直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

有没有关于RAG的实践

回答

以下是关于 RAG 的一些实践:

  • OpenAI 的实践:从 45%的准确率开始,尝试多种方法,如假设性文档嵌入(HyDE)和精调嵌入等,效果不理想。通过尝试不同大小块的信息和嵌入不同的内容部分,准确率提升到 65%。通过 Reranking 和对不同类别问题特别处理,进一步提升到 85%。最终,通过提示工程、查询扩展等方法结合,达到 98%的准确率。团队强调了模型精调和 RAG 结合使用的强大潜力,尤其是在未使用复杂技术的情况下,仅通过简单的模型精调和提示工程就接近行业领先水平。
  • 本地部署大模型以及搭建个人知识库:利用大模型的能力搭建知识库是 RAG 技术的应用。RAG 应用可抽象为 5 个过程,包括文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。
  • 本地部署资讯问答机器人:基于用户问题从向量数据库中检索相关段落并过滤,让模型参考上下文信息回答,实现 RAG。通过 gradio 创建网页 UI 并进行评测,对不同模型如 Qwen-7b、Gemma、Mistral、Mixtral 和 GPT-4 进行测试,得出 GPT-4 表现最好等结论。同时总结指出上下文数据质量和大模型性能决定 RAG 系统性能上限,RAG 能提升答案质量和相关性,但不能完全消除大模型幻觉、信息滞后问题。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

大模型RAG问答行业最佳案例及微调、推理双阶段实现模式:基于模块化(Modular)RAG自定义RAG Flow

从OpenAI Demo day的演讲整理所得,并不能完全代表OpenAI的实际操作。在提升RAG的成功案例中,OpenAI团队从45%的准确率开始,尝试了多种方法并标记哪些方法最终被采用到生产中。他们尝试了假设性文档嵌入(HyDE)和精调嵌入等方法,但效果并不理想。通过尝试不同大小块的信息和嵌入不同的内容部分,他们将准确率提升到65%。通过Reranking和对不同类别问题特别处理的方法,他们进一步提升到85%的准确率。最终,通过提示工程、查询扩展和其他方法的结合,他们达到了98%的准确率。团队强调了模型精调和RAG结合使用时的强大潜力,尤其是在没有使用复杂技术的情况下,仅通过简单的模型精调和提示工程就接近了行业领先水平。

手把手教你本地部署大模型以及搭建个人知识库

文本加载器就是将用户提供的文本加载到内存中,便于进行后续的处理

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

[title]本地部署资讯问答机器人:Langchain+Ollama+RSSHub实现RAG基于用户的问题,从向量数据库中检索相关段落,并根据设定的阈值进行过滤,最后让模型参考上下文信息回答用户的问题,从而实现RAG。|创建网页UI最后,通过gradio创建网页UI,并进行评测。生成的Web UI如下:需要上述完整代码的读者,关注本公众号,然后发送fin,即可获取github仓库代码链接。问答测试对于同样的问题和上下文,我基于Qwen-7b、Gemma、Mistral、Mixtral和GPT-4分别进行了多次测试。下面是一些case:qwengemmamistralmixtralgpt4主要结论(只是针对有限的几次测试,个人主观评判)如下:👍 GPT-4表现最好,指令遵循能力很强,在回答的时候能附上引用段落编号✌️ Mixtral表现第二,但没有在回答的时候附上引用💪 Qwen-7b表现第三,也没有在回答的时候附上引用😅 Gemma表现一般,而且回答里面有一些幻觉😅 Mistral表现一般,使用英文回复,不过在回答的时候附上了引用段落编号总结1.本文展示了如何使用Langchain和Ollama技术栈在本地部署一个资讯问答机器人,同时结合RSSHub来处理和提供资讯。2.上下文数据质量和大模型的性能决定了RAG系统性能的上限。3.RAG通过结合检索技术和生成模型来提升答案的质量和相关性,可以缓解大模型幻觉、信息滞后的问题,但并不意味着可以消除。

