直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

F5-TTS有相关的文章吗?

回答

上海交通大学开源了 F5-TTS 语音合成技术,这是一种完全非自回归的文本到语音系统,通过流匹配与扩散变换器(DiT)实现。它简化了传统的 TTS 系统设计,不需要复杂的时长模型、文本编码器和音素对齐,而是将文本输入用填充标记填充到与输入语音相同的长度,并利用 ConvNeXt 模型对文本表示进行细化以与语音对齐。

F5-TTS 的模型特点包括:

  1. 零样本(Zero-shot)声音克隆。
  2. 速度控制(基于总时长)。
  3. 可以控制合成语音的情感表现。
  4. 长文本合成。
  5. 支持中文和英文多语言合成。
  6. 在 10 万小时数据上训练。
  7. 最重要的是支持商用。

相关链接:

  1. 论文:https://arxiv.org/abs/2410.06885
  2. 模型下载:https://huggingface.co/SWivid/F5-TTS
  3. 演示 Demo:https://huggingface.co/spaces/mrfakename/E2-F5-TTS
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AIGC Weekly #92

上海交通大学开源了F5-TTS语音合成技术,这是一种完全非自回归的文本到语音系统,它通过流匹配与扩散变换器(DiT)实现。F5-TTS简化了传统的TTS系统设计,不需要复杂的时长模型、文本编码器和音素对齐,而是通过将文本输入用填充标记填充到与输入语音相同的长度,并利用ConvNeXt模型对文本表示进行细化,以便与语音对齐。模型特点有:零样本(Zero-shot)声音克隆速度控制(基于总时长)可以控制合成语音的情感表现长文本合成支持中文和英文多语言合成在10万小时数据上训练最重要的是支持商用论文:[https://arxiv.org/abs/2410.06885](https://t.co/crXFdfiXeW)模型下载:[https://huggingface.co/SWivid/F5-TTS](https://t.co/ffD2m6L1EG)演示Demo:https://huggingface.co/spaces/mrfakename/E2-F5-TTS

其他人在问
评价tts合成效果有什么通用标准吗
对 TTS 合成效果的评价主要分为主观评价和客观评价。 主观评价是通过人类对语音进行打分,常见的方法包括平均意见得分(MOS)、众包平均意见得分(CMOS)和 ABX 测试。其中 MOS 评测较为宽泛,可测试语音的不同方面,如自然度 MOS 和相似度 MOS。国际电信联盟将 MOS 评测规范化为 ITUT P.800,其中绝对等级评分(ACR)应用广泛,其根据音频级别给出 1 至 5 分的评价标准,分数越大表示语音质量越好,MOS 大于 4 时音质较好,低于 3 则有较大缺陷。但人类评分结果易受干扰,如音频样本呈现形式、有无上下文等。 客观评价是通过计算机自动给出语音音质的评估,在语音合成领域研究较少。客观评价可分为有参考和无参考质量评估,有参考评估方法需要音质优异的参考信号,常见的有 ITUT P.861(MNB)、ITUT P.862(PESQ)、ITUT P.863(POLQA)、STOI 和 BSSEval 等;无参考评估方法不需要参考信号,常见的包括基于信号的 ITUT P.563 和 ANIQUE+、基于参数的 ITUT G.107(EModel),近年来深度学习也应用到无参考质量评估中,如 AutoMOS、QualityNet、NISQA 和 MOSNet 等。 获取平均意见得分时,实验要求获取多样化且数量足够大的音频样本,在具有特定声学特性的设备上进行测评,控制被试遵循同样标准,确保实验环境一致。实验方法有实验室方式和众包两种,实验室方式能稳定保证实验环境,但人力成本高;众包方式易于获得有效评估结果,但无法确保试听条件。
2024-11-20
评价tts合成效果有什么通用标准吗
