直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

mj如何保持人物一致性

回答

在 MJ 中保持人物一致性可以按照以下步骤进行:

  1. 确定画面元素:优先出一张图,保证风格、构图样式及人物角色。
  2. 确定前后图的构图风格:出第二张图时,将第二张图提示词描述后加入第一张图的构图风格(iw 参数)。
    • iw 取值范围为[0.5,2],不填写默认 iw = 1,iw 值越大越接近垫的图像,反之更接近提示词。为确保人物一致性,建议取 iw 2。
  3. 确定图片角色一致性:
    • 在得到构图相同后,利用 MJ 重绘功能,对画面进行局部重绘。在重绘提示词里输入 --cref --cw 来保证角色一致性。cref 所垫图还是用的是刚才一张图,因为第一张图有两个内容我们都要拿:构图、人物。
    • 若出现黑边,将黑边部分框住,重绘输入关键词“background”就能去除黑边,保证背景一致。

需要注意的是,由于 MJ 不可控因素,相较于保证人物位置,先保证构图会容易很多。因为 MJ 在重绘时,如果要将一个角色从镜头一个位置挪到另外一个指定位置,非常难处理。整个 MJ 出图基本也是靠降噪重绘,固定位置重绘局部内容会比改变整个画面结构容易很多。这就好比美术课画画,给一张参考图,一个是把背景风格都做好了,让在固定位置添加内容,另一个是将整个页面内容全部重绘,还要保证画面的主题内容要和参考图一样,相比之下后者的随机性会大非常多(抽卡次数也会很多)。

在生成人物图片时,先确定人物形象,如“a little girl wearing a yellow floral skirt+人物动作+风格词”,在 mj 中生成直到得到一张满意的人物图像。为了确保人物一致性,取 --iw 2 。然后可以使用 PS 或者 Canva 将人物和场景合成到一张图,若色调不和谐,可将合成后的图作为垫图(--iw 2),mj 重新生图。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Jerry:MJ多张图保证构图、人物一致性实战教学

[title]Jerry:MJ多张图保证构图、人物一致性实战教学[heading1]三、不同画面构图、人物一致性保证由于MJ不可控因素,如果需要前后两张图画风、构图等都保持一致,这里总结了一个SOP,可以按照三个确定来处理。1.确定画面元素优先出一张图,保证风格、构图样式及人物角色2.确定前后图的构图风格出第二张图时,将第二张图提示词描述后加入第一张图的构图风格(iw参数)3.确定图片角色一致性在第二步得到构图风格没有问题的基础上,在保证人物一致性即可。WHY先保证构图再确认角色一致性?因为MJ在重绘时,如果要将一个角色从镜头一个位置挪到另外一个指定位置,非常难处理。整个MJ出图基本也是靠降噪重绘,那相较于把整个画面结构都变了,固定位置重绘局部内容会容易很多,如果整个画面结构变了先保证人物内容的话,会很依赖MJ抽卡(因为你不知道何时才能出到与你之前相同的构图样式)。这就好比美术课画画一样,给你一张参考图,一个是把背景风格都做好了,让你在固定位置添加内容,另外一个是让你将整个页面内容全部重绘,还要保证画面的主题内容要和参考图一样,相比之下后者的随机性会大非常多(抽卡次数也会很多)。

MJ应用篇 儿童绘本制作、人物一致性解

确定人物形象:a little girl wearing a yellow floral skirt+人物动作+风格词,在mj中生成直到得到一张满意的人物图像垫图URL+In the forest,a little girl wearing a yellow floral skirt is playing happily,super high details,HDsmooth,by Jon Burgerman,--s 400 --ar 3:4 --niji 5 --style expressive --iw 2--iw取值范围[0.5,2],不填写默认iw = 1,iw值越大越接近垫的图像,反之更接近提示词。为了确保人物一致性,取-- iw 2[heading1]合成人物和场景,垫图并重新生成[content]使用PS或者Canva将人物和场景合成到一张图,但是在色调上不太和谐:(如果这里画面和谐/ps技术足够,也可以不用图生图)将合成后的图作为垫图(--iw 2),mj重新生图如下。prompt:垫图url + Little girl wearing a yellow floral skirt,and her friend brown bear,taking shelter in the cave,rainstorm,super high details,HDsmooth,by Jon Burgerman,--s 400 --ar 3:4 --niji 5 --style expressive --iw 2[heading1]绘本展示

Jerry:MJ多张图保证构图、人物一致性实战教学