其他人在问
我希望做一个回答用户问题的聊天机器人,如何用rag来做
要使用 RAG(RetrievalAugmented Generation,检索增强生成)来做一个回答用户问题的聊天机器人,可以按照以下步骤进行: 1. 加载所需的库和模块:包括用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。 2. 从订阅源获取内容:通过特定函数从指定的 RSS 订阅 URL 提取内容,如需接收多个 URL 可稍作改动。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接,最终将这些文档合并成一个列表用于后续处理。 3. 为文档内容生成向量:使用文本向量模型 bgem3(可从 https://huggingface.co/BAAI/bgem3 下载,假设放置在某个路径 /path/to/bgem3 ),通过 FAISS 创建一个高效的向量存储。 4. 基于用户的问题,从向量数据库中检索相关段落,并根据设定的阈值进行过滤,最后让模型参考上下文信息回答用户的问题,从而实现 RAG。 5. 创建网页 UI:通过 gradio 创建网页 UI 并进行评测。 6. 技术栈选择:经过调研,可先采取 Langchain + Ollama 的技术栈作为 demo 实现,后续也可考虑使用 dify、fastgpt 等更直观易用的 AI 开发平台。 Langchain 简介:是当前大模型应用开发的主流框架之一,提供一系列工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 Ollama 简介:是一个开箱即用的用于在本地运行大模型的框架。 总结: 1. 本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署一个资讯问答机器人,同时结合 RSSHub 来处理和提供资讯。 2. 上下文数据质量和大模型的性能决定了 RAG 系统性能的上限。 3. RAG 通过结合检索技术和生成模型来提升答案的质量和相关性,可以缓解大模型幻觉、信息滞后的问题,但并不意味着可以消除。
2024-11-20
RAG研究报告有哪些
以下是一些关于 RAG 的研究报告: 1. 《RAG 系统开发中的 12 大痛点及解决方案》:研究了开发检索增强生成(RAG)系统时遇到的 12 个主要难题,并提出了相应的解决策略。通过将挑战和解决方法并列在一张表中,更直观地展示了设计和实施 RAG 系统面临的复杂挑战。 2. 《小七姐:精读翻译《提示词设计和工程:入门与高级方法》》:提到在解决预训练大型语言模型(LLM)的限制方面,RAG 成为关键创新,通过动态整合外部知识扩展了 LLM。还介绍了 RAG 感知提示词技术,如 FLARE 以创新方法增强 LLM 性能。 3. 《通过增强 PDF 结构识别,革新检索增强生成技术》:包含对 PDF 识别对 RAG 影响的实验研究,通过列举 ChatDOC 在查询特斯拉用户手册中的具体案例,突出了 ChatDOC 解析方法在处理表格和呈现方式上的有效性。
2024-11-20
如何利用飞书构建RAG系统
以下是关于如何利用飞书构建 RAG 系统的相关内容: RAG 的常见误区: 随意输入任何文档就能得到准确回答:这是常见误区,RAG 流程包含离线环节(文档解析、切割及向量化写入向量数据库)和在线检索环节(用户问题理解、初步检索、重排序及大模型生成),任何环节都会影响最终质量,有效实现 RAG 系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等,需要专业知识和持续优化。 RAG 完全消除了 AI 的幻觉:虽然 RAG 可以显著减少幻觉,但并不能完全消除,只要有大模型参与,就有可能产生幻觉。 RAG 不消耗大模型的 Token 了:从大模型生成结果环节可以看出,最终还是将知识库中检索的结果给到 LLM,然后由 LLM 进行重新整理输出,所以 RAG 仍然消耗大模型的 Token。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 从订阅源获取内容,通过函数从指定的 RSS 订阅 url 提取内容,将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,使用文本向量模型 bgem3,从 hf 下载好模型后,通过函数利用 FAISS 创建高效的向量存储。 RAG 性能提升策略和评估方法(产品视角): 前言:RAG 是检索增强生成的缩写,是结合检索模型和生成模型的技术,核心目的是把知识告诉给 AI 大模型,让其“懂”我们,核心流程是根据用户提问从私有知识中检索相关内容,与用户提问一起放入 prompt 中提交给大模型,常见应用场景如知识问答系统。
2024-11-20
AGI 和RAG AGENT有什么区别
