直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

帮我撰写专利分析报告的ai有哪些

回答

以下是一些可用于撰写专利分析报告的 AI 工具和平台:

  1. 专利检索与分类:
    • Google Patents:使用 AI 技术帮助用户检索和分析专利文献。
    • IBM Watson for IP:利用 NLP 和机器学习技术,自动化地检索和分类专利文献,提高检索的准确性和效率。
  2. 专利分析和评估:
    • TurboPatent:使用 AI 技术进行专利文档的自动审查和分析,评估专利的授权可能性和潜在风险。
    • PatentBot:AI 驱动的平台,可以自动分析专利文本,评估专利的技术范围和创新性。
  3. 自动化专利申请:
    • Specifio:利用 AI 技术自动生成专利申请文件,包括专利说明书和权利要求书,提高专利申请的效率。
    • PatentPal:使用 AI 技术自动生成和编辑专利申请文件,减少人工工作量。
  4. 专利图像和图表分析:
    • Aulive:利用 AI 技术分析专利中的图像和图表,自动识别技术内容和创新点。
    • AI-powered image recognition tools:用于专利文献中的图像识别和分析,提高图像处理的效率和准确性。
  5. 专利趋势分析和预测:
    • Innography:利用 AI 技术分析专利数据,提供技术趋势分析和竞争情报。
    • PatSnap:AI 驱动的平台,分析专利数据和技术趋势,提供全面的专利情报和市场分析。

使用这些平台的一般步骤如下:

  1. 注册和登录:在对应的平台上注册账户并登录。
  2. 上传专利文献:上传待审查的专利文献或输入检索关键词。
  3. 选择分析功能:根据需要选择专利检索、分析、评估或生成功能。
  4. 查看结果和报告:查看 AI 生成的检索结果、分析报告和评估结果。
  5. 进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件。

需要注意的是,AI 技术在专利审查领域的应用,可以极大地提高工作效率,减少人工工作量,提高专利检索、分类和分析的准确性和效率。但在使用时,仍需仔细甄别结果。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:有没有专利审查方面的AI ?

AI可以帮助进行高效的专利检索和分类,通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。[heading4]示例平台:[content]Google Patents:使用AI技术帮助用户检索和分析专利文献。IBM Watson for IP:利用NLP和机器学习技术,自动化地检索和分类专利文献,提高检索的准确性和效率。[heading3]2.专利分析和评估[content]AI可以分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。[heading4]示例平台:[content]TurboPatent:使用AI技术进行专利文档的自动审查和分析,评估专利的授权可能性和潜在风险。PatentBot:AI驱动的平台,可以自动分析专利文本,评估专利的技术范围和创新性。[heading3]3.自动化专利申请[content]AI可以帮助自动生成专利申请文件,减少人工编写和审查时间。[heading4]示例平台:[content]Specifio:利用AI技术自动生成专利申请文件,包括专利说明书和权利要求书,提高专利申请的效率。PatentPal:使用AI技术自动生成和编辑专利申请文件,减少人工工作量。[heading3]4.专利图像和图表分析[content]AI可以分析专利申请中的图像和图表,帮助识别和分类技术内容。[heading4]示例平台:[content]Aulive:利用AI技术分析专利中的图像和图表,自动识别技术内容和创新点。AI-powered image recognition tools:用于专利文献中的图像识别和分析,提高图像处理的效率和准确性。

问:有没有专利审查方面的AI ?