对 TTS 合成效果的评价主要分为主观评价和客观评价。 主观评价是通过人类对语音进行打分,常见的方法有平均意见得分(MOS)、众包平均意见得分(CMOS)和 ABX 测试。MOS 评测较为灵活,可测试语音的不同方面,如自然度 MOS 和相似度 MOS。国际电信联盟(ITU)将 MOS 评测规范化为 ITUT P.800,其中绝对等级评分(ACR)应用广泛,其根据音频级别给出 1 至 5 分的评价,分数越大表示语音质量越好,MOS 大于 4 时音质较好,低于 3 则有较大缺陷。但人类评分结果受干扰因素多,如音频样本呈现形式、上下文等。 客观评价是通过计算机自动给出语音音质的评估,在语音合成领域研究较少。客观评价可分为有参考和无参考质量评估,有参考评估方法需要音质优异的参考信号,常见的有 ITUT P.861(MNB)、ITUT P.862(PESQ)、ITUT P.863(POLQA)、STOI 和 BSSEval 等;无参考评估方法不需要参考信号,常见的包括基于信号的 ITUT P.563 和 ANIQUE+、基于参数的 ITUT G.107(EModel),近年来深度学习也应用到无参考质量评估中,如 AutoMOS、QualityNet、NISQA 和 MOSNet 等。 获取平均意见得分时,实验要求获取多样化且数量足够大的音频样本,在具有特定声学特性的设备上进行,控制被试遵循同样标准,确保实验环境一致。实验方法有实验室方式和众包,实验室方式能控制测试要素,但人力成本高;众包易于获得评估结果,但无法确保试听条件。
2024-11-20
有没有好用的 tts 的 api 推荐啊
以下为您推荐一些好用的 TTS API: 1. 出门问问 Mobvoi: API 官网:https://openapi.mobvoi.com/ 语音合成(TTS)API 地址:https://openapi.mobvoi.com/pages/soundlibrary 语音合成(TTS)操作文档:https://openapi.mobvoi.com/document?name=%E8%AF%AD%E9%9F%B3%E5%90%88%E6%88%90%EF%BC%88TTS%EF%BC%89 接口请求域名:https://open.mobvoi.com/api/tts/v1 接口请求频率限制:5 次/秒 提供多种方言和风格,满足不同场景需求,实时合成支持 SSML。 2. Eleven Labs:https://elevenlabs.io/ ElevenLabs Prime Voice AI 是一款功能强大且多功能的 AI 语音软件,使创作者和出版商能够生成逼真、高品质的音频。人工智能模型能够高保真地呈现人类语调和语调变化,并能够根据上下文调整表达方式。 3. Speechify:https://speechify.com/ Speechify 是一款人工智能驱动的文本转语音工具,使用户能够将文本转换为音频文件。它可作为 Chrome 扩展、Mac 应用程序、iOS 和 Android 应用程序使用,可用于收听网页、文档、PDF 和有声读物。 4. Azure AI Speech Studio:https://speech.microsoft.com/portal Microsoft Azure Speech Studio 是一套服务,它赋予应用程序能力,让它们能够“听懂、理解并与客户进行对话”。该服务提供了支持 100 多种语言和方言的语音转文本和文本转语音功能。此外,它还提供了自定义的语音模型,这些模型能够适应特定领域的术语、背景噪声以及不同的口音。 5. Voicemaker:https://voicemaker.in/ AI 工具可将文本转换为各种区域语言的语音,并允许您创建自定义语音模型。Voicemaker 易于使用,非常适合为视频制作画外音或帮助视障人士。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-30
tts工具
以下为您推荐一些在线 TTS 工具: 1. Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种应用程序使用,用于收听网页、文档、PDF 和有声读物。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal ,是一套服务,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 4. Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 此外,还有免费的 AI 真人语音入门工具:GPTSoVITS + BertVITS2。这两个项目均免费且好用,直接找到需要的音色,输入文字,点击“合成语音”生成后就能下载。两个项目提供的在线模型中采用了很多网络红人的语音作为训练集。 在了解 TTS 工具之前,先为您介绍一些语音的基本概念:声波通过空气传播,被麦克风接收,通过采样、量化、编码转换为离散的数字信号,即波形文件。音量、音高和音色是声音的基本属性。 内容由 AI 大模型生成,请仔细甄别。
2024-10-26
开源的,新一代的 tts 框架有哪些?
