据集一栏中,点击右上角创建数据集。 3. 输入数据集名称。 4. 可以上传包含图片+标签的 zip 文件,也可以只有图片没有打标文件(之后可在 c 站使用自动打标功能)。 5. 也可以一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。 6. Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 7. 上传 zip 以后等待一段时间。 8. 确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,可预览到数据集的图片以及对应的标签。 步骤二:Lora 训练 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。 4. 模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 5. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 6. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 7. 然后等待训练,会显示预览时间和进度条。训练完成的会显示出每一轮的预览图。 8. 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 步骤三:Lora 生图 1. 点击预览模型中间的生图会自动跳转到这个页面。 2. 模型上的数字代表模型强度,可以调节大小,正常默认为 0.8,建议在 0.6 1.0 之间调节。 3. 也可以自己添加 lora 文件,点击后会显示训练过的所有 lora 的所有轮次。 4. VAE 不需要替换。 5. 正向提示词输入写的提示词,可以选择基于这个提示词一次性生成几张图。 6. 选择生成图片的尺寸,横板、竖版、正方形。 7. 采样器和调度器新手小白可以默认不换。 8. 迭代步数可以按照需求在 20 30 之间调整。 9. CFG 可以按照需求在 3.5 7.5 之间调整。 10. 随机种子 1 代表随机生成图。 11. 所有设置都好了以后,点击开始生态,生成的图会显示在右侧。 12. 如果有哪次生成结果觉得很不错,想要微调或者高分辨率修复,可以点开那张图,往下滑,划到随机种子,复制下来,粘贴到随机种子这里,这样下次生成的图就会和这次的结果近似。 13. 如果确认了一张很合适的种子和参数,想要高清放大,则点开高清修复,可以选择想放大的倍数。新手小白可以就默认这个算法,迭代步数也是建议在 20 30 之间,重回幅度根据需求调整,正常来说在 0.3 0.7 之间调整。 今日作业 按照比赛要求,收集六个主题中一个主题的素材并且训练出 lora 模型后提交 lora 模型与案例图像。提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd 。 另外,直接在 Comfy UI 中训练 LoRA 模型的步骤如下: 1. 确保后面有一个空格。然后将 requirements_win.txt 文件拖到命令提示符中(如果在 Windows 上;否则,选择另一个文件 requirements.txt)。拖动文件将在命令提示符中复制其路径。 2. 按 Enter 键,这将安装所有所需的依赖项,使其与 ComfyUI 兼容。请注意,如果为 Comfy 使用了虚拟环境,必须首先激活它。 3. 教程: 图像必须放在一个以命名的文件夹中。那个数字很重要:LoRA 脚本使用它来创建一些步骤(称为优化步骤…但别问我是什么^^’)。它应该很小,比如 5。然后,下划线是必须的。 对于 data_path,必须写入包含数据库文件夹的文件夹路径。例如:C:\\database\\5_myimages ,必须写 C:\\database 。 对于参数,在第一行,可以从 checkpoint 文件夹中选择任何模型。据说必须选择一个基本模型进行 LoRA 训练。但也可以尝试使用微调。
2024-11-12
怎么训练自己的模型
训练自己的模型可以参考以下内容: 基于百川大模型: 选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。 在 Train 页面里,选择 sft 训练方式,加载定义好的数据集(如 wechat 和 self_cognition)。 注意学习率和训练轮次的设置,要根据数据集大小和收敛情况来调整。 使用 FlashAttention2 可减少显存需求,加速训练速度。 显存小的情况下,可以减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。 需要用到 xformers 的依赖。 显存占用约 20G 左右,训练时间根据聊天记录规模大小而定,少则几小时,多则几天。 训练自己的 AI 绘画模型(Stable Diffusion): 样本采样器(sample_sampler):可选择,默认是“ddim”。 保存模型格式(save_model_as):可选择,SD WebUI 兼容"ckpt"和"safetensors"格式模型。 训练流程主要包括: 训练集制作:数据质量评估、标签梳理、数据清洗、标注、标签清洗、增强等。 训练文件配置:预训练模型选择、训练环境配置、训练步数及其他超参数设置等。 模型训练:运行训练脚本,使用 TensorBoard 监控。 模型测试:用于效果评估与消融实验。 训练资源: Rocky 整理优化过的 SD 完整训练资源 SDTrain 项目,可通过关注公众号 WeThinkIn,后台回复“SDTrain”获取。
