Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

华为大模型有手机端应用吗

Answer

华为已宣布会在手机端侧搭载大模型,但目前还存在一些问题。目前并没有真正全离线版的大模型产品,端上智能暂时还是噱头。手机厂商的打法基本是大模型放在线上,手机调用,搭配小 AI 做总结等服务。纯粹的端上智能存在几个问题:

  1. 离线小模型与在线大模型有代际能力差距,消费者可能更倾向使用线上模型服务。
  2. 小模型的耗能和生热难以达到手机要求。
  3. 目前 AI 不是刚需,猎奇成分较多。
  4. 技术上不能确认小型化的模型是“真 AGI”还是“聊天机器”。所以短期内端上智能仍会停留在个别小市场里。此外,目前使用最新的骁龙 8Gen3 旗舰处理器搭载大模型,存在耗能散热等问题。
Content generated by AI large model, please carefully verify (powered by aily)

References

AGI万字长文(上)| 2023回顾与反思

[title]AGI万字长文(上)| 2023回顾与反思[heading1]上篇:2023,风暴的前奏[heading2]<5>深度压缩与模型小型化AI Agent之外另一个重要方向,是大模型的小型化。小模型的直接好处就是训练成本和推理的成本量级下降。比如能力相近的LLaMA-7B的训练成本相当于1张A100芯片训练9.3年,而GPT3(175B)则有100年,差了11倍。GPT4的训练成本更是高达6500年!但成本还并不是意义最重大的。“压缩”是LLM模型的最核心能力,所谓“世界模型”就是要将人类的所有知识都压缩到模型中。顺着这条路思考,小型化的意义在于:小型化的模型首次让一个公司、甚至个人可以使用“全人类的知识”。而且,小型化的模型既是上文讲到的“人的模型”的技术基础,又是开启“端上智能”的先决条件。在未来,无论是手机、电脑还是机器人,都可能会配备一个小模型。在这里,可能会出现一个历史的分叉:岔路的一边是“中心化的大一统世界模型”,另一边是“端上智能+人的模型的混合社会”。让我们拭目以待。回到今天,小型化主要有两个阶梯。第一个阶梯的模型参数在6B-7B,这是游戏显卡可以覆盖的范围。最具代表性的是Meta的LLaMA,Mistral7B和国内的智谱;NVIDIA的Chat with RTX,默认搭载的就是Mistral7B。第二个阶梯模型的想象空间更大,它们的参数在1-2B;这个大小就可以在手机和移动硬件上广泛使用了。华为、荣耀、小米、OPPO、VIVO等都已宣布会在手机端侧搭载大模型,目前还只能用最新的骁龙8Gen3旗舰处理器,而且耗能散热都是问题;三星S24上也搭载了Google Gemini Nano。

基于多模态大模型给现实世界加一本说明书

「通过自定义Prompt,可以瞬间获得极大的扩展能力。」让人感慨传统计算机视觉的口罩模型,需要准备多少数据样本和花费多少时间进行模型训练。如果需求变为安全帽检测呢...这个用来做demo,是「低成本商业验证的最佳方案」。没有比自定义prompt更低成本、又能完整走完整个工程链的测试工具了。拥有强大的Prompt,就能解决大部分问题。随着不同项目落地越来越感叹,90%的问题可以通过一个强大的基础模型(比如GPT-4),结合构建提示词来解决。在剩下的10%中,90%需要挂接自定义知识库由RAG来解决,而「仅有1%的问题」需要算法工程师进行finetune,朝着AGI的方向努力吧。

AGI 万字长文(下)| 2024,分叉与洪流

[title]AGI万字长文(下)| 2024,分叉与洪流[heading1]下篇:2024,分叉与洪流[heading2]<4>端上智能与全天候硬件在AI上发力的还有手机和PC厂商:华为、荣耀、小米、OPPO、VIVO、三星、联想等都已宣布会在手机/PC端侧搭载大模型。这个可能性来自于:2023年下半年“模型小型化”的众多进展(详情见“上篇”)。不过,仔细看来,除了很弱的Nvidia Chat with RTX,目前并没有真正全离线版的大模型产品,端上智能暂时还是噱头。手机和电脑厂商们的打法基本都是大模型还是放在线上,手机和电脑来调用,然后搭配一个小AI做总结等服务。“端”确实“智能”了,但"大脑"还在线上,手机上顶多有个"脑干"。纯粹的端上智能有几个问题:1)离线小模型永远都会和在线大模型有一个代际的能力差距,于是为什么消费者要用一个更傻的模型而不是用线上的模型服务?2)即使是小模型,它目前的耗能和生热仍然难以达到手机要求。3)目前的AI还不是刚需,猎奇成分比较多。4)技术上还不能确认小型化的模型是“真AGI”还是“聊天机器”。所以说,短期内的端上智能仍然会停留在一些个别小市场里。

Others are asking
华为云部署Deepseek