在得到构图相同后,基本就离成功不远啦。可以看到MJ没有办法记住上一张图的角色样子,所以面孔差别非常大,所以我们需要在生成的图里,对画面里的角色重绘,保证图片一致性。[heading3]3.3.1角色一致性[content]利用MJ重绘功能(上文讲过),对画面进行局部重绘,在重绘提示词里输入--cref --cw来保证角色一致性。cref所垫图还是用的是刚才一张图,因为第一张图有两个内容我们都要拿:构图、人物重绘关键词如下,需要注意的是cref的垫图可以将链接放在文末,和iw不同,它需同时配合cw参数来确定人物一致性:[heading3]3.3.2黑边处理[content]到这里基本上就大功告成了,但是发现每张图上会有黑边,那这个怎么处理呢?答案还是重绘。将黑边部分框住,重绘输入关键词:background就能去除黑边,保证背景一致了欢迎来尝试下~

其他人在问
用 mj 做文生图,Prompt 模板
以下是使用 MJ 进行文生图的 Prompt 模板: 1. 定主题:明确您需要生成一张什么主题、什么风格、表达什么信息的图。 2. 选择基础模型 Checkpoint:按照主题,找内容贴近的 checkpoint。一般喜欢用模型大佬麦橘、墨幽的系列模型,如麦橘写实、麦橘男团、墨幽人造人等,效果较好。 3. 选择 lora:在想要生成的内容基础上,寻找内容重叠的 lora,以控制图片效果及质量。可多参考广场上好看的帖子中使用的 lora。 4. ControlNet:用于控制图片中特定的图像,如人物姿态、生成特定文字、艺术化二维码等,属于高阶技能,可后续学习。 5. 局部重绘:下篇再教。 6. 设置 VAE:无脑选择 840000 这个即可。 7. Prompt 提示词:用英文写想要 AI 生成的内容,使用单词和短语的组合,不用管语法,单词、短语之间用英文半角逗号隔开。 8. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,同样不用管语法,只需单词和短语组合,中间用英文半角逗号隔开。 9. 采样算法:较复杂,一般选 DPM++ 2M Karras 较多。最稳妥的是留意 checkpoint 的详情页上模型作者是否有推荐采样器,使用推荐的采样器更有保障。 10. 采样次数:根据采样器特征,选 DPM++ 2M Karras 后,采样次数一般在 30 40 之间,多了意义不大且慢,少了出图效果差。 11. 尺寸:根据个人喜好和需求选择。 另外,使用 Stability AI 基于 Discord 的媒体生成和编辑工具进行文生图时: 1. 点击链接进入官方 DISCORD 服务器:https://discord.com/invite/stablediffusion 。 2. 进入 ARTISAN 频道,任意选择一个频道。 3. 输入/dream 会提示没有权限,点击链接,注册登录,填写信用卡信息以及地址,点击提交,会免费试用三天,三天后开始收费。 4. 输入/dream 提示词,这部分和 MJ 类似。 5. 和 MJ 手工输入参数不同,可选参数有五类: prompt:提示词,正常文字输入,必填项。 negative_prompt:负面提示词,填写负面提示词,选填项。 seed:种子值,可以自己填,选填项。 aspect:长宽比,选填项。 model:模型选择,SD3,Core 两种可选,选填项。 Images:张数,1 4 张,选填项。完成后选择其中一张。 在 MJ 应用篇儿童绘本制作、人物一致性方面: 1. 生成人物图片:确定人物形象,如“a little girl wearing a yellow floral skirt + 人物动作 + 风格词”,在 mj 中生成直到得到满意的人物图像。垫图 URL + “In the forest,a little girl wearing a yellow floral skirt is playing happily,super high details,HDsmooth,by Jon Burgerman,s 400 ar 3:4 niji 5 style expressive iw 2”,iw 取值范围,不填写默认 iw = 1,iw 值越大越接近垫的图像,反之更接近提示词。为确保人物一致性,取 iw 2 。 2. 合成人物和场景,垫图并重新生成:使用 PS 或者 Canva 将人物和场景合成到一张图,若色调不和谐(若画面和谐或 PS 技术足够,也可不用图生图),将合成后的图作为垫图(iw 2),mj 重新生图,如“prompt:垫图 url + Little girl wearing a yellow floral skirt,and her friend brown bear,taking shelter in the cave,rainstorm,super high details,HDsmooth,by Jon Burgerman,s 400 ar 3:4 niji 5 style expressive iw 2”。 3. 绘本展示。
2024-11-15
有和mj差不多的网站吗