2024-11-12
ollama嵌入向量在模型后有什么用
嵌入向量在模型后的作用主要体现在以下方面: 1. 用于文档内容的表示和检索:将文档分成块,计算嵌入向量并存储在向量存储中,在测试时通过查询向量存储获取可能与任务相关的块,填充到提示中进行生成。 2. 提升模型的检索能力:在大语言模型应用程序中,向量存储成为检索相关上下文的主要方式,嵌入向量有助于更高效地获取相关信息。 3. 支持多语言和不同粒度的检索任务:例如像 bgem3 这样的向量模型,支持超过 100 种语言的语义表示及检索任务,能实现句子、段落、篇章、文档等不同粒度的检索。 在实际应用中,如在 LangChain 中,本地向量存储使用量较大,而在计算文本片段的嵌入时,OpenAI 占据主导地位,开源提供商如 Hugging Face 等也被较多使用。
2024-11-12
国内文生图大模型,有哪些?
以下是一些国内的文生图大模型: 百度的文心一言:https://wenxin.baidu.com 抖音的云雀大模型:https://www.doubao.com 智谱 AI 的 GLM 大模型:https://chatglm.cn 中科院的紫东太初大模型:https://xihe.mindspore.cn 百川智能的百川大模型:https://www.baichuanai.com/ 商汤的日日新大模型:https://www.sensetime.com/ MiniMax 的 ABAB 大模型:https://api.minimax.chat 上海人工智能实验室的书生通用大模型:https://internai.org.cn 此外,真人效果卓绝的大模型 lofi.v2 也可用于生成真实场景下的字体。在使用 SDXL 大模型时,其分为 base+refiner 以及配套的 VAE 模型,base 用于文生图操作,refiner 用于细化生成的模型,VAE 用于调节图片效果和色彩。要在 webUI 中使用,需将秋叶启动器中 webUI 的版本升级到 1.5 以上,并将模型放入对应文件夹。
2024-11-12
我想了解一下关于模型微调的知识
以下是关于模型微调的知识: 介绍:微调可让您从 API 提供的模型中获得更多收益,比如比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了 Token、更低的延迟请求。GPT3 已在大量文本上预训练,微调通过训练更多示例改进小样本学习,让您在大量任务中取得更好结果。对模型微调后,无需在提示中提供示例,可节省成本并降低延迟。在高层次上,微调涉及准备和上传训练数据、训练新的微调模型、使用微调模型。 哪些模型可以微调:微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。还可以继续微调微调模型以添加其他数据,无需从头开始。 微调的概念和意义:在人工智能领域,通常根据应用领域将大模型分为通用大模型和领域特定模型。通用大模型如 GPT4.0、GPT3.5 等具有广泛的自然语言理解能力,但在特定领域表现可能不理想。对大模型针对特定领域进行的训练过程称为微调,通过在特定领域数据上训练,优化所有层参数,提高在该领域的专业性。微调可节省成本、加快模型部署和应用速度。 相关应用开发:除了调用 ChatGPT 之外,还需学会模型微调、设计 Prompt、优化用户交互的解决方案等。在开发中,程序读取结构化数据,如 JSON 格式。通过稳定的提示词设计及一些模型参数(如温度 Temperature 等)来让 ChatGPT 保持稳定输出。
2024-11-12
可以调用不同大预言模型的整合工具推荐
以下是为您推荐的可以调用不同大语言模型的整合工具: 1. Poe:由 Quora 开发,有 APP 版本,支持跨端使用。集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。访问地址: 。Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可以尝试在两个模型中都问一遍提升信息准确性)。此外支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 2. 国内的一些模型,如智谱和文心,在文生图方面有一定能力。 另外,大模型工具可根据自身条件准备,推荐顺序为:1. chatGPT 4.0 2. kimichat 3. 智谱清言 4 。