AGI(通用人工智能)、RAG(检索增强生成)和 Agent 存在以下区别: Agent: 本质是动态 Prompt 拼接,通过工程化手段将业务需求转述为新的 Prompt。 包含短期记忆(messages 里的历史 QA 对)和长期记忆(summary 之后的文本塞回 system prompt)。 可以通过工具触发检索和 Action,触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互。 如 Multi Agents ,主要是更换 system prompt 和 tools 。 为 LLM 增加工具、记忆、行动、规划等能力,目前行业主要使用 langchain 框架,在 prompt 层和工具层完成设计。 有效使用工具的前提是全面了解工具的应用场景和调用方法,学习使用工具的方法包括从 demonstration 中学习和从 reward 中学习。 在追求 AGI 的征途中,具身 Agent 强调将智能系统与物理世界紧密结合,能够主动感知和理解物理环境并互动,产生具身行动。 RAG: 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。 AGI:是一种更广泛和全面的智能概念,旨在实现类似人类的通用智能能力。 需要注意的是,这些概念的发展和应用仍在不断演进,想做深做好还有很多需要探索和解决的问题。
2024-11-19
如何对rag进行评估
对 RAG 进行评估可以从以下几个方面入手: 1. 使用 RAG 三角形的评估方法: 在 LangChain 中创建 RAG 对象,使用 RAGPromptTemplate 作为提示模板,指定检索系统和知识库的参数。 在 TruLens 中创建 TruChain 对象,包装 RAG 对象,指定反馈函数和应用 ID。反馈函数可使用 TruLens 提供的 f_context_relevance、f_groundness、f_answer_relevance,也可自定义。 使用 with 语句运行 RAG 对象,记录反馈数据,包括输入问题、得到的回答以及检索出的文档。 查看和分析反馈数据,根据 RAG 三角形的评估指标评价 RAG 的表现。 2. 建立评估框架将检索性能与整个 LLM 应用程序隔离开来,从以下角度评估: 模型角度(generation): 回答真实性:模型结果的真实性高低(减少模型幻觉)。 回答相关度:结果和问题的相关程度,避免南辕北辙。 检索角度(retrieval): 召回率(recall):相关信息在返回的检索内容中的包含程度,越全越好。 准确率(precision):返回的检索内容中有用信息的占比,越多越好。 3. 考虑以下评估方法和指标: 生成质量评估:常用自动评估指标(如 BLEU、ROUGE 等)、人工评估和事实验证,衡量生成文本的流畅性、准确性和相关性。 检索效果评估:包括检索的准确性、召回率和效率,其好坏直接影响生成文本的质量。 用户满意度评估:通过用户调查、用户反馈和用户交互数据了解用户对 RAG 系统的满意度和体验。 多模态评估:对于生成多模态内容的 RAG 系统,评估不同模态之间的一致性和相关性,可通过多模态评估指标实现。 实时性评估:对于需要实时更新的 RAG 任务,考虑信息更新的及时性和效率。 基准测试集:使用基准测试集进行实验和比较不同的 RAG 系统,涵盖多样化的任务和查询,以适应不同的应用场景。 评估方法和指标的选择取决于具体的任务和应用场景,综合使用多种评估方法可更全面地了解 RAG 系统的性能和效果,评估结果能指导系统的改进和优化,满足用户需求。此外,RAGAS 是一个用于 RAG 评估的知名开源库,可参考使用: 。需要注意的是,RAG 适合打造专才,不适合打造通才,且存在一定局限性,如在提供通用领域知识方面表现不佳,可能影响模型的风格或结构输出、增加 token 消耗等,部分问题需使用微调技术解决。
2024-11-13
RAG加速有什么好办法吗
以下是一些加速 RAG 的好办法: 1. 确保 LLM 以正确的格式回应:函数调用已成为确保 LLM 严格输出特定格式的相对靠谱的新方法,推荐使用此方法提升性能。可参考结构化输出文档,其中高层次的 LangChain API 展示了不同 LLM 如何调用工具和函数。 2. 使用参考样例:在实际操作中,将输入和对应输出的样例纳入其中通常大有裨益,这些样例有时比指示本身更能有效指导 LLM 处理特定情况。在提取用例文档中可找到更多细节,助您从 LLMs 中提取更好的性能。 此外,LangChain 携手 NVIDIA 为 RAG 加速带来了新的篇章: 1. 将 NVIDIA NIM 与 LangChain 结合使用:新增了支持 NIM 的集成包,安装专门的集成包后可导入所需模型,并通过示例展示如何构建应用程序,包括安装额外的包、加载数据源、初始化嵌入模型等一系列操作。 2. NVIDIA NIM 介绍:NVIDIA NIM 是一系列用户友好的微服务,旨在加速企业内部生成式 AI 的部署进程,支持广泛的 AI 模型,基于强大的推理引擎和技术构建,提供无缝的 AI 推理体验,是实现大规模、高性能生成式 AI 推理的最佳选择。其具有自托管特性,能保证数据安全;提供预构建的容器,方便选择和使用最新模型;具有可扩展性。开始使用 NIM 非常简单,在 NVIDIA API 目录中可轻松访问多种 AI 模型,NIM 是 NVIDIA AI Enterprise 的一部分,可通过相关博客获取详细指南。
2024-11-12
有没有免费的好用的ai