以下是一些和 Midjourney 类似的网站: 1. Stable Diffusion:是一种可根据文本生成图像的人工智能程序。 2. DALL·E2:能够根据输入的描述生成逼真的图像。 Midjourney 是一个由同名研究实验室开发的人工智能程序,可根据文本生成图像,于 2022 年 7 月 12 日进入公开测试阶段,用户可透过 Discord 的机器人指令进行操作创作图像作品。通过 Discord 的社区属性,它具有更轻量的产品形态、更简单的生图方式,且图片质量很高。MJ 具备更简单的交互,更直观的生成、放大、保留、分享功能,如果愿意购买更高级的服务,甚至可以享受更快速、更强大的增值服务。 Midjourney 官网现已向生成 100 张以上图片的用户开放了使用权限,登录 MJ 官网,左侧为各种页面入口,顶部是生成入口(prompt 框)和搜索框。在社区作品、创作(Create)以及组织(Organize)页面中,可随时使用 prompt 框和搜索框,方便查找参考和进行创作,无需频繁切换页面。还可以通过点击 prompt 框最右侧的图标来设置常用参数的默认值,包括画面比例和个性化模型开关。在官网上使用图片参考也变得简单直观,只需要点击 prompt 框最左侧的图片按钮,或直接拖入图片即可,并且官网会记录所有使用过的图片,方便调用或删除。当鼠标悬停在图片上时,会看到 3 个小图标,从左到右分别是角色参考、风格参考、整图参考,点击相应的图标即可,如需多种参考逻辑可按住 shift 键点选多个图标。创作页面最大亮点是 prompt 的复用,可以直接点击画面描述或复制描述词到 prompt 框中,也可以直接点击下方横列菜单里的按钮,将包括参考图在内的完整 prompt 替换当前的 prompt。点击图片则会进入单图调整模式,在 discord 中常用的操作指令都被集中在了右下角的按键中,并且上线了全新的 Editor 编辑器功能。 另外,MJ 官网更新了,刷图超过 1000 张的就可以用 alpha 版本了。可以不用在 discord 服务器生图了,官网操作更方便,很多参数直接可以控制。前几天还是需要 10000 张才可以,门槛降低了,过两天估计可以全量开放了。在官网上可以看各种排行榜和厉害的作品,右键也新增了很多功能,不错的作品也容易被发现,还有提示词可以直接复制。
2024-11-14
我想使用MJ设计班牌 应该注意什么问题
使用 MJ 设计班牌时,需要注意以下问题: 1. 选择最新的 6.0 model。 2. 利用图生图功能时,命令为 /describe,选择 image 上传本地图片可获取四条提示词,点击下方标签可生成对应提示词的四张图。但要注意截图的对标比例未必是标准的 9:16,可手动修改比例以省去返工。 3. 自行对比反推的词和对标的相似程度并微调,describe 根据对标图反推的效果可能不太好,可根据推出的词自行修改,也可直接用给定的提示词,如“Anthropomorphic(mice),fashion runway,whole body,(wearing red northeast big flower jacket),anthropomorphic,highend design style,cool,slender figure,Milan fashion show,whole body,dynamic capture runway show,front view,facing the camera ar 9:16 style raw”。 4. 对于某些难以画出的形象,如拟人形态的龙,可能是描述不够准确,需要加强描述词,如将“一条亚洲龙站在时尚秀场上”这样连成一句话,以便 MJ 正确理解。 5. 确定主体形象时,包括画风、是否 Q 版、配色风格、构图比例、细节量设定等,可以找参考案例。 6. 通用的肖像生产咒语如“Cartoon style character,original character,character design. Mysterious painter and artist,an intellectually mature girl(人物基本形象(必要内容比如性别和身份) Gold and dark red.(配色部分(一个系列里尽量不要改改了容易画风对不上) 2d,solid and clean background,white background. The figure is in the middle of the frame,sideways.(侧身) Art Nouveau,in the style of Alphonse Mucha. no decorative background elements,no flower.Clean background. niji 5 ar 9:14 s 400 style expressive / style cute(二者任选尝试)”,注意咒语中的内容可随意换,多尝试。 7. 利用一致性时,得益于cref,默认值 100,越高越接近参考图像的风格。在回车之前,检查提示词,不要出现和 sref 风格差异过大的 prompt,也可增加一些有用的 prompt。解决“形似而神不似”的问题,即 MJ 直出和原人物在眼睛、眉毛、鼻子等其他地方的大小、间距有细微差距的问题。
2024-10-09
怎么让mj生成的图片色调保持一致