AI可以分析大量的专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。[heading4]示例平台:[content]Innography:利用AI技术分析专利数据,提供技术趋势分析和竞争情报。PatSnap:AI驱动的平台,分析专利数据和技术趋势,提供全面的专利情报和市场分析。[heading3]具体AI应用示例[heading4]1.Google Patents[content]功能:Google Patents使用AI技术进行专利文献的全文检索和分析。通过机器学习算法,系统可以理解专利文献的内容,并提供相关性更高的检索结果。优点:提高了专利检索的准确性和效率,用户可以快速找到相关的专利文献。[heading4]2.IBM Watson for IP[content]功能:IBM Watson for IP利用NLP和机器学习技术,自动化地进行专利检索、分类和分析。系统可以自动提取专利文献中的关键信息,并对专利的技术内容进行分类和评估。优点:减少了人工工作量,提高了专利审查的效率和准确性。[heading3]如何使用这些平台[content]1.注册和登录:在对应的平台上注册账户并登录。2.上传专利文献:上传待审查的专利文献或输入检索关键词。3.选择分析功能:根据需要选择专利检索、分析、评估或生成功能。4.查看结果和报告:查看AI生成的检索结果、分析报告和评估结果。5.进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件。[heading3]总结[content]AI技术在专利审查领域的应用,可以极大地提高工作效率,减少人工工作量,提高专利检索、分类和分析的准确性和效率。上述平台和工具展示了AI在专利审查各个环节的具体应用,帮助专利审查员和申请人更高效地处理专利相关事务。内容由AI大模型生成,请仔细甄别。

问:有没有论文写作的 AI 产品?

[title]问:有没有论文写作的AI产品?在论文写作领域,AI技术的应用正在迅速发展,提供了从文献搜索、内容生成、语言润色到数据分析等多方面的辅助。以下是一些论文写作中常用的AI工具和平台:1.文献管理和搜索:Zotero:结合AI技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。Semantic Scholar:一个由AI驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。2.内容生成和辅助写作:Grammarly:通过AI技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。Quillbot:一个基于AI的重写和摘要工具,可以帮助研究人员精简和优化论文内容。3.研究和数据分析:Google Colab:提供基于云的Jupyter笔记本环境,支持AI和机器学习研究,便于进行数据分析和可视化。Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。4.论文结构和格式:LaTeX:虽然不是纯粹的AI工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。Overleaf:一个在线LaTeX编辑器,提供丰富的模板库和协作功能,简化论文编写过程。5.研究伦理和抄袭检测:Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。这些工具可以帮助研究人员和写作者在写作过程中克服各种挑战,从提高语言质量到激发创意,再到引用文献和抄袭检测。使用这些工具时,重要的是要结合自己的写作风格和需求,选择最合适的辅助工具。内容由AI大模型生成,请仔细甄别。