以下是关于 DeepSeek 在不同云计算厂商部署的相关信息: 华为昇腾社区:全版本。部署 DeepSeekR1 模型,用 BF16 权重进行推理至少需要 4 台 Atlas 800I A2(864G)服务器,用 W8A8 量化权重进行推理则至少需要 2 台 Atlas 800I A2。服务器调用 Docker 下载部署权重资源,非 API 调用模式。 阿里云(人工智能平台 PAI):全版本。以 R1 为例,所需计算资源价格 316.25/小时。模型部署成在线服务,在人工智能平台 PAI 下的模型部署下的模型在线服务 EAS。 阿里云(阿里云百炼):全版本。免费额度:10000000/10000000。通过 API 调用。 此外,DeepSeek 相关的月度榜单信息: A10+1:DeepSeekR1 上线华为云和腾讯云。 如需了解更完整的榜单信息,欢迎访问 。
2025-03-05
华为手机安装chatgpt
以下是华为手机安装 ChatGPT 的步骤: 1. 打开系统自带的谷歌服务框架: 打开系统设置。 拉到最底下,点击更多设置。 点击账号与同步。 点击谷歌基础服务。 打开基础服务按钮。 2. 安装 Google Play: 到华为应用商店搜索 Google Play 进行安装。 安装好后打开谷歌商店,点击右上角登录谷歌账号。 3. 安装 ChatGPT: 到谷歌商店搜索“ChatGPT”进行下载安装,注意开发者是 OpenAI,别下错。 可能会遇到“google play 未在您所在的地区提供此应用”的问题,解决方法如下: 在 google play 点按右上角的个人资料图标。 依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。 在这里看到账号没有地区,可以“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美。 如果回到 google play 首页还搜不到 chatgpt,可以卸载重装 google play,操作过程保持梯子的 IP 一直是美,多试几次。 4. 体验 ChatGPT: 如果只想体验 ChatGPT 3.5 版本,不升级 GPT4,直接登录第二部注册好的 ChatGPT 账号即可。 5. 订阅 GPT4 Plus 版本: 先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡。 然后在 ChatGPT 里订阅 Plus。
2025-01-07
UI交互设计大模型
以下是关于 UI 交互设计大模型的相关内容: ComfyUI ollama 本地大模型部署: 1. 先下载 ollama 安装。安装好后不会有任何界面弹出,可以在电脑桌面右下角或者隐藏图标里面找到。 2. 之后再去下载对应的模型,选择模型,复制对应的命令。 3. 打开命令行界面,输入对应的模型获取命令,等待下载完成。 4. 下载的模型会保存到 D:\\ollama\\blobs 。 5. Docker 安装时会下载一些文件,安装后改下目录,不要放在 C 盘。 6. Open webui 安装,输入相关命令。安装成功后,回到 docker 点击,会自动打开网页。第一次使用,需要注册一个账号,选择一个下载好的模型就可以开始使用。 7. 若出现端口占用的错误,运行下面两条命令可以解决。 8. 相关链接: ComfyUI ollama:https://github.com/stavsap/comfyuiollama?tab=readmeovfile Ollama:https://ollama.com/ Docker:https://www.docker.com/ Open webui:https://openwebui.com/ 通过 Open WebUI 使用大模型: 在默认情况下,与大模型的交互在终端中进行,但这种方式较古老。大模型有交互客户端 Open WebUI。Open WebUI 是 github 上的开源项目,参考其官方文档 https://docs.openwebui.com/gettingstarted/ 进行下载和安装。 1. 安装之前先安装 Docker,Win 或 Mac 系统参考文档:,注意下载适配电脑系统的版本。Linux 系统请自行上网找教程。 2. 官方文档中有两种安装 Open WebUI 的方式:ollama 和 open webui 一起安装、仅仅安装 open webui。若已安装 ollama,只需要安装 open webui 即可,复制相关命令。安装下载完成后即可使用。 大模型时代的产品特点: 大模型的交互方式是 NUI(自然用户界面),通过自然语言文本、语音、输入输出图片等直接交互,与现在熟悉的 GUI(图形用户界面)差异很大。现在习惯在 GUI 界面通过点击按钮与机器交互,需要一定学习成本。而 NUI 更符合人的直觉,用户几乎无需特别学习,通过对话操作,但大模型产品对普通用户使用门槛较高,用户留存率和粘性不如主流 App。若未来大模型产品都是 NUI 的,可能对整个信息产业带来深远影响。