要让 MJ 生成的图片色调保持一致,可以参考以下方法: 1. 在关键词中限制颜色时,同一种情绪最好多生成几张不同色系的图片,这样可以减少后续训练中模型把情绪和颜色做挂钩。但如果您需要将情绪和颜色关联,也可以反其道而行之。 2. 注意数据集中正面情绪与负面情绪的比例应差不多。如果都是正面积极的,在生成一些负面情绪(如 sad、cry)的图片时,可能会出现奇怪的问题(如训练的是兔子形象,但 AI 认知的 sad 可能是人的形象,可能会出现人物特征)。 3. 为保证人物一致性,在生成人物图片时,可确定人物形象,如“a little girl wearing a yellow floral skirt+人物动作+风格词”,在 MJ 中生成直到得到满意的人物图像,并取 iw 2。 4. 为保证画面的一致性,可以使用 MJ 的 cref 参数。
2024-10-06
mj提示词
以下是关于 MJ 提示词的相关知识: 1. 常用的控制画面的提示词指令分别是 cw、sw 和 iw: cref/cw:主要作用是保证人像一致性。使用 cw 需要用 cref 指令,cw 参数范围为 0 100。强度 100(cw 100)是默认值,它会使用面部、头发和衣服,cw 为 0 的话仅保证脸部一致。基础格式:cref 图片链接,cw 100。参考链接: sref/sw:主要作用是保证画面风格和参考图一致(例如:背景基调、画风等)。使用 sw 需要用 sref 指令,sw 参数范围为 0 1000。基础格式:sref 图片链接,sw 100。参考链接: iw:作用是控制画面构图一致性,保证生成图为参考图的构图样式。 2. Pika 作为 MidJourney 图片生成大师,能够根据您的故事内容创作出全面的分镜提示词,包括分镜描述、人物描述、环境描述、氛围描述、灯光描述、色彩描述、构图描述、风格描述。还会考虑您所使用的相机类型、摄影风格和镜头位置,确保生成的提示词能够完美匹配您的创作需求。 3. 在 MJ 的输入法测试中,提示词中,文本前置、后置等效果相近,并没有很大不同。过长的文本难以控制文本出现的位置,建议只要求 AI 生成部分主要文本内容,自行嵌字仍然还是当前最佳方法。加入引号“”包裹文本即能达到 MJ 生成文字的效果,不必要特殊说明“生成一段文本......”等内容。MJ 能够自行判断文本应当存在的位置,会将文本安排在符合逻辑的位置上,不必要特殊描述。后续有机会可以进一步测试【局部重绘】能否控制文本在规定位置出现。总结概括,MJ 进行文本输出任务,提示词并没有特别固定的语法结构。只需要认识清楚其文本生成的能力范围和使用场景,即可高效的应用 V6 模型,生成有趣的画面内容。
2024-09-23
mj画风整理
以下是关于 Midjourney(MJ)画风的相关整理: 1. Midjourney 200 条风格词汇:@TheMouseCrypto 发表了一份 200 条风格词汇整理,MJ 创始人关注且转发。这些关键词条个人感觉不错,值得推荐,页数达 77 页,很全的宝典。相关链接:《》 2. MJ 多张图保证构图、人物一致性实战教学: 由于 MJ 不可控因素,如果需要前后两张图画风、构图等都保持一致,可以按照三个确定来处理: 确定画面元素:优先出一张图,保证风格、构图样式及人物角色。 确定前后图的构图风格:出第二张图时,将第二张图提示词描述后加入第一张图的构图风格(iw 参数)。 确定图片角色一致性:在第二步得到构图风格没有问题的基础上,保证人物一致性。 先保证构图再确认角色一致性的原因:MJ 在重绘时,如果要将一个角色从镜头一个位置挪到另外一个指定位置,非常难处理。整个 MJ 出图基本也是靠降噪重绘,相较于把整个画面结构都变了,固定位置重绘局部内容会容易很多,如果整个画面结构变了先保证人物内容的话,会很依赖 MJ 抽卡。 确定画面元素的示例:以本次出图要求“医院病床上呻吟的人们”为例,出了两张躺在病床上的人(一男一女在输液),同时根据整体定的画风偏冷色调漫画风,加入对应 seed 得到提示词。整体看下来,第一张图的效果更方便出第二张图“在健身房做卧推的”的场景,但第一张图主角的四肢存在问题。
2024-09-11
图片的前后一致性,如何实现
要实现图片的前后一致性,可以参考以下步骤: 1. 确定画面元素:优先出一张图,保证风格、构图样式及人物角色。 2. 确定前后图的构图风格:出第二张图时,描述其内容并在提示词中加入第一张图的构图风格(使用 iw 参数)。需注意,输入 ar、iw 等参数时,要与前面的提示词用空格隔开,否则会报错。例如:“a dog 空格 ar 16:9 空格 iw 1”。将生成的多张图中选择一张图作为垫图,通过右键图片获取其地址。按照格式将提示词、垫图关键词写入。通过微调提示词,得出满意图。 3. 确定图片角色一致性:在得到构图相同后,利用 MJ 重绘功能对画面里的角色重绘。在重绘提示词里输入 cref cw 来保证角色一致性,cref 所垫图还是用之前的图,因为它包含构图和人物两个内容。如果出现黑边,可将黑边部分框住,重绘输入关键词“background”去除黑边,保证背景一致。 由于 MJ 存在不可控因素,如果要保证前后两张图画风、构图等都保持一致,可以按照上述三个确定来处理。需要注意的是,MJ 在重绘时,相较于改变整个画面结构,固定位置重绘局部内容会容易很多。先保证构图再确认角色一致性,就好比美术课画画,把背景风格做好了在固定位置添加内容,比将整个页面内容全部重绘且保证画面主题内容与参考图一样要容易,后者随机性更大。