其他人在问
我想用好电商人的ai从中找出自己的一份创业之路
以下是一些与电商相关的 AI 创业案例和方向,或许能为您的创业之路提供参考: 1. 创业:从零开始创立公司 给大家带来绝佳的 Prompt 以及用 ChatGPT 创立完整 SaaS 公司的流程。 详情可前往: 入库时间:2023/11/13 2. 课程:如何做一门课程 涵盖市场调研、在线网络课程、教学平台、社交媒体营销、子主题、细分领域、课程大纲、章节、推广渠道、课程脚本、文案基本要素、案例、具体方法等方面。 详情可前往: 入库时间:2023/11/13 3. 电商:带货本地生活 AI 数字人上岗,带货本地生活电商,一个月多赚 3 万。 详情可前往: 入库时间:2023/11/13 4. 电商:婴儿的四维彩超 AI 预测 大白话就是通过 AI 工具,提前把宝宝的四维彩超还原出现实中模样进行变现。 详情可前往: 入库时间:2023/11/13 5. 电商:小红书 AI 绘画变现 Ai 绘画火了好几个月了,目前变现的方式很多,分享小红书最火的三种 ai 绘画类的商品。 详情可前往: 入库时间:2023/11/13
2024-10-31
AI学英语工具推荐
以下是为您推荐的一些有助于学习英语的 AI 工具: 1. LingoDeer:这是一款使用游戏和互动活动来教孩子英语的应用程序。它提供各种课程,涵盖从字母和数字到更高级的语法和词汇。还具有家长仪表板,方便跟踪孩子的进度并设置学习目标。 2. Busuu:另一个流行的语言学习应用程序,提供英语和其他多种语言的课程。使用各种教学方法,包括音频课程、视频课程和互动练习。具有社区功能,可让孩子与来自世界各地的其他孩子练习英语口语。 3. Memrise:使用抽认卡和游戏来教孩子英语,提供各种课程,涵盖从基本词汇到更高级的会话技巧。具有社交功能,可让孩子与朋友和家人一起学习。 4. Rosetta Stone:语言学习程序,使用沉浸式方法教孩子英语,让孩子在自然环境中使用英语,而非通过语法规则和词汇表。具有语音识别功能,帮助孩子练习发音。 5. Duolingo:免费的语言学习应用程序,提供英语和其他多种语言的课程。使用游戏化方法让学习变得有趣,提供各种课程,帮助孩子保持参与度。 如果您想求职外企,提升英语口语能力,以下 AI 工具可供选择: 1. Speak:AI 英语学习 APP,利用世界最先进的 AI 语言学习技术,提供全面的实时反馈,提供个性化学习体验,方便随时随地练习口语。 2. Duolingo:提供游戏化的学习平台,通过 AI 辅助的教学方法,帮助学习新词汇和短语,其口语练习功能有助于练习发音和口语表达。 3. Call Annie:在发音过程中能根据发言调整表情和动作,让人感觉仿佛在和真人对话。可以随时通过视频或语音进行英语对话,是练习英语口语的好帮手。 使用这些工具时,建议结合实际的对话练习,如参与语言交换、加入英语学习小组或与母语为英语的人进行对话,同时定期复习和持续实践对于提高口语能力至关重要。
2024-10-31
AI学英语
以下是关于如何用 AI 学英语的方法和建议: 智能辅助工具: 利用 AI 写作助手如 Grammarly 进行英语写作和语法纠错,有助于改进英语表达和写作能力。 语音识别和发音练习: 使用语音识别应用如 Call Annie 进行口语练习和发音纠正,AI 能提供实时反馈和建议。 自适应学习平台: 使用自适应学习平台如 Duolingo,其利用 AI 技术为您量身定制学习计划,提供个性化的英语学习内容和练习。 智能导师和对话机器人: 利用智能对话机器人如 ChatGPT 进行英语会话练习和对话模拟,可提高交流能力和语感。 设定目标: 明确学习目标和时间表,分阶段完成学习任务。 多样化练习: 结合听、说、读、写多种方式进行练习,全面提升语言技能。 模拟真实环境: 尽量多与母语者交流,或使用 AI 对话助手模拟真实对话场景。 定期复习: 使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 此外,还需注意: 学英语要根据个人的目的和需求来选择合适的方法和工具。比如是为了跨语言交流、应试、工作,还是获取信息、理解文化,不同目的的学习必要性和路径都有所不同。 多邻国在激励反馈方面表现出色,能让人坚持,但产品形式和内容更适合于 B2 以下水平。 Call Annie 或 PI 练口语存在一些问题,如学习反馈不足(纠音、语法纠错等),对话偏正式、不够口语化,难找到可持续交流的话题。 目前的 AI 口语练习工具只是 AI buddy,想发展成 AI tutor 可能需要半年以上时间。 英语学习最重点的是“有效输入”,然后是理解后输出。可以尝试不开字幕听感兴趣的优质播客,如 Lex Fridman 等,每天熟读并背诵一篇 100 字短文。