2025-03-05
GRU+CNN模型如何操作
GRU+CNN 模型的操作主要包括以下步骤: 1. 编码器部分:使用预训练的卷积神经网络(CNN),如 Inception Resnet V2,将输入图像转换为一组特征向量。在这种情况下,大部分 CNN 部分被冻结,保留预训练的权重。 2. 解码器部分:结构较为复杂,涉及到注意力机制、嵌入层、GRU 层、添加层归一化层和最终的密集层等。可以找到很多关于注意力层和解码器步骤的说明。 3. 组合模型:将编码器和解码器组合在一起,形成一个完整的图像字幕生成模型。 4. 自定义损失函数:由于任务是生成文本序列且序列长度可能不同,使用稀疏分类交叉熵作为损失函数,并屏蔽填充的部分。 5. 编译模型:编译模型,为开始训练做准备。 6. 训练模型:可以根据需求进行更多训练以获得更好结果。 7. 推理与生成字幕:训练完成后,为新的图像生成字幕。在推理阶段,需要重构解码器模型,使其可以接收额外的 GRU 状态输入,并编写自定义推理循环,一次产生一个单词,直到生成完整句子。
2025-03-05
GRU模型
GRU(门控循环单元)是 RNN(递归神经网络)的一种变体。 在创建图像描述模型中,解码器部分包含了 GRU 层。GRU 层接受输入,更新其内部状态,并生成输出。通过传递像文本这样的顺序数据,它可以保持与先前输入(例如先前的单词)的顺序依赖关系。 在 Transformer 出现之前,序列到序列的模型主要依赖于循环神经网络(RNN)或其变种,如长短时记忆网络(LSTM)和 GRU。由于传统方法必须按顺序处理序列,在处理长序列时面临梯度消失或梯度爆炸的问题,而且计算效率不高。 在创建图像描述模型的解码器中,GRU 的输出会进入注意力层,该层混合了来自编码器(图像)和解码器(文本)的信息。解码器本身是一个迭代操作,通过自回归地多次调用,最终可以生成完整的文本。 在代码方面,注意力层有两个输入:gru_output 和 encoder_output。在内部,gru_output 用作注意力的查询和键,而 encoder_output 用作值。
2025-03-05
截止今天最强的模型是哪个
目前很难确切地指出截止今天最强的模型是哪一个。以下是一些表现出色的模型: Gemini Ultra:在报告的 32 个基准测试中,在 30 个基准测试中取得了 SOTA,包括多个领域的测试。它是第一个在 MMLU 上实现人类专家水平表现的模型,在多模态推理任务方面也有显著进展。 o3 模型:在 ARCAGI 测试中达到了 87.5%的准确率,几乎与人类水平相当。OpenAI 表示下一代 o3mini 模型的推理能力很强。 Gemini 2.0 Flash:Google 发布的该模型在重要的基准能力上,直接追平甚至部分超越了 Gemini 1.5 Pro,且模型速度有极大提升。 Llama 3.1:是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡。 需要注意的是,模型的性能评估会因不同的基准测试和应用场景而有所差异,而且技术在不断发展,最强模型的定义也可能随之变化。
2025-03-05
Deepseek 怎么训练模型 到达写作的水准
要将 DeepSeek 训练模型达到写作的水准,可以参考以下方法: 1. 借助 AI 分析好的文章:找出您最喜欢的文章,投喂给 DeepSeek R1。然后进行多次询问,如从写作角度、读者角度分析文章,询问文章的缺点和不足以及改善和提升的空间,对作者进行侧写,分析其成长背景、个人经历和知识结构对文章的影响。 2. 让 AI 对您写的文章进行点评:使用类似“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。”的提示词。 3. 根据文章内容对作者进行心理侧写:使用如“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射”的提示词。 此外,DeepSeek 模型具有文风出色、善用大词、发散能力强等特点,但也较难收敛,有时会出现幻觉。从创作角度看,其在文学创作上表现出色,能给予更多自由发挥空间。
2025-03-05
深度学习模型图