2024-10-10
stable diffusion 绘本一致性
Stable Diffusion 绘本一致性相关知识如下: 工作原理: Stable Diffusion 生成随机噪声,并逐步更改噪声以努力获得与提示一致的图像。其基本结构包括 encoder + diffusion + decoder 的流程。Checkpoint 记录某个训练周期整个 diffusion 及可能的 encoder decoder 的参数,VAE 是 encoder decoder 的参数,在 SDXL 等大型模型中需配对以避免花屏现象。LoRA 模型训练时先冻结 SD 模型权重,然后在 UNet 结构中注入 LoRA 模块并与 CrossAttention 模块结合,只对部分参数微调。 相关论文: AnyDoor: MixofShow: LyCORIS: 影响生成结果的因素: 影响生成的图与他人不同的因素包括随机数种子(Seed)。随机数种子控制最底层形状,决定照片基础轮廓,如人物外形轮廓、姿势和站位等。当随机数为“1”时,SD 会随机生成种子。可在点击生成的照片下面的一大串英文中查看 seed 值。只有所有参数包括随机数种子都与他人相同时,才能生成相似的照片。
2024-09-30
如何用midijurney生生人物一致性
在 Midjourney 中实现人物一致性,主要通过以下方式: 1. Midjourney V6 更新了角色一致性命令“cref ”。您可以根据需要重复此过程,但要注意不要过多操作,以免丧失保真度。添加角色参考图像,并选择一个“cw”以达到效果。Midjourney 能够从参考图像中识别的角色属性将与提示混合,从而创建出角色的最终表现。您可以通过使用“cw N”参数(cref 权重)来大致控制转移,其中 N 的值可以从 1 到 100,默认值为 100。“cw”参数不会改变角色参考图像的强度/影响力,其作用如下: “cw 100”的值(默认值)将捕捉整个角色。 “cw 99 到cw 1”之间的值将开始捕捉较少的整个角色,仅集中于转移面部。 “cw 0”的值将仅捕捉面部,大致类似于面部替换。且无法关闭面部的转移。 2. 在群像人物一致性保持及空间深度控制方面,以双人画面人物一致性的保持为例,分为 5 步: Step 1:将初始图(A)以及人物图(B)作为风格(sref)及人物(cref)的参考内容,提示词中需要注意: 描述好空间关系(下方画线部分),视角问题可以略过(风格参考会自带角度)。 成功输出图(C),可能会遇到女同事 Lisa 无法保持跟初始图(A)一致的问题。其中:sref 为风格参考,cref 为人物参考,cw 范围为 0 100,默认 100 但建议写上去确保万无一失。 Step 2:找到已生成的 Lisa 纯人物的图,提取图片链接(url)做准备工作。 Step 3:基于 Step 1 生成的构图清晰但人物失控的成图(C)基础上,进行重绘 Vary Region,步骤为: 框选需要被替换的人物。 然后将 Step 2 准备好的链接,贴入框内界面 cref 后面,注意先把原始的 cref(即红色部分)删掉。
2024-09-23
ipadapter的作用是什么,能实现人物的一致性吗?比如参考人物的脸部特征
IP Adapter 即图像提示词适配器,其作用包括: 能够“复刻图像”,用户输入图像可直接生成内容或风格相似的图像。 注重图像风格和语义的复刻,兼容性强,可与结构控制插件一起使用,既控制结构,也控制图像的语义和风格。 是解决角色和风格一致性的优雅方法,能够非常精准地提取风格参考图中的角色和风格特征。 在处理人物一致性方面,IP Adapter 有一定的应用,例如在相关的图生图操作中会用到。关于其使用,之前有文章介绍。同时,Midjourney 也有类似的人物一致性相关功能。
2024-08-25
lora训练的数据集没有闭眼,如何保证人物一致性前提让角色闭眼
在训练 Lora 模型以保证人物一致性的前提下让角色闭眼,以下是一些可能的方法和参考信息: 得益于对 AI 大模型微调 finetuning 技术的研究,摸索出的训练特定画风 Lora 和特定角色 Lora 的方法,对角色一致性的锁定有决定性帮助。比如完善哪吒短褂、小短裤、额前火焰印记、流苏耳饰等细微之处的统一,最终针对不同主要角色分别训练角色 Lora,保障多人同框镜头的一致性。 实现角色一致性最好的方法是使用 Lora。训练 Lora 时,至少要有 15 到 20 张图片的训练集。对于固定形象,面部五官最重要,其次是体型、服装、配饰等。收集训练集时,收集形象的头部图片很重要。对于现实人物可通过照片训练,虚构角色则要能稳定输出多张不同角度的图片以达到训练集要求。 在预处理生成 tags 打标文件后,对文件中的标签进行优化。保留全部标签适用于训练画风或省事快速训练人物模型,优点是省时省力、过拟合出现情况低,缺点是风格变化大、训练时间长。删除部分特征标签适用于训练特定角色,将特征与 Lora 做绑定,优点是调用方便、更精准还原特征,缺点是容易过拟合、泛化性降低。需要删掉如人物特征 long hair、blue eyes 这类标签,不需要删掉如人物动作 stand、run,人物表情 smile、open mouth,背景 simple background、white background,画幅位置 full body、upper body、close up 这类标签。过拟合会导致画面细节丢失、模糊、发灰、边缘不齐、无法做出指定动作、在一些大模型上表现不佳等情况。