2024-11-12
最近有哪些 AI + 社交的应用
以下是一些近期的 AI + 社交的应用: 1. BOSS 直聘简历筛选功能:这是一个 AI 招聘简历筛选系统,运用自然语言处理和机器学习技术,市场规模达数亿美元。它能快速筛选简历,提高招聘效率,根据企业招聘要求提取关键信息,为企业推荐符合条件的候选人,比如筛选出有特定技能或工作经验的简历。 2. 贝壳找房租赁管理功能:这是一个 AI 房地产租赁管理系统,运用数据分析和自然语言处理技术,市场规模达数亿美元。它可以管理房地产租赁业务,提高效率,比如根据租客的需求和偏好自动推荐合适的房源。 3. 腾讯游戏社交平台:这是一个利用 AI 技术的游戏社交平台,运用数据分析和机器学习技术,市场规模达数十亿美元。它为玩家提供社交功能,如好友推荐、游戏组队、社区互动等,增强游戏体验,例如根据玩家的游戏历史和兴趣爱好推荐可能成为好友的玩家。 4. Butterflies AI:这是一款人类与 AI 共存的社交软件。 5. 对比流行的社交应用,即使是像 ChatGPT 这样的顶流,其首月用户留存度(56%)也不及社交应用的中位数(63%)。一些优秀的消费级社交应用,如 WhatsApp,DAU/MAU 比高达 85%,而生成式 AI 应用的中位数只有 14%,但 AI 陪伴类别除外。
2024-11-11
MT内部AIGC应用记录
以下是关于 MT 内部 AIGC 应用的记录: 在“海岱青州”晚会项目中,Shoppen 墨导受张健导演委托,将 AI 技术融入舞台展现。考虑使用 AIGC 的原因主要有两点:一是在史诗叙事中,为追求宏大视觉呈现,AIGC 能实现更多非常规视角的视觉创作;二是时间紧迫、任务繁重,传统手段制作全套视觉的建模渲染压力大。在两周左右的时间里,参与了整个晚会的制作过程,全面测试了 AIGC 在严肃内容制作中的价值。 AIGC 相关概念: 人工智能(AI):一种目标,让机器展现智慧。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种让机器自动从资料中找到公式的手段。 深度学习:更厉害的手段,类神经网络,具有非常大量参数的函数。 大语言模型:具有大量参数的“深度学习”模型。 ChatGPT:美国 OpenAI 公司开发的基于大型语言模型(LLM)的对话机器人,能根据用户输入生成连贯相关的文本回复,是 AIGC 技术在文本生成领域的一个应用实例。 AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等。其技术可用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 AGI、GenAI、AIGC 几个概念的区别与理解可参考相关图示。更多概念可问 Kimi、通义千问、文心一言等大模型。国内主要模型公司及地址如下。
2024-11-11
汽车行业AI应用
以下是人工智能在汽车行业的一些应用: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司都在开发和测试自动驾驶汽车,实现自主导航和驾驶。 2. 车辆安全系统:AI 用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统,通过分析摄像头和传感器数据预防事故。 3. 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置,包括座椅位置、音乐选择和导航系统,提供更个性化和舒适的驾驶体验。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本,提高车辆可靠性和效率。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制,监测设备状态并优化生产流程,减少人为错误。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,以理解客户需求、制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,优化电池使用和充电时间,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等共享出行平台使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取措施。 此外,还有一些相关的 AI 应用案例,如汽车之家车商城利用 AI 分析用户购车需求和预算,为用户推荐合适的汽车品牌和车型,并提供购车优惠和金融服务。
2024-11-11
想剪辑视频,哪个AI应用帮助更大?