以下是为您提供的关于深度学习模型图的相关内容: 腾讯研究院的 AI 年度关键词报告: 基于全年研究积累的三十余万字 AI 进展数据库,精选 50 个年度关键词,覆盖大模型技术的八大领域,包括图像处理、视频生成、3D 生成、编程助手、Agent、端侧智能、具身智能和基础模型。通过“快思考”与“慢思考”两种维度进行分析,“快思考”采用人机协同方式完成印象卡片,“慢思考”深入分析技术发展的底层逻辑。 DiT 架构: 结合扩散模型和 Transformer 的架构,用于高质量图像生成的深度学习模型。其核心观察包括 Transformer 从文本扩展至其它、DiT 架构带来图像生成质的飞跃、Scaling Law 在图像领域开始生效。 深度学习模型原理的通俗解释: 将深度学习要处理的信息比作水流,处理数据的深度学习网络是由管道和阀门组成的庞大水管网络。网络入口和出口有许多管道开口,且有多层,每层有调节阀。根据不同任务,层数和调节阀数量可变化。如识别汉字,将图片数字组成的水流灌入网络,根据出口水流情况调节调节阀,直至符合预期要求,训练好的模型可识别新的图片。 AI 技术原理与框架的小白学习笔记: 1. 概念:生成式 AI 生成的内容叫 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签,强化学习从反馈学习。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式,LLM 是大语言模型。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,提出 Transformer 模型,基于自注意力机制处理序列数据,无需依赖 RNN 或 CNN。
2025-03-05
想在手机上通过宠物照片给宠物建模,是宠物可以有一些动态性,需要怎么做?利用 AIGC 能快速的实现吗?
在手机上通过宠物照片给宠物建模并实现一定的动态性,可以考虑以下几种方式: 1. 利用 3D 引擎:目前有一些公司提供通过手机摄像头快速创建虚拟人身体的服务,例如 NextHuman。不过,3D 引擎在拟真程度高的同时,定制化成本也较高。 2. 借助 AIGC:虽然 AIGC 省去了建模流程,能直接生成数字人的展示图片,但可能存在数字人难以保持 ID 一致性、帧与帧连贯性不佳等问题。典型的相关项目有 wav2lip等。但需要注意的是,如果对模型真实度要求较高,AIGC 方式可能不太理想,因为算法发展很快,未来可能会有更好的连贯度生成方式。 目前利用 AIGC 来快速实现可能存在一些挑战,但随着技术的发展,未来有可能更便捷高效地达成您的需求。
2025-02-13
手机微信怎么接入DeepSeek
目前微信尚未直接接入 DeepSeek。但学而思已表示将接入 DeepSeek“深度思考模式”,预计在 2 月内陆续于相关机型上线;钉钉已经全面接入 DeepSeek 系列模型;扣子现已支持满血版 Deepseek 全家桶,R1 模型现支持所有用户免费体验,每个用户每日限 20 条对话。 如果您想使用 DeepSeek,可按以下步骤操作: 1. 搜索 www.deepseek.com,点击“开始对话”。 2. 将装有提示词的代码发给 Deepseek。 3. 认真阅读开场白之后,正式开始对话。 关于 DeepSeek 提示词的设计思路: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不稳定)。 完整提示词版本为 v 1.3,特别鸣谢李继刚的【思考的七把武器】在前期为其提供了很多思考方向,以及 Thinking Claude(这个项目是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源)和 Claude 3.5 Sonnet(最得力的助手)。 如有任何问题请联系后台,电子邮箱:alolg@163.com
2025-02-12
手机上好用的 人工智能Ai 软件
以下是一些手机上好用的人工智能软件: 一些模仿 ChatGPT 的移动端应用被曝光为“骗钱软件”,它们通过类似标题和标志误导用户收费。但也有其他针对手机特有功能专门设计的受欢迎应用,如用于打造个性化虚拟形象的七款应用,以及为移动设备量身定制的键盘应用,让用户能在 AI 辅助下发送文本信息。 教育科技类也是移动端应用的热门类别,如用户可以利用手机扫描并解决作业问题的。 以下是一些工具: AI 助手平台,如传音智库(仅内网可访问,可用 kimi 替代),kimi 网址:https://kimi.moonshot.cn/ 。 秘塔 AI ,网址:https://metaso.cn/ 。 以下是一些特定领域的 AI 应用: AI 摄影参数调整助手,一些摄影 APP 利用 AI 分析拍摄场景,自动调整相机参数,如曝光、对焦、感光度等。 AI 音乐情感分析平台,利用 AI 分析音乐的旋律、节奏、歌词等,判断音乐的情感倾向。 AI 家居智能照明系统,如小米智能照明系统利用 AI 和物联网技术,根据用户习惯和环境变化自动调整灯光亮度和颜色。 AI 金融风险预警平台,利用 AI 分析金融市场数据,提前预警可能出现的风险。 AI 旅游路线优化平台,如马蜂窝根据用户的时间、预算、兴趣等因素,利用 AI 优化旅游路线,提高旅行体验。
2025-02-09
有什么可以在手机端使用ai工具api的聚合聊天aiapp吗