2024-08-12
生成橘猫图片怎么保持一致性
要生成橘猫图片并保持一致性,可以参考以下方法: 1. 采用 InstantStyle 技术,通过内容与风格分离以及只往特定的风格块注入特征这两个关键方法,来实现生成图片风格的一致性。 2. 在 runway 分镜选图中,对于橘猫的描绘要注意保持角色一致性,比如胖瘦统一、衣服统一、造型统一等。 3. 利用 DALL·E 和 Custom Instrctions 的组合,将解决 DallE 生成图一致性问题的 prompt 进行优化并添加到 Custom Instrctions 中。添加之后,正常打开 DallE 会话,生成的图片会有唯一 ID。有了唯一 ID,可以进行微调图形细节和多图融合时,可以指定两张不同图片的 ID 让它们进行融合,例如“please blend image 00X and 00Y”。 希望以上信息对您有所帮助,让您能够更有效地生成具有一致性的橘猫图片。
2024-07-15
sd 人物的模样及服装等统一
以下是关于人物模样及服装的 SD 关键词描述: 人物类型:肌肉公主、舞者、啦啦队等。 性别:单人,包括女人和男人。 身体特征:有光泽的皮肤、苍白皮肤、白皙皮肤等。 头发样式:直发、卷发、波浪卷等。 头发颜色:挑染、内层挑染、头发内变色等。 头发长度:长发、很短的头发、短发等。 具体人物:初音未来、绫波(碧蓝航线)、比那名居天子、蛮啾(碧蓝航线)、爱宕、时崎狂三、洛琪希、西住美穗、星街彗星、时雨、蒂法·洛克哈特、中野一花、南达科他州(碧蓝航线)、白上吹雪、白井黑子、岛风等。 发型特点:身前,单侧编发,人妻发型;挑染,条纹发色;短碎发等。 面部特征:死鱼眼、晒痕、眼睛发光、垂耳(狗)等。
2024-11-20
midjourney中如何结合A图片的人物和B图片的动作和内容
在 Midjourney 中结合 A 图片的人物和 B 图片的动作和内容,可以使用新上线的“Character Reference”(cref)功能。以下是一些关键方法和示例: 1. 锚定细节:您可以掌控姿势、表情、情感、服装、道具、场景、动作等细节。例如:“Jo is a young woman with blue curly hair, pink sunglasses, and a colorful scarf around her neck. She waits in line at the bank. cref https://my.image.host/joisstanding.jpg”。 2. 让 cref 处理大部分工作:提示无需加强标志性细节,只是“操纵”或“定位”角色。例如:“有人正在银行排队等候。 cref https://my.image.host/joisstanding.jpg”。 3. 只提供场景:如果您的 cref 图像已包含想要的姿势和其他细节,您可以仅描述环境、周围环境、背景或情境,Midjourney 将努力将角色融入场景中。但可能会出现不连贯的结果,此时可尝试使用更高值的样式化,如“s 800”。 需要注意的是,此功能在使用 Midjourney 生成的图像人物时效果最佳,不太适用于真实人物或照片。同时,在 Midjourney V6 的 Web Alpha 版本中,您可以通过拖放或粘贴图像到想象栏,并选择相应图标来设置图像为图像提示、风格参考或角色参考。
2024-11-18
midjourney 人物正面
以下是关于 Midjourney 人物相关的内容: 关于人物正面的描述:可以描述人物第一次出现的场景,如在一个水草丰美的地方,一身白色长裙的部落少女。 群像人物一致性保持及空间深度控制: 针对构图有空间深度场景的需求,共分七步。 第一步,优先生成“构图”为主的画面,再进行细化修改。 第二步,利用风格参考图让 Midjourney 理解空间关系。 第三步,垫图加 prompt 抽图。 第四步,重绘面部及侧身幅度。 Midjourney V6 更新角色一致性命令“cref”: Midjourney 努力在 cref 起作用时保留面部,无论 cw 的值如何。 当 cw 设置为 0 时,Midjourney 只转移面部到新图像中,会始终保留面部标志性属性。 若要改变面部,可按以下步骤操作: 使用 /settings 确保处于 模式且 Remix 设置为打开。 选择带有要更改面部的图像,使用 分离,选择 。 开启 Remix 后编辑提示,删除 cref 和 cw 后修改提示以对面部进行更改。 对更改满意时,确保不再添加 cref 到提示中。 某些部分看起来怪异或破碎时,可尝试将 stylize增加到 800 1000,或将 cw 降低到低于 100 的值。
2024-11-17
两个人物图合成一张图片,有什么好工具?