以下是一些在视频剪辑方面能够提供较大帮助的 AI 应用: 1. 对于专业创作者(艺术家、影视人等): AI 生成能够为作品赋予独特风格和想象力,为创作者提供灵感。 低成本动捕能大幅降低后期制作的门槛和成本,自动识别背景生成绿幕、视频主体跟随运动等功能能够辅助视频编辑,为后期制作增加更多空间。 目前该应用主要集中在音乐 MV、短篇电影、动漫等方向。一些 AI 视频平台也积极寻求创意合作,为创作者提供免费支持。例如,@valleeduhamel 使用现有的素材、Gen1 和大量合成创作了新电影《After Light》,Ammaar Reshi 的团队使用 Stable WarpFusion + Davinci Resolve 制作完整的动漫剧情。 2. 对于自媒体、非专业创作者: 科技、财经、资讯类重脚本内容的视频制作者,在制作时面临寻找视频素材和版权问题,一些产品(如 Invideo AI、Pictory)已在发力脚本生成分镜、视频,帮助创作者降低视频素材制作门槛。 Gamma AI 已实现文章高效转 PPT 的能力,若能结合 Synthesia、HeyGen AI、DID 等产品的 Avatar、语音生成能力也可快速转化为视频内容。 不同平台适合不同内容形式,创作者想要将同一个素材在不同平台分发就意味着制作成本的升高。而 OpusClip 提供的长视频转短视频致力于解决这一痛点。 3. 对于企业客户: 对于没有足够视频制作资金的小企业、非盈利机构来说,AI 视频生成可以为其大幅缩减成本。 此外,还有 MMVid 这一集成的视频理解系统,能处理和理解长视频内容并进行问答。其应用场景包括快速的视频剪辑、图生视频、快速诊断等。 在剪辑流程方面,以剪映为例,流程包括视频粗剪、视频定剪、音效/音乐、特效、包装(如字幕)。视频粗剪时可先确定画面逻辑,声音作部分参考,粗剪画面无需精美,先把握片子全貌,再进行细节调整和画面替换。音效和音乐方面,剪映中有简单音效库,复杂和真实音效可能需另外制作,音乐商用需注意版权。特效方面,可根据需要添加,如光的效果。包装方面,剪映可智能匹配字幕再修改。
2024-11-11
AI在产品经理岗位上的应用
AI 在产品经理岗位上有以下应用: 1. 辅助精读论文:能帮助翻译、拆解公式,分析代码等。可使用工具如 https://scispace.com 。 2. 编写小脚本:如写 SQL 查询、Python 脚本、正则表达式、图片批量处理等。 3. 撰写产品宣传文案:根据产品宣传渠道写营销文案、营销邮件、产品上架文案等。 4. 调研问卷设计与整理:生成调研框架,回收非结构化问卷,按指定框架生成指定表头表格。 5. 竞品分析:用 BingChat 或 ChatGPT Browsering 插件,按指定框架对比各项数据,如 DAU、用户结构、市场占比等。 6. 解释专业名词:很多垂直领域有不少缩写或行业黑话,可以用 ChatGPT 解释举例、给场景说明。 此外,还有以下相关内容: 写完 PRD 后,可让 GPT 从产品和研发两个视角写逻辑代码,既能发现自己产品逻辑表达问题,也方便以后 QA 同学测试。 创业团队的产品经理身兼数职,在做产品、营销推广、写脚本、数据分析等方面都能用到 AI,语言不再是障碍,有利于做出海产品。 作为产品经理,可以使用如 PMAI 这样的工具,它是一款面向产品经理的生产力工具,具有一键生成 PRD、输出解决方案、生成 SQL 等实用功能。产品体验地址:https://www.pmai.cn/?utm_source=qoZaR5O 。还可以参考作者 nimbus 关于用 10 个 Prompt 提示词做产品经理 AI 助手效果平替 PMAI 的相关内容,飞书原文:https://cskfogs2c7.feishu.cn/wiki/Dm2swP3sJiOkaEkevdAcevLNnLf?from=from_copylink ,微信公众号原文:https://mp.weixin.qq.com/s/XZ4XhpEKwcDRBBfINHjUYg 。