以下为一些免费且好用的 AI 工具: 获取信息和学习东西:最佳免费选项为必应(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx)。对于儿童,来自可汗学院的 Khanmigo(https://www.khanacademy.org/khanlabs)提供由 GPT4 驱动的良好的人工智能驱动辅导。 写东西:最佳免费选项为 Bing(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx)和 Claude 2(https://claude.ai/)。 在写代码方面的免费替代品有: Tabnine(https://tabnine.com/):AI assistant that speeds up delivery and keeps your code safe Codeium(https://codeium.com/):Free AI Code Completion & Chat Amazon CodeWhisperer(https://aws.amazon.com/codewhisperer/):Build applications faster and more securely with your AI coding companion SourceGraph Cody(https://cody.sourcegraph.com/):The AI that knows your entire codebase Tabby(https://tabby.dev/):Opensource, selfhosted AI coding assitant fauxpilot/fauxpilot(https://github.com/fauxpilot/fauxpilot):An opensource alternative to GitHub Copilot server 需要注意的是,虽然 ChatGPT 功能强大,但它是收费的且不面向中国。此外,虽然 ChatGPT 的开发者 OpenAI 并不像其名字那样开放,其源码与模型数据不对外开放,但 Meta 在 2023 年 2 月开源了 LLaMA 1,并在 7 月发布了进阶的 Llama 2 且允许商用。
2024-11-21
有没有把外国PPT翻译为中文的工具
以下为您介绍将外国 PPT 翻译为中文的工具及相关方法: 有一种自动 PPT 翻译脚本,其开发过程如下: 1. 前期准备: 翻译需要外接 API,推荐讯飞大模型,新账户免费送 200 万 tokens,有效期 3 个月。 进入 https://xinghuo.xfyun.cn/ ,首页选择 API 接入,然后点服务管理进入控制台。 创建一个新项目,比如“PPT 翻译”,以避免 API 泄露。 点进去,找到左边机器翻译的模型,按提示领取 200 万 tokens 的礼包,然后在主控台看到对应的 id、apikey、api secret 和接入路径。 2. 导入依赖: 大部分依赖是常用的,只有一个 ppt 可能需要装,运行 CMD 输入 pip install pythonpptx,如果还缺的可以按提示安装。 3. 初始化 API 相关信息和文件路径: 先设置对应的 api 信息,其他模型可以对应做替换。 4. 读取并提取 PPT 文本: 根据讯飞的 API 文档配置做请求指令,确保 API 可以正确调用。打印响应数据设置方便监测脚本执行动态,如果碰到报错可以随时做优化。 5. 翻译脚本: 目前只设置了文本翻译,未对表格元素处理,排除了所有 shape,如果要加入表格翻译,可以定义 shape = table 来定义表格,然后翻译表格里的 cell 实现。 接收路径已调好,如果用其他的 API,要在 translated_text = get_result 后面替换成自己的地址。 语言选择,原文件是中文用'cn'表示,英文文档改成‘en’,其他语种对应。 此外,还有 Claude 官方文档提示词工程最佳实践@未来力场编译版(中英对照),源地址 https://docs.anthropic.com/claude/docs ,扫码关注未来力场:AIGC 最佳实践中文互联网搬运工。
2024-11-21
有没有推荐的AI图片生成软件
以下为您推荐一些 AI 图片生成相关的软件: 1. 海报生成工具: Canva(可画):https://www.canva.cn/ ,是一个受欢迎的在线设计工具,提供大量模板和设计元素,AI 功能可辅助选色和字体样式,通过简单拖放操作创建海报。 稿定设计:https://www.gaoding.com/ ,智能设计工具,采用先进人工智能技术,自动分析生成设计方案,稍作调整即可完成设计。 VistaCreate:https://create.vista.com/ ,简单易用的设计平台,提供大量设计模板和元素,可用 AI 工具创建个性化海报,智能建议功能可助用户找合适元素。 Microsoft Designer:https://designer.microsoft.com/ ,通过简单拖放界面,能快速创建演示文稿、社交媒体帖子等视觉内容,集成丰富模板库和自动图像编辑功能。 2. 