以下是一些开源的新一代 TTS 框架: 1. GPTSoVITS:这是一个声音克隆和文本到语音转换的开源 Python RAG 框架。只需 1 分钟语音即可训练一个自己的 TTS 模型,5 秒数据就能模仿,1 分钟的声音数据就能训练出高质量的 TTS 模型,完美克隆声音。它完美适配中文,具有零样本 TTS、少量样本训练、易于使用的界面、跨语言支持、适用于不同操作系统、提供预训练模型等特点。 2. ChatTTS:针对对话式任务进行了优化,实现自然流畅的语音合成,同时支持多说话人。能够预测和控制细粒度的韵律特征,包括笑声、停顿和插入词等。在韵律方面超越了大部分开源 TTS 模型,并提供预训练模型,但存在模型稳定性不足的问题。目前发布的模型版本中,情感控制仅限于笑声以及一些声音中断,作者计划在未来的版本中开源更多情感控制的功能。如今陆续出现了在线网站和本地增强整合包。 3. B 站 up“花儿不哭”大佬的开源项目 gptsovits 也被用于节目《马上封喉》的 TTS 中,只需 1 分钟的干声素材就可以实现惊艳的效果,甚至实现了 zeroshot(零样本),但单字和中英文混杂的词句效果还有待提高。
2024-08-23
移动设备下,可集成到 iOS/anrdroid 的 app 中 的 tts 框架有哪些?
目前常见的可集成到 iOS 和 Android 移动设备 App 中的 TTS(TexttoSpeech,文本转语音)框架有以下几种: 1. Google TexttoSpeech:在 Android 平台上较为常用,提供了多种语言和声音选择。 2. Apple 的 Speech Synthesis:专为 iOS 开发,具有高质量的语音合成效果。 3. Microsoft Azure Cognitive Services Speech:支持多种平台,包括 iOS 和 Android,提供丰富的语音选项和功能。 但具体选择哪种框架,还需要根据您的应用需求、开发技术栈以及预算等因素来综合考虑。
2024-08-23
用AI写公众号文章
利用 AI 写公众号文章的关键在于提供清晰且具有指导性的提示词(prompt): 1. 基本提示词能让 AI 生成基础文章,若想提升质量,可提供更详细、具创意的提示词,以更好地捕捉文章的语气、风格和重点。例如:“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。” 2. 提示词不仅为 AI 提供明确指导,还设定文章基本结构和内容要求,AI 会据此生成结构完整、内容丰富、观点鲜明的文章,但最终产出的内容可能需要微调,以符合预期和公众号风格。 3. 此外,还可通过以下方式利用 AI 辅助写作: 草拟各类初稿,如博客文章、论文、宣传材料等,只需给出提示。 将文本粘贴给 AI,要求其改进内容、提供针对特定受众的建议、创建不同风格的草稿、使内容更生动或添加例子等,以激发自己写出更好的作品。 让 AI 协助完成没时间做的任务,如写邮件、创建销售模板、提供商业计划的下一步等。 当在任务中遇到困难挑战而分心时,AI 能提供动力。
2024-11-21
想让ai帮我润色文章
以下是关于让 AI 帮您润色文章的相关内容: 常见的文章润色 AI 工具: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 使用 AI 润色文章的工作流程: 1. 先拆解流程,再引入 AI 工具。 2. 以 Claude3.5 为例,登录后打开 Artifacts 功能。 3. 进行 AI 润色词句,例如润色一段话,对于 Claude 3.5 不想要的输出部分可不采用。 4. 用同样的方法让 AI 打磨优化文章,注意润色词语和打磨优化全文使用同一个聊天窗口。 利用 AI 撰写行业调研报告的步骤: 1. 让 AI 阅读学习:一篇优秀的行业调研报告,总结方法论,输出研究方法和操作框架。 2. 问 AI:文章在收集行业数据时使用的一手和二手数据,推荐靠谱的行业资料收集网站。 3. 要求 AI:作为行业调研报告撰写专家,推荐行业信息网站和研究微信公众号,并输出行业调研报告框架。 4. 要求 AI:丰富框架每一章节内容,每章字数大于 200 字。 5. 让 AI 进一步完善章节内容,结合自身经验和知识进行润色调整。 使行业调研报告有深度的路径: 1. 自身对行业了解,整理深度洞察和见解。 2. 深度咨询 AI,借助其海量知识,边学习、边研究、边洞察总结。 操作示例可获取“kimi 对话原文”链接: 欢迎与 JessieZTalk 交流,在 AIGC 的路上共同进步!