以下是一些可以将两个人物图合成一张图片的工具和方法: 1. Midjourney(MJ): 确定人物形象,通过相关提示词生成人物图像。 利用 PS 或者 Canva 将人物和场景合成到一张图,若色调不和谐,可将合成后的图作为垫图在 MJ 中重新生图。 2. Stable Diffusion(SD): 可使用 Roop 插件进行多人物脸部替换。例如生成一张包含两个古风人物的图片,通过图生图调整重绘幅度,并在 Roop 插件中载入相应人物照片形象进行脸部替换,最后使用 PS 扩图。 3. 其他方法: 利用 MJ 画图制作底图,使用 InsightFaceSwap 插件处理脸部,分割裁剪图片、处理后缝合,再用相关软件让图片动起来。 直接在网上寻找能够融合两张照片的软件或项目,若没有则进行纯 P 图,然后利用图生视频的项目完成。
2024-10-28
照片人物与虚拟人合成
以下是关于照片人物与虚拟人合成的相关内容: 使用 Midjourney(MJ)生成人物图片: 确定人物形象,如“a little girl wearing a yellow floral skirt + 人物动作 + 风格词”,在 MJ 中生成直到得到满意的人物图像。可使用垫图 URL 及相关提示词,如“In the forest,a little girl wearing a yellow floral skirt is playing happily,super high details,HDsmooth,by Jon Burgerman,s 400 ar 3:4 niji 5 style expressive iw 2”,其中“iw 取值范围,不填写默认 iw = 1,iw 值越大越接近垫的图像,反之更接近提示词。为了确保人物一致性,取 iw 2”。 合成人物和场景: 使用 PS 或者 Canva 将人物和场景合成到一张图,若色调不和谐,可将合成后的图作为垫图(iw 2),在 MJ 中重新生图,提示词如“垫图 url + Little girl wearing a yellow floral skirt,and her friend brown bear,taking shelter in the cave,rainstorm,super high details,HDsmooth,by Jon Burgerman,s 400 ar 3:4 niji 5 style expressive iw 2”。 在 StableDiffusion(SD)中绘制一致性多角度头像: 准备工作:准备一张人物的多角度图片,尺寸设置为 1328×800px,放大两倍后保证每张小图都是 512×512px。加上网格图,通过 lineart 来分割不同的块面。设置 controlnet,第一张图选择 openpose_face 得到人物的 15 个面部角度,第二张图选择 lineart_standard得到清晰的表格分区,为防止小图模式下人脸崩坏,可增加 ADetailer 的脸部修复插件。 制作数字人的工具: HeyGen:AI 驱动的平台,可创建逼真的数字人脸和角色,适用于游戏、电影和虚拟现实等应用。 Synthesia:AI 视频制作平台,允许创建虚拟角色并进行语音和口型同步,支持多种语言,可用于教育视频、营销内容和虚拟助手等场景。 DID:提供 AI 拟真人视频产品服务和开发,上传人像照片和输入要说的内容,平台提供的 AI 语音机器人将自动转换成语音,然后合成逼真的会开口说话的视频。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会变化,使用时请遵守相关条款和政策,并注意版权和伦理责任。
2024-10-28
怎么用AI绘制一个我指定的动漫人物原型的各类图片,例如日漫《好想告诉你》中的黒沼爽子
要使用 AI 绘制指定的动漫人物原型,如日漫《好想告诉你》中的黑沼爽子,您可以按照以下步骤进行: 1. 选择合适的 AI 绘画工具:目前有许多在线的 AI 绘画平台和软件可供选择,例如 DALL·E2、StableDiffusion 等。 2. 明确描述特征:在输入描述时,尽可能详细地描述黑沼爽子的外貌特征,包括发型(如黑色的长直发)、眼睛(如大而明亮的眼睛)、服装(如校服的款式和颜色)、表情(如羞涩的微笑)等。 3. 参考相关图片:如果可能,找到黑沼爽子的官方图片或其他粉丝绘制的作品,作为参考提供给 AI 绘画工具,以帮助其更好地理解您的需求。 4. 不断调整和优化:根据生成的初步结果,对描述进行调整和优化,例如修改某些特征的描述、增加更多细节等,以获得更符合您期望的图片。 需要注意的是,AI 绘画的结果可能会受到多种因素的影响,不一定能完全符合您的预期,但通过不断尝试和优化,您有机会获得较为满意的作品。