2024-10-31
什么网站可以输入word文档,AI生成简历
以下是一些可以输入 word 文档并由 AI 生成简历的网站: 1. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的各个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。 以上工具都能帮助您快速、高效地创建出专业的简历,您可以根据自身需要选择最适合的工具。
2024-10-31
免费创建网站的AI有哪些
以下是一些免费创建网站的 AI 工具: 1. 10Web 2. Framer 3. Hostinger 4. Landingsite 在选择合适的 AI 网站制作工具时,您可以考虑以下因素: 1. 目标和需求:确定您的网站目标(例如个人博客、商业网站、在线商店)和功能需求。 2. 预算:有些工具提供免费计划或试用版,但高级功能可能需要付费订阅。 3. 易用性:选择一个符合您技术水平的工具,确保您能够轻松使用和管理网站。 4. 自定义选项:检查工具是否提供足够的自定义选项,以满足您的设计和功能需求。 5. 支持和资源:查看是否有足够的客户支持和学习资源(如教程、社区论坛),帮助您解决问题。 通过这些 AI 驱动的工具,您可以更轻松地创建和管理一个功能丰富、外观专业的网站。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-10-31
可以推薦我市面上最好、CP值最高的三個AI課程嗎?
以下为您推荐野菩萨的 AI 课程,它具有丰富的内容和免费课程机会: 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影穿越的大门等内容。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 如果您想要免费获得这门课程,可以来参与 video battle,每期的评委野菩萨老师都非常严格,需要寓意深度审美并存。冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。 人字头企业,讲究社会责任。无论您是 AI 小白还是深入学习者,这门课程都能给您带来帮助。扫码添加菩萨老师助理,了解更多课程信息。让我们一起在“通往 AGI 之路”社区学习成长,探索 AI 的无限可能。
2024-10-31
有没有自动生成专利申请文件的平台
以下是一些可以自动生成专利申请文件的平台: 1. Specifio:利用 AI 技术自动生成专利申请文件,包括专利说明书和权利要求书,能提高专利申请的效率。 2. PatentPal:使用 AI 技术自动生成和编辑专利申请文件,可减少人工工作量。 在专利小助手中,还有以下插件可用于相关工作: 1. Kimi:可以用于自动生成专利申请文档的草稿、摘要或专利描述,提高文档撰写效率。 2. TreeMind 树图:可以用来创建专利结构的思维导图,帮助用户理解专利的组成部分和它们之间的关系。 3. ProcessOn 流程图:可以用于设计和展示专利申请和管理的详细流程,帮助用户理解每一步的操作和所需材料。 4. Word 文档:可以用来处理专利申请文件、专利描述、权利要求书等文档。 使用这些平台通常需要以下步骤: 1. 注册和登录:在对应的平台上注册账户并登录。 2. 上传专利文献:上传待审查的专利文献或输入检索关键词。 3. 选择分析功能:根据需要选择专利检索、分析、评估或生成功能。 4. 查看结果和报告:查看 AI 生成的检索结果、分析报告和评估结果。 5. 进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件。
2024-09-18
我想通过AI快速生成专利
以下是关于通过 AI 快速生成专利的相关信息: 专利审查方面的 AI 使用步骤: 1. 注册和登录:在对应的平台上注册账户并登录。 2. 上传专利文献:上传待审查的专利文献或输入检索关键词。 3. 选择分析功能:根据需要选择专利检索、分析、评估或生成功能。 4. 查看结果和报告:查看 AI 生成的检索结果、分析报告和评估结果。 5. 进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件。 自动化专利申请的示例平台: 1. Specifio:利用 AI 技术自动生成专利申请文件,包括专利说明书和权利要求书,提高专利申请的效率。 2. PatentPal:使用 AI 技术自动生成和编辑专利申请文件,减少人工工作量。 专利检索与分类:AI 可以帮助进行高效的专利检索和分类,通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。