2024-11-11
AI在中国国内财务领域的应用
AI 在中国国内财务领域有以下应用: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资决策。 例如摩根大通通过处理大量数据集、检测模式并整合多个变量,利用人工智能完善经济和货币预测,为政策选择提供信息,改善利率、流动性管理和宏观审慎措施的决策。
2024-11-10
现在有什么ai的项目是与女性生活有关的吗
以下是一些与女性生活有关的 AI 项目: 1. 某 AI 辅助情感疗愈平台:创始人选择疗愈领域,认为在疫情期间及当前 AI 市场发展下,陪伴和母婴是重要领域。公司曾为婚恋网站做过 AI 红娘,将自有垂直情感模型接入 3D 模型,实现商业化。 2. 伴侣人工智能:随着人们结婚年龄变晚、单身比例增加以及关系数字化,伴侣人工智能的时代可能到来。 需要注意的是,目前这些项目仍在不断发展和完善中。
2024-10-10
你认为现在的AI和5年后的AI会有什么区别?AI在生活和工作中可以如何帮助我?什么是AI能替代的,什么是不能替代的?
现在的 AI 和 5 年后的 AI 预计会有显著区别: 目前,AI 可能存在画图构图不佳、语言模型推理不精确等问题。但按照当前的发展速度,5 年后行业将完全不同。函数参数可能超过兆亿级,硅基生物有望理解人类所有行为及背后意义,实现全面超越。 未来的模型有望更符合助理或同事形象,具备主动性,能与人类合作完成项目,而非仅进行一次性问答。 5 年后,LLM 可能成本更低、推理处理速度更快、支持多模态全面接入,更多 AINative 应用将诞生。 AI 在生活和工作中的帮助: 可以作为助手,分享日常工作,跟进长期项目,提醒关键时间节点等。 AI 能替代和不能替代的方面: 能替代的:一些较为标准化、重复性高的工作。 不能替代的:行业的 Knowhow 等固有知识资产,以及很多行业潜规则。
2024-10-04
ai 如何影响小学生以后的学习和生活 2000字
AI 对小学生学习和生活的影响是多方面的。 在学习方面,AI 带来了新的学习体验和方式。例如,孩子们可以通过与像 ChatGPT 这样的 AI 进行交流和提问,获取各种知识和观点。这不仅能拓宽他们的视野,还能培养他们主动探索和思考的能力。然而,这也需要孩子们具备一定的知识储备作为基础。小朋友学习必要的知识,并将其作为预训练的方式是非常重要的。没有知识的积累,就难以在大脑中形成新的神经网络连接,从而影响创造力和想象力的发展。 在生活中,AI 也有着显著的影响。像迷宫题这样的游戏,借助 AI 技术可以有更多创新和变化。迷宫题能够促进孩子记忆力和认知能力的发展,让孩子在轻松愉快的氛围中学习和成长。过于强调学术知识可能会给孩子带来压力,而适度的游戏则能提供一种平衡,帮助孩子在游戏中学习,在学习中享受乐趣。 此外,有了 AI 之后,孩子们更应该学习团队协作和抗挫能力等情商课程,学习“如何用 AI ”本身也可以成为童年的第一课。总之,AI 为小学生的学习和生活带来了新的机遇和挑战,需要孩子们在掌握必要知识的基础上,合理利用 AI 资源,促进自身的全面发展。
2024-09-20
如何找一个AI解决生活中的小问题