2024-11-20
推荐些AI文章
以下为您推荐一些 AI 相关的文章: 《写给不会代码的你:20 分钟上手 Python + AI》 书籍推荐(新手入门): Python 方面:《Python 学习手册》《Python 编程》 AI 方面:《人类简史》(“认知革命”相关章节)、《深度学习实战》 课程&资源&信息推荐: B 站 up 主“PAPAYA 电脑教室”的 Python 入门课 Andrej Karpathy 关于大模型的讲解 油管地址:https://www.youtube.com/watch?v=zjkBMFhNj_g B 站地址:https://www.bilibili.com/video/BV1AU421o7ob AJ 和众多小伙伴们共创的资料库(飞书文档):🌈通往 AGI 之路 链接:https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e 《3.1 案例:AI 产品案例和投稿》 AI+教育相关: 书籍推荐:三本神经科学书籍 链接:https://waytoagi.feishu.cn/wiki/CKwHwwRvxi7LxTkpKsmc7s2PnFe?table=tblwdvsWICkId67f&view=vewm6DMY99&chunked=false AI 赋能教师全场景 作者:MQ 老师 链接:https://waytoagi.feishu.cn/wiki/MDxEwtzIfivcZ6kM8nEcHFPAnqe?table=tblZPbdb7NgLbxew&view=vewJuuzsne 未来教育的裂缝:如果教育跟不上 AI 作者:赛博禅心 链接:https://waytoagi.feishu.cn/wiki/ZqmpwkZA3iB5GNklO4mcirhhnKd 化学:使用大型语言模型进行自主化学研究 作者:乐谷说 文章地址:https://www.nature.com/articles/s41586023067920 链接:https://waytoagi.feishu.cn/wiki/JW9UwFYaEi2JhckNflecygdRnne
2024-11-20
哪一款 Ai 更适合,并有记忆功能,不需要每次都发历史文章。
目前大语言模型普遍没有记忆功能,每次发送消息都需要包含历史会话内容,否则无法记住之前的对话。会话累加过多时会超出最大上下文窗口长度,同时增加计算成本。为节省资源,AI 聊天应用会自动对历史会话进行摘要,仅保留最近内容。 不过,也有一些应用程序在这方面有所尝试和改进,例如 Rewind 是一款能够提高生产力的应用程序,可以浏览、搜索并询问关于手机上任何您看到的内容。它通过捕捉您在 Safari 中阅读的内容和导入您的截屏来工作,让您可以利用人工智能的力量向 Rewind 提问关于您看到的任何问题,包括为您进行总结。Lazy 也是一款不错的工具,上下文切换不会中断您的工作流程,能随时裁剪各种内容,保存文章等,音频和视频内容还会利用 AI 提取主要内容并展示。
2024-11-18
如何将历史写过的文章发给 Ai,训练生成写作风格
要将历史写过的文章发给 AI 以训练生成写作风格,可以参考以下步骤: 1. 首先,像安迪的做法一样,把过去写的多篇相关文章发给 AI。 2. 让 AI 总结这些文章的写作特点。 3. 根据 AI 总结的特点,编写出描述写作风格的提示词,从而克隆出自己的写作风格。 4. 未来使用这个风格时,先花 3 分钟时间让 AI 分别写多篇内容。 5. 从多篇内容中找到最符合心意的作品,并从其他作品中寻找好的段落。 6. 最后进行整合、修改、删减和润色,少则几分钟、十几分钟,多则半个小时就能完成一篇文章。 同时,就像夙愿提到的,找选题对于写作很重要。我们可以通过学习其他优秀公众号的文章,分析其选题思路、文章结构、表达方式等,不断训练自己的“写作模型”,但要注意不能照搬,而是要形成自己独特的风格。 另外,在写作过程中,“主体性”的介入也很关键。比如在使用 Prompt 生成公众号文章时,要先思考自己对写作的理解以及对特定主题写作风格的认知,这样写出来的 Prompt 才会有个人特色。日常也要注重基本功的积累,因为在表达“意象”时非常考验语言能力。
2024-11-18
我是一个大学生,现在需要快速了解一个领域的研究发展脉络,请推荐一个ai软件帮我推荐需要看的论文和总结文章大意