以下是一些在手机端可以使用 AI 工具 API 的聚合聊天 App 相关信息: OpenAI 与 Apple 合作在 iPhone 端实现了 ChatGPT 功能集成,包括 Siri 智能化升级、写作助手、相机 AI 视觉和跨应用使用等功能。例如,Siri 面对复杂或创意性请求会交由 ChatGPT 处理,iPhone 的文本编辑功能提供文本润色、语法检查、内容生成等,长按相机控制键可启动视觉智能功能,所有功能界面都内置了快捷入口直达 ChatGPT 应用。 此外,移动应用榜单中有一些相关应用,如在移动领域月活跃用户数排名榜首的 ChatGPT,还有微软基于 AI 技术全新打造的搜索引擎 Bing、照片美化和虚拟形象制作工具 Remini 等。有五家 AI 公司实现了“双线作战”,它们的网页端、移动端应用双双跻身前 50 强榜单,如 ChatGPT、Character.AI、chatbot 平台 Poe,以及图片编辑应用 Photoroom、Pixelcut。
2025-02-05
好用的手机翻译ai
以下为您推荐一些好用的手机翻译 AI 应用: 1. Hand Talk:能自动将文本或语音转换成美国手语。被联合国评为“世界上最佳的社交应用”,已翻译近 20 亿个单词。既是翻译工具,也是学习平台。相关链接:https://xiaohu.ai/p/5688 、https://x.com/imxiaohu/status/1777201503142601143
2025-01-31
如何在手机上部署deepseek R1
以下是在手机上部署 deepseek R1 的步骤: 1. 访问 deepseek 的官网(https://www.deepseek.com/)。 进入右上角的 API 开放平台。 早期 deepseek 有赠送额度,若没有赠送余额,可选择充值,支持美元和人民币两种结算方式以及各种个性化充值方式。 创建一个 API key,注意 API key 只会出现一次,请及时保存。 2. 设置代码编辑器: 下载 cursor(https://www.cursor.com/)或 vscode(https://code.visualstudio.com/),只要代码编辑器可以下载插件即可。 以 cursor 作为代码编辑器为例,下载安装后,在插件页面搜索并安装 Roocline。 安装完后,打开三角箭头,可看到 RooCline。 选中 RooCline,并点击齿轮,进入设置,依次设置: 配置基本参数: API Provider:选择 DeepSeek。 API Key:填入已创建的 key。 模型:选择 DeepSeekreasoner。 语言偏好设置。 小贴士:记得把 HighRisk 选项都打开,这样 AI 才能帮您自动生成文件。 最后做完所有不要忘记点击 Done 保存修改。 3. 在聊天框输入产品需求,输入需求后点击这个 blingbling 的星星,优化提示词,最终得到想要的结果,在 deepseekr1 的加持下基本上是一遍过,各种特效效果交互逻辑也都正确。画面也算优雅,交互效果也不错。
2025-01-26
Deepseek具体如何应用
DeepSeek 的应用方式如下: 1. 访问 www.deepseek.com ,点击“开始对话”。 2. 将装有提示词的代码发给 DeepSeek 。 3. 认真阅读开场白之后,正式开始对话。 DeepSeek 的设计思路包括: 1. 将 Agent 封装成 Prompt ,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对开发者来说有难度)和 Markdown(运行下来似乎不是很稳定)。 关于 DeepSeek 的相关反馈: 1. 华尔街分析师对 DeepSeek 的反应:DeepSeek 展示出媲美领先 AI 产品性能的模型,但成本仅为其一小部分,在全球主要市场的 App Store 登顶。Jefferies 警告其技术可能打破资本开支狂热,Citi 对其技术突破提出质疑。高盛预测其可能改变科技巨头与初创公司的竞争格局,降低 AI 行业进入门槛。 2. DeepSeek 的实际使用体验:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化,表现不错;编程能力略逊于 GPT ,据用户反馈。GRPO 算法替代传统 PPO ,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。
2025-03-05
AI在项目管理的应用