2024-09-18
帮助专利搜索的ai
以下是关于帮助专利搜索的 AI 的相关信息: AI 可以在专利检索与分类方面提供帮助,通过自然语言处理(NLP)和机器学习算法,能够自动识别和分类专利文献。 在具体的示例平台方面,有 Google Patents 和 IBM Watson for IP。Google Patents 使用 AI 技术帮助用户检索和分析专利文献,其功能在于通过机器学习算法进行专利文献的全文检索和分析,理解专利文献的内容,并提供相关性更高的检索结果,优点是提高了专利检索的准确性和效率,使用户可以快速找到相关的专利文献。IBM Watson for IP 则利用 NLP 和机器学习技术,自动化地检索和分类专利文献,提高检索的准确性和效率。
2024-09-13
用什么AI工具能帮助撰写专利
以下是一些能帮助撰写专利的 AI 工具: 1. 专利检索与分类:AI 可以通过自然语言处理(NLP)和机器学习算法,帮助进行高效的专利检索和分类,自动识别和分类专利文献。 2. 专利图像和图表分析: Aulive:利用 AI 技术分析专利中的图像和图表,自动识别技术内容和创新点。 AIpowered image recognition tools:用于专利文献中的图像识别和分析,提高图像处理的效率和准确性。 使用这些平台的步骤如下: 1. 注册和登录:在对应的平台上注册账户并登录。 2. 上传专利文献:上传待审查的专利文献或输入检索关键词。 3. 选择分析功能:根据需要选择专利检索、分析、评估或生成功能。 4. 查看结果和报告:查看 AI 生成的检索结果、分析报告和评估结果。 5. 进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件。
2024-09-06
怎么让AI写一段python代码,实现专利状态自动更新
目前没有关于如何让 AI 写一段实现专利状态自动更新的 Python 代码的相关内容。但一般来说,要实现这样的功能,您需要明确以下几个步骤: 1. 确定获取专利状态的数据源,例如相关的数据库或 API 接口。 2. 设计数据处理和更新的逻辑,包括数据的提取、转换和存储。 3. 利用 Python 的相关库和技术,如数据库操作库(如 MySQLdb、sqlite3 等)、网络请求库(如 requests 等)来实现与数据源的交互和数据处理。 由于缺乏具体的细节和需求,以上只是一个大致的思路,您可以根据实际情况进一步细化和完善。
2024-08-29
如何用AI搜索专利
以下是关于如何用 AI 搜索专利的详细介绍: AI 能够在专利检索与分类方面提供高效的帮助。它通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。 在专利检索与分类方面,有以下示例平台: 1. Google Patents:运用 AI 技术协助用户检索和分析专利文献。 2. IBM Watson for IP:借助 NLP 和机器学习技术,能够自动化地检索和分类专利文献,显著提高检索的准确性和效率。 使用这些平台的步骤如下: 1. 注册和登录:在对应的平台上注册账户并完成登录。 2. 上传专利文献:将待审查的专利文献上传,或者输入检索关键词。 3. 选择分析功能:根据自身需求,选取专利检索、分析、评估或生成等功能。 4. 查看结果和报告:查看 AI 生成的检索结果、分析报告以及评估结果。 5. 进一步处理:依据分析结果进行后续的人工审查和处理操作,或者直接生成专利申请文件。
2024-07-18
你好我需要一个AI对话总结撰写文字的AI,要求必须超长文本理解,文笔很棒
以下为您推荐两款具备超长文本理解能力且文笔不错的 AI 对话产品: 1. Kimi: 显著特点是拥有超长上下文能力,最初支持 20 万字上下文,现已提升至 200 万字。对于处理长文本或大量信息的任务具有巨大优势,能帮助从事文案工作、处理大量文字或文件的用户更有效地处理和分析信息,提高工作效率,对需要长期记忆或参考大量背景信息的任务尤其有用。 不足之处在于文字生成和语义理解、文字生成质量方面可能不如国内其他产品好,且不支持用户自定义智能体。但仍推荐给刚入门 AI 的朋友。 2. 智谱清言: 其背后的技术源自清华大学研发团队的科研成果转化,模型质量出色。 产品设计对标 ChatGPT,努力打造类似用户体验,是国内首批开放智能体应用的公司之一,在智能体开发和模型优化方面积累了丰富经验和技术,在逻辑推理和处理复杂提示词方面表现出明显优势,处理需要深度思考和分析的任务时表现出色。