以下为您推荐几款可以帮助您修改医学课题、推荐相关论文并总结文章大意的 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,这些都能简化您的学术工作。网址:https://scite.ai/ 2. Scholarcy:这是一款科研神器,主要为做科研、学术、写论文的人准备。它可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。网址:https://www.scholarcy.com/ 3. ChatGPT:这是一个强大的自然语言处理模型,可以提供有关医学课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。网址:https://chat.openai.com/ 这些工具可以从不同的角度审视和改进您的医学课题,提供专业的修改意见和建议。您可以根据自己的具体需求选择合适的工具进行尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-18
如何画热力图,帮助我们分析数据相关系数
以下是关于如何画热力图来分析数据相关系数的步骤: 1. 完成前面的 MMM 运行步骤。 2. 进行关联性分析,可绘制热力图(颜色可自行调整)。 3. 计算相关性,注意在真实场景中,若出现负相关性,需考虑是否缩减投入或进行其他决策。 4. 模型流程主要在前几步,后面的可视化和其他分析自由度较高。 您可以在 Colab 上的部署地址(https://colab.research.google.com/drive/1vzMbUuGsaFHlnl9CKFXgxXn8aqWaw60I?usp=sharing)直接进行测试,并欢迎提出新的优化意见。
2024-11-22
coze相关资源在哪里
以下是关于 Coze 的相关资源: 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用字节自研的云雀大模型,国内网络可正常访问 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(访问需要突破网络限制的工具,参考文档:https://www.coze.com/docs/zh_cn/welcome.html) 学习资源: 此外,字节对 Coze 的官方解释为:Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可以在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。个人认为 Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。字节针对 Coze 这个产品部署了国内版和海外版两个站点。 AI Agent 的开发流程中,Bot 的开发和调试页面布局主要分为如下几个区块:提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。
2024-11-21
你现在是一个学习AI 方面的小白,你下定决心要去学习AI的相关知识。你应该从哪入手
对于决心学习 AI 相关知识的新手,建议从以下方面入手: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于不会代码的新手,若希望继续精进 AI 学习,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-19
ai+教育相关
以下是一些与“AI + 教育”相关的案例和内容: 学习:用 AI 做播客笔记,干货为主的播客可用此方式做笔记,还能顺便学英语。 教学:帮助学生做好组会准备,使用了 Claude + Gamma.app,Claude 能节省绝大部分时间。 医疗:蛋白质结构预测和蛋白质合成,用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质。 做调研:用这条 prompt,2 小时帮同学干完了 3 篇调研报告,先确定调研报告大纲目录。 做调研:用 ChatGPT 做调研,研究其如何帮助创建用户体验调查或其他调查。 书籍推荐:三本神经科学书籍,AI 是多学科交叉产物,基础学科知识能为运用 AI 打开新天地。 AI 赋能教师全场景,来自 MQ 老师的投稿贡献。 未来教育的裂缝:如果教育跟不上 AI,人工智能融入教育领域为教学模式带来颠覆性改变。 化学:使用大型语言模型进行自主化学研究。 医疗:健康生物制药的研究,AI 加速医疗健康生物制药研究,在抗癌等方面有重要作用。 AI 洞察:一线医生如何实际使用 ChatGPT,再现 ChatGPT 在美国一流医院的实际场景。 笔记:与 AI + 教育前辈聊天,让某人主动学习 AI 的有效方式是让其看到 AI 能高效完成手头工作。 数学:OpenAI 发表论文大幅提高 ChatGPT 的数学准确性。
2024-11-18
哪个AI比较擅长医学相关领域?