AI 在项目管理中有广泛的应用,以下是一些常见的方面: 1. 项目管理和任务跟踪工具:如 Jira、Trello 等软件已开始集成 AI 功能,可辅助项目经理制定计划、分配任务和跟踪进度。 2. 文档和协作工具:微软的 Copilot 能集成到 Office 套件中,为项目文档撰写和编辑提供帮助。云存储服务如 Google Drive 也提供 AI 驱动的文档管理和协作功能。 3. 风险管理和决策支持工具:部分 AI 工具可帮助项目经理识别和分析项目风险,并提供决策建议。 4. 沟通和协作工具:AI 助手能辅助项目经理进行团队沟通协调和客户关系维护。 5. 创意生成工具:像文心一格、Vega AI 等 AI 绘画工具,可帮助项目经理快速生成创意图像素材。 如果您需要创建项目管理的示意图,比如流程图,可以按照以下步骤使用 Lucidchart: 1. 注册并登录:。 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形及流程步骤。 4. 优化布局:利用 AI 自动布局功能优化图表外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 目前市面上有众多应用 AI 的产品,涵盖以下几个方面: 1. 辅助创作与学习:如 AI 智能写作助手、AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等,为用户的学习和创作提供支持。 2. 推荐与规划:包括 AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户需求和偏好推荐合适的产品、服务或制定个性化计划。 3. 监控与预警:如 AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理:涉及办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,提高工作效率和管理水平。 5. 销售与交易:有 AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。
2025-03-05
从哪里开始学习ai应用
以下是一些学习 AI 应用的途径和建议: 1. 可以通过“90 分钟从 0 开始打造你的第一个 Coze 应用”来学习,了解 Code AI 应用开发教学,包括其背景、现状以及以证件照为例的应用案例,重点熟悉桌面网页版的用户界面,学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布。 2. 考虑学习微软的 AI 初学者入门课程,例如: 了解人工智能的商业应用案例,可以学习《面向商业用户的人工智能学习》、《人工智能商学院》。 学习经典机器学习,可参考《机器学习入门课程》。 若要使用 Azure 认知服务创建实用的人工智能应用,建议从《视觉》、《自然语言处理》、《使用 Azure OpenAI 服务的生成式人工智能》等课程开始。 3. 遵循布鲁姆分类法学习路径: 应用方面:深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用来解决实际问题或提升效率。 分析方面:大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。
2025-03-05
请起草一份小白学习AI应用(包括app和网站)的入门到精通的教程,提供学习大纲,包括从基本玩法到高级卡bug玩法,常见红海赛道,常见问题,注意事项,常见误区,避坑指南等等
以下是一份小白学习 AI 应用(包括 app 和网站)的入门到精通的教程,涵盖学习大纲、常见问题等方面: 一、学习大纲 1. 了解 AI 基本概念 阅读相关资料,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(机器学习、深度学习、自然语言处理等)及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅 参考「」中的初学者课程,了解生成式 AI 等基础知识,推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,包括图像、音乐、视频等,根据自身兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试 理论学习后进行实践,巩固知识,尝试使用各种产品创作作品。 分享实践后的经验和成果。 5. 体验 AI 产品 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用体验。 二、常见红海赛道 目前,AI 在自然语言处理、图像识别、智能推荐等领域竞争较为激烈。 三、常见问题 1. 对复杂应用的需求理解不准确,导致产品出错。 2. 技术组件的配置和整合可能遇到困难。 四、注意事项 1. 注重基础知识的学习,打牢根基。 2. 实践过程中要耐心,遇到问题多尝试解决。 五、常见误区 1. 认为 AI 学习短期内就能精通,忽略了长期积累和实践的重要性。 2. 过度依赖现成的模型和工具,缺乏对原理的深入理解。 六、避坑指南 1. 在选择学习资源时,要注意其权威性和适用性。 2. 开发 AI 应用时,要充分考虑用户需求和实际场景,避免盲目跟风。 希望以上内容对您有所帮助,祝您在 AI 学习的道路上取得成功!