以下是为您提供的关于如何找一个 AI 解决生活中的小问题的相关指导: 首先,“人工智能测量”能从大量非结构化数据中挑选出“小信号”,但对于如何利用其结果尚不明确,不过有可能找到正式关系,也许是数量关系,也许通过描述计算过程的程序来表示。 在实际操作中,对于复杂的情况,挑战在于不追踪整个可能性图的情况下确定行动。常见方法包括为不同状态或结果分配分数,追求分数最高的路径,或者在自动定理证明中“从初始命题向下”和“从最终定理向上”工作,以及建立“引理”并添加新规则。 搭建 AI 工作流来解决问题时,针对每个小步骤思考是否有 AI 工具可用,如果想不到可以参考他人的做法。要注意灵活选择最优解,不为了用 AI 而用 AI,通过局部最优解达到全局最优解,目的是提高工作效率而非增加工作的含 AI 量。 总之,寻找 AI 解决生活中的小问题需要综合考虑多种方法和思路,灵活运用现有资源和工具。
2024-09-16
有没有能够帮助我的生活做决策的机器人ai
以下是一些能够帮助您在生活中做决策的 AI 相关内容: 1. 零代码自建决策助手: 敏感性分析:通过调整不同因素的权重,检验决策是否稳健。若轻微权重变化导致结果显著改变,可能需重新评估分析过程或收集更多信息。 情感检验:个人感受是重要考虑因素,需反思对每个选项的情感反应,并考虑其与理性分析的一致性。 提供最终决策建议:基于前面的所有分析,提出综合建议,包括选择理由、潜在风险、注意事项等。 2. 智能体的应用: 自动驾驶:汽车中的智能体感知周围环境,做出驾驶决策。 家居自动化:智能家居设备(如智能恒温器、智能照明)根据环境和用户行为自动调节。 游戏 AI:游戏中的对手角色(NPC)和智能行为系统。 金融交易:金融市场中的智能交易算法,根据市场数据做出交易决策。 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 机器人:各类机器人(如工业机器人、服务机器人)中集成的智能控制系统。 3. 专门为协助特定任务而设计的 AI 驱动工具和教练: 可以帮助搭配服装。 可以提供职业建议。 可以提升沟通能力。 相信未来每个人都可能拥有理解生活独特背景的个性化聊天机器人,在面临生活变化时,如离婚、上大学或生孩子等,能够得到最有共鸣的建议,还能寻求支持或指导以实现各种目标,如更多地锻炼或改善财务状况。
2024-09-02
AI技术在生活中的应用探究
AI 技术在生活中有广泛的应用,以下是一些主要的应用场景: 1. 医疗保健: 医学影像分析:用于分析医学图像,辅助诊断疾病,如 X 射线、CT 扫描和 MRI 等。 药物研发:加速药物研发过程,识别潜在的药物候选物和设计新的治疗方法。 个性化医疗:分析患者数据,为每个患者提供个性化的治疗方案。 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构的风险。 信用评估:评估借款人的信用风险,帮助金融机构做出贷款决策。 投资分析:分析市场数据,辅助投资者做出投资决策。 客户服务:提供 24/7 的客户服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输: 自动驾驶:开发自动驾驶汽车,提高交通安全性和效率。 交通管理:优化交通信号灯和交通流量,缓解拥堵。 物流和配送:优化物流路线和配送计划,降低运输成本。 无人机送货:将货物快速送达偏远地区。 6. 其他应用场景: 教育:提供个性化学习,为学生提供定制化学习体验。 农业:分析农田数据,提高农作物产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源使用,提高能源效率。 此外,AI 在医疗健康生物制药的研究中也发挥着重要作用,例如提前三年诊断胰腺癌、发现与胶质母细胞瘤相关的新靶基因、帮助抗衰老、寻找阿尔兹海默症的治疗方法等。AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。
2024-09-01