2024-10-17
设定好程序,在没有人工干预的情况下,AI能保持多久的工作效率。
AI 在没有人工干预的情况下能保持的工作效率时长难以给出确切的固定值,其受到多种因素的影响。 一方面,AI 系统的设计和训练质量会对其持续工作效率产生重要影响。如果系统经过良好的设计和充分的训练,具备应对各种情况的能力,可能在较长时间内保持较高的工作效率。 另一方面,运行环境和所处理任务的复杂性也起着关键作用。例如,处理简单、重复性高且规则明确的任务时,AI 可能在较长时间内保持稳定的效率。但对于复杂多变、需要不断适应新情况的任务,其效率可能会随着时间有所波动。 在实际应用中,一些案例显示,如产品经理使用 GPT 解决性能问题,SQL 执行时间大幅缩短,效率显著提升。但也有观点认为,对于某些工作场景,AI 带来的效率提升有限。 此外,政策层面,如拜登签署的 AI 行政命令中,也强调了在医疗、教育等领域推进 AI 的合理使用,并关注其对劳动力市场的影响,采取措施支持工人等。 总之,AI 无人工干预下的工作效率保持时间因多种因素而异,需要综合考虑系统本身、任务特点等多方面因素。
2024-11-13
相同的参数下,用SD comfyui出图可以和SD webui出图保持图片效果一模一样么?
理论上,在应用完全相同参数(如 Step、CFG、Seed、prompts)的情况下,SD ComfyUI 出图和 SD WebUI 出图应当能保持图片效果一模一样。但在实际操作中可能会存在一些差异,比如: 提示词的多个条件下,SD 生成的图像可能无法全部满足,这与提示词引导系数有关,该系数关系到出图与文字的相关程度。 不同的模型和配置也可能影响出图效果,例如 SDXL 的大模型分为 base、refiner 以及配套的 VAE 模型,用于调节图片的画面效果和色彩。 需要注意的是,相同参数下要达到完全一致的出图效果并非绝对,还会受到多种因素的综合影响。
2024-10-14
我想保持对于AI信息的敏感度,你怎么建议
以下是一些保持对 AI 信息敏感度的建议: 1. 关注相关政策和法规的发布与更新,例如了解英国的 AI 监管政策以及拜登签署的 AI 行政命令等,掌握其对 AI 发展的影响和规范。 2. 重视 AI 风险评估,包括考虑未充分利用 AI 能力可能带来的机会成本,以及在不同场景如安全关键操作、重工业、个人医疗保健中的应用风险。 3. 关注 AI 系统的安全性、稳健性和隐私保护,例如研究和采用加密工具等隐私保护技术,评估机构收集和使用商业信息的方式,制定隐私保护技术的有效性评估指南。 4. 注重 AI 治理中的透明度和可解释性,了解相关原则和定义,确保监管者能获取足够信息以落实其他原则。 5. 关注 AI 在公平和民权方面的影响,防止其在司法、医疗和住房等领域导致或加深歧视、偏见等问题,遵循相关指导和采取行动。 6. 参与相关的交流和讨论活动,与监管机构、AI 生命周期参与者等进行沟通,了解最新动态和发展方向。
2024-09-04
lora训练的数据集没有跳绳动作,后期如何使用lora生成跳绳的图,需求要保持人脸和服装跟训练人物一致
如果您的 Lora 训练数据集没有跳绳动作,但希望生成跳绳的图并保持人脸和服装与训练人物一致,可以参考以下步骤: 1. 首先,在已有训练集中选择一两张合适的形象图片,用 PS 把人物肢解处理一下,得到各部位的图片。 2. 在 Tripo 中逐个上传图片转换成 3D 模型(由于全身图单次转换 3D 目前效果较差,所以需逐个分部转换)。 3. 利用 3D 软件将模型整合,绑定骨架。 4. 最后对照所需的分镜图凹好造型,再进行重绘。重绘时可以使用 cref cw0 来保证基础面部。 另外,训练 Lora 时需要注意: 1. 对于一个固定的形象,面部五官最重要,其次是体型、服装、配饰等。收集训练集时,收集形象的头部图片很重要。 2. 给图片打标时,要仔细检查每一张图片,打标的好坏会影响到后面人物 Lora 的泛化性。若想让人物有更多变化,描述应尽量详细。
2024-08-12