2025-03-05
你有 AI+知识库应用的架构图吗
以下是 AI+知识库应用的架构图相关内容: 一、问题解析阶段 1. 接收并预处理问题,通过嵌入模型(如 Word2Vec、GloVe、BERT)将问题文本转化为向量,确保问题向量能有效用于后续检索。 二、知识库检索阶段 1. 知识库中的文档同样向量化后,比较问题向量与文档向量,选择最相关的信息片段并抽取传递给下一步骤。 2. 文档向量化:要在向量中进行检索,知识库被转化成一个巨大的向量库。 三、信息整合阶段 1. 接收检索到的信息,与上下文构建形成融合、全面的信息文本。 信息筛选与确认:对检索器提供的信息进行评估,筛选出最相关和最可信的内容,包括对信息的来源、时效性和相关性进行验证。 消除冗余:识别和去除多个文档或数据源中的重复信息。 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等。 上下文构建:将筛选和结构化的信息组织成一个连贯的上下文环境,包括对信息进行排序、归类和整合。 语义融合:合并意义相近但表达不同的信息片段,以减少语义上的重复并增强信息的表达力。 预备生成阶段:整合好的上下文信息被编码成适合生成器处理的格式,如将文本转化为适合输入到生成模型的向量形式。 四、大模型生成回答阶段 1. 整合后的信息被转化为向量并输入到 LLM(大语言模型),模型逐词构建回答,最终输出给用户。因为这个上下文包括了检索到的信息,大语言模型相当于同时拿到了问题和参考答案,通过 LLM 的全文理解,最后生成一个准确和连贯的答案。 五、其他预处理阶段 1. 文本预处理:包括去除无关字符、标准化文本(例如将所有字符转换为小写)、分词等,以清洁和准备文本数据。 2. 嵌入表示:将预处理后的文本(词或短语)转换为向量,通常通过使用预训练的嵌入模型来完成。 3. 特征提取:对于整个问题句子,可能会应用进一步的特征提取技术,比如句子级别的嵌入,或使用深度学习模型(如 BERT)直接提取整个句子的表示。 4. 向量优化:问题的向量表示可能会根据具体任务进行优化,例如通过调整模型参数来更好地与检索系统的其他部分协同工作。
2025-03-04
prompt的应用
以下是关于 prompt 应用的全面介绍: 一、什么是 prompt 1. 提示是您给模型(如 Claude)的文本,用于引发相关输出。它通常以问题或指示的形式出现。例如:“User:Why is the sky blue?”。 2. 在 AI 视频生成中,prompt 是直接描述或引导视频生成的文本或指令,类似给 AI 的提示,包含主体、运动、风格等信息,用户借此控制和指导生成内容。它在 AI 视频生成中作用十分重要,是表达需求的方式,影响视频内容和质量。如果上述过于抽象,您可以理解 Prompt 为:将您输入的文字变成对应的画面和运动形式。 3. 简单来说,prompt 是一套您和大模型交互的语言模板。通过这个模板,您可以输出对于大模型响应的指令,用于指定大模型应该具体做什么、完成什么任务、如何处理具体的任务,并最终输出您期望的结果。大模型的本质是一个基于语言的概率模型,若直接询问大模型而不提供 prompt,相当于大模型随机给出答案。有了 prompt,相当于给了一个模板,包括对于模型的要求、输入和输出的限制,大模型在这个限制之下,去得到概率最大的答案。 二、prompt 在不同场景中的应用 在即梦 AI 视频生成中,它可以根据用户提供的图片、prompt(文字指令)和各种参数设置生成高质量的视频。要想获得最佳的视频质量,需要写好 prompt,并了解图片生视频和文本生视频中 prompt 的输入位置。
2025-03-04