图生图产品: Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感,丰富创作过程。 Retrato:AI 工具,将图片转换为非凡肖像,有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,将上传照片转换为芭比风格,效果好。 3. 图片生成 3D 建模工具: Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,基于数十亿参数级别的 3D 大模型,实现快速 2D 到 3D 转换,提供 AI 驱动的精准度和细节。 Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成,用户上传图片并描述材质和风格可生成高质量 3D 模型。 CSM AI:Common Sense Machines 支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象再转换为 3D 模型。 Sudo AI:支持通过文本和图像生成 3D 模型,适用于游戏领域模型生成,用户上传图片或输入文本提示词生成 3D 模型。 VoxCraft:生数科技推出的免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,提供图像到 3D、文本到 3D 和文本到纹理等多种功能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-20
有没有放一个ppt文档转化成文字的AI软件
目前有一些可以将 PPT 文档转化为文字的方法和相关的 AI 工具: 在将 PPT 转化为网站的尝试中,当遇到困惑时,如组织线下沙龙内容的两页并进行切换没有思路,可选择放手让 AI 给出建议。 市场上好用的 AI 辅助的 PPT 工具包括: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素。网址:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能。网址:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/
2024-11-19
有没有语音交互领域的AI Agent的好的思路
以下是关于语音交互领域的 AI Agent 的一些思路: 1. 构建像人一样的 Agent:实现所需的记忆模块、工作流模块和各种工具调用模块,这在工程上具有一定挑战。 2. 驱动躯壳的实现:定义灵魂部分的接口,躯壳部分通过 API 调用,如 HTTP、webSocket 等。要处理好包含情绪的语音表达以及躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 保证实时性:由于算法部分组成庞大,几乎不能单机部署,特别是大模型部分,会涉及网络耗时和模型推理耗时,低延时是亟需解决的问题。 4. 实现多元跨模态:不仅要有语音交互,还可根据实际需求加入其他感官,如通过添加摄像头数据获取视觉信息并进行图像解析。 5. 处理拟人化场景:正常与人交流时会有插话、转移话题等情况,需要通过工程手段丝滑处理。 此外,像 AutoGLM 这样的产品,通过模拟人类操作来实现跨应用的控制,展现出了一定的智能理解能力,如能根据用户意图选择合适的应用场景。但仍存在语音识别偏差、操作稳定性需提升、支持平台有限等问题,未来随着多模态理解能力和操作精准度的提高,发展空间较大。
2024-11-19
有没有用Stata的最小二乘法处理相关的AI
目前在 AI 领域中,较少直接将 Stata 的最小二乘法与 AI 进行特定的结合应用。Stata 的最小二乘法主要用于传统的统计分析,而在 AI 中,更多采用的是基于机器学习和深度学习的算法和模型。但如果您是在处理某些与数据相关的任务,最小二乘法的原理和思路在一定程度上可能对您理解和设计 AI 中的数据处理方法有所帮助。
2024-11-16
咱们有dify的好的实践教程或示例吗
以下是关于 Dify 的一些实践教程和相关信息: 接入企业微信: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 构建知识库的具体步骤: 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 配置索引方式:Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 Dify 介绍:Dify 是一个开源的大模型应用开发平台,它通过结合后端即服务和 LLMOps 的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式 AI 应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词 IDE,以及一个全面的 RAG Pipeline,用于文档处理和检索。此外,Dify 还允许用户定义 Agent 智能体,并通过 LLMOps 功能对应用程序的性能进行持续监控和优化。Dify 提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify 的设计理念注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实,无论是创业团队构建 MVP、企业集成 LLM 以增强现有应用的能力,还是技术爱好者探索 LLM 的潜力,Dify 都提供了相应的支持和工具。Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般地,如果是个人研究,推荐单独使用 Dify,如果是企业级落地项目推荐使用多种框架结合,效果更好。