以下是一些在医学相关领域表现出色的 AI: 1. AlphaFold:由 DeepMind 开发,在蛋白质结构预测方面表现出色,其预测准确度超过其他系统,为科学家和药物开发提供了巨大帮助。 2. ESMFold(Meta 的蛋白质结构预测 AI 模型):截至目前已经进行了 7 亿次预测。 3. 多伦多大学研究人员开发的新 AI 系统:利用类似 Stable Diffusion、Midjourney 的生成扩散技术创造出自然界中不存在的蛋白质。 4. 华盛顿大学 David Baker 教授团队开发的 RF Diffusion:基于 DALLE 的人工智能系统,用于根据科学家的需求生成合适的蛋白质结构。 5. 洛桑联邦理工学院科学家们开发的 PeSTo:基于神经网络的新工具,可以预测蛋白质如何与其他物质相互作用,速度快、且通用性强。 6. Surrey 大学开发的人工智能系统:用于识别个体细胞中的蛋白质模式,这一进展可用于理解肿瘤的差异并开发药物。 此外,ChatGPT、Google Bard 等技术在日常工作生活中很有用,也极大加速了医疗健康生物制药的研究,AI 已经在抗癌、抗衰老、早期疾病防治(如提前三年诊断胰腺癌、帮助早期诊断帕金森等)、寻找阿尔兹海默症的治疗方法等方面起着重要作用。例如: 1. 两名高中生与医疗技术公司 Insilico Medicine 及其人工智能平台 PandaOmics 合作,发现了与胶质母细胞瘤相关的三个新靶基因,这些基因对于有效对抗这种癌症至关重要。 2. 由 Integrated Biosciences 领导的一项最新研究通过使用人工智能筛查了超过 800,000 种化合物,专家们发现了三种高效的药物候选物,其药理学性质优于目前已知的抗衰老物质。 3. 亚利桑那大学与哈佛大学共同利用人工智能对健康神经元在疾病进展过程中的分子变化研究,以识别阿尔茨海默病的原因和潜在药物靶点。 相关文献参考: 1. https://www.sciencedaily.com/releases/2023/05/230504121014.htm 2. https://www.wevolver.com/article/pestoanewaitoolforpredictingproteininteractions 3. https://www.sciencedirect.com/science/article/pii/S0958166923000514 4. https://hms.harvard.edu/news/aipredictsfuturepancreaticcancer 5. https://finance.yahoo.com/news/teenagegeniusesaiuncovercancer163541619.html 6. https://www.earth.com/news/artificialintelligenceidentifiesnewantiagingcompounds/ 7. https://medicalxpress.com/news/202305scientistsaidrugalzheimer.html
2024-11-17
有没有用Stata的最小二乘法处理相关的AI
目前在 AI 领域中,较少直接将 Stata 的最小二乘法与 AI 进行特定的结合应用。Stata 的最小二乘法主要用于传统的统计分析,而在 AI 中,更多采用的是基于机器学习和深度学习的算法和模型。但如果您是在处理某些与数据相关的任务,最小二乘法的原理和思路在一定程度上可能对您理解和设计 AI 中的数据处理方法有所帮助。
2024-11-16