2024-11-22
智能客服应如何实践
以下是关于智能客服实践的相关内容: 零成本、零代码搭建一个智能微信客服的实操步骤: 1. 访问微信客服 https://kf.weixin.qq.com/,点击开通。 2. 勾选同意,点击下一步。 3. 按步骤填写,勾选同意,注册企业微信。 4. 注册成功后,会出现“企业未认证,累计仅可接待 100 位客户,认证后可提升接待上限”的提醒,个人测试无需认证,不影响使用。 5. 完成上述步骤后,已成功 50%,接下来是复制粘贴操作: 点击配置>到微信客服的企业信息,复制企业 ID >到 coze 页面进行粘贴填写企业 ID,并点击下一步。 到微信客服的开发配置,找到回调配置,复制 Token、EncodingAESKey(如果为空,点击“随机获取”),到 coze 页面进行粘贴,点击下一步。 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 coze 的页面粘贴。 第一次设置回调地址时,目前需要企业认证才可以接入微信客服。若企业未认证,配置回调 URL 时会报错:回调域名校验失败。之前未认证就发布过微信客服的不受影响。第一次设置成功后,后续修改在特定页面进行。 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 coze 的页面粘贴,点击保存。保存后,在 coze 发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布。 ChatGPT 在智能客服中的应用: 1. 承担客服功能:告诉 ChatGPT 具体客服身份,要求其解答用户问题的同时,进行私域流量转化。 2. 管理社区互动:模拟运营人的语言风格,与用户进行更自然的互动,提高用户参与度和满意度。同时支持对社区中的评论和问题进行自动分类,帮助运营团队更有效地解决问题和满足用户需求。 3. 监测舆情和热点:从多个来源抓取互联网上的热门话题、新闻和社交媒体动态,并对抓取到的文本数据进行深度分析,识别热门话题和趋势,帮助内容运营团队及时了解市场变化。实时监测品牌、产品或服务的网络声量,识别潜在的负面舆情,并提醒运营团队采取措施。但因 ChatGPT 并不支持实时搜索,以上内容需要借助第三方插件完成。
2024-11-05
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21
AI和软件测试行业的实践想法
目前知识库中暂时没有关于 AI 和软件测试行业实践想法的相关内容。但一般来说,在软件测试行业中应用 AI 可以考虑以下几个方面: 1. 利用机器学习算法进行测试用例的自动生成和优化,提高测试覆盖度和效率。 2. 运用自然语言处理技术对测试需求和文档进行分析,提取关键信息,辅助测试计划的制定。 3. 通过 AI 模型对软件的历史缺陷数据进行学习,预测可能出现的新缺陷类型和位置。 4. 借助图像识别和语音识别等技术,实现对软件界面和交互的自动化测试。 您可以根据实际情况和具体需求,进一步探索和创新 AI 在软件测试行业中的应用。
2024-10-18
我想让ai模拟抖音网红说话,有最佳实践可以参考吗?
目前暂时没有关于让 AI 模拟抖音网红说话的最佳实践内容。但一般来说,您可以先分析一些抖音网红的语言特点,比如常用的词汇、语气、口头禅、表达方式等,然后为 AI 提供这些特征的描述和示例,让其学习和模仿。同时,您还可以通过不断调整输入的提示词和训练数据,来优化 AI 的模拟效果。
2024-09-29
某银行计划对外采购2024年分行内训师培训项目,现需要对采购内容做详细要求,培训内容以AI工具课程开发与设计,课程制作与实践,短视频制作,直播授课技巧等,我该如何对培训老师资质,授课经验,AI工具运用等技能做细化要求
以下是为您提供的关于银行采购 2024 年分行内训师培训项目中对培训老师资质、授课经验、AI 工具运用等技能的细化要求建议: 培训老师资质: 具备相关领域的专业教育背景,如计算机科学、人工智能等。 持有相关的行业认证或资格证书。 授课经验: 拥有丰富的企业内训经验,特别是在金融行业的培训经历。 成功完成过类似 AI 工具课程开发与设计、课程制作与实践等相关课程的授课。 AI 工具运用技能: 熟练掌握多种主流的 AI 工具,如常见的机器学习框架、自然语言处理工具等。 能够运用 AI 工具进行实际项目开发,并具有相关的案例成果。 熟悉短视频制作和直播授课中涉及的 AI 辅助技术,如智能剪辑工具、虚拟主播技术等。 希望以上建议对您有所帮助。
2024-09-13