2024-10-24
如果我需要撰写一个以“AI对音乐行业就业岗位的影响”为主题的约3000字的科普类文章,我应该优先关注WaytoAGI 知识库中的哪些内容?
很抱歉,目前“通往 AGI 之路”知识库中没有与“AI 对音乐行业就业岗位的影响”相关的直接内容。但您可以从以下几个方面入手来撰写这篇文章: 1. 了解 AI 在音乐创作、制作、表演等方面的应用现状和发展趋势。 2. 研究 AI 技术如何改变音乐的生产流程和效率。 3. 分析 AI 对音乐创作者、演奏者、制作人等不同岗位的具体影响,包括可能的岗位替代和新岗位的产生。 4. 探讨 AI 带来的音乐版权和知识产权问题,以及对相关法律和政策的影响。 5. 关注音乐消费者对 AI 参与音乐创作和表演的接受程度和需求变化。
2024-10-19
根据我的论文主题撰写一段引言:《通用人工智能时代的博弈论应用:数据科学与决策价值》
在当今科技飞速发展的时代,通用人工智能(AGI)的崛起正以前所未有的态势改变着我们的生活和社会。随着数据量的爆炸式增长以及决策环境的日益复杂,博弈论作为一门研究决策主体相互作用时的策略选择及均衡问题的学科,在通用人工智能时代展现出了独特的应用价值。 在数据科学领域,海量的数据为我们提供了丰富的信息,但如何从这些数据中提取有价值的知识并做出明智的决策,成为了一个关键挑战。博弈论的引入为解决这一问题提供了新的思路和方法。它帮助我们理解不同数据主体之间的竞争与合作关系,从而优化数据的采集、处理和分析过程。 在决策价值方面,通用人工智能系统需要在复杂多变的环境中做出最优决策。博弈论通过对不同策略的收益和风险进行分析,为决策提供了理论依据和数学模型,使得决策更加科学、合理和高效。 综上所述,研究通用人工智能时代的博弈论应用,对于推动数据科学的发展以及提升决策的价值具有重要的理论和实践意义。
2024-09-28
根据我的论文题目撰写一段引言,要求达到人文社科的极高水准:《通用人工智能时代的博弈论应用:数据科学与决策价值》
在当今科技飞速发展的时代,通用人工智能正以前所未有的态势重塑着我们的生活和社会格局。在这一宏大背景下,博弈论的应用成为了一个引人瞩目的焦点。数据科学的崛起为我们提供了海量且复杂的数据资源,而如何从这些数据中挖掘出有价值的信息,并将其转化为明智的决策,成为了摆在我们面前的关键问题。博弈论,作为一门研究决策主体相互作用时的策略选择和均衡结果的学科,为我们在通用人工智能时代的决策过程提供了深刻的理论基础和实用的分析工具。它不仅能够帮助我们理解个体和群体在复杂环境中的行为模式,还能够预测和优化决策结果,从而实现决策价值的最大化。因此,深入探讨通用人工智能时代中博弈论在数据科学与决策价值方面的应用,具有极其重要的理论意义和现实价值。
2024-09-28
爆款文案标题撰写prompt
以下是关于爆款文案标题撰写 prompt 的相关内容: 一般来说,写出好的内容创作 prompt 关键在于教 GPT 创作的方法论,即“know how”。比如让 GPT 创作视频标题时,不能简单写“帮我写爆款视频的标题”,而要提供创作标题的方法论/技巧,如运用的修辞手法、写作人称、语言风格、内容结构等。不知道有哪些方法论和技巧时,可以找对标账号的标题拆解、模仿。 示例:“创建关于{插入主题}的headlines about{Insert Topic}.The headlines should be eyecatching,punchy,and memorable." AI 生产文章关键在于提供清晰且具指导性的提示词。基本提示词能生成基础文章,更详细、具创意的提示词能提升文章质量。例如:“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”这样的提示词能为 AI 提供明确指导和设定文章基本结构、内容要求,生成的文章可能需要微调以符合预期和公众号风格。
2024-09-27
你能帮我找到这篇报告吗?他的名字是《InfoQ:中国AI Agent应用研究报告2024》
以下是为您找到的《InfoQ:中国 AI Agent 应用研究报告 2024》的链接:https://waytoagi.feishu.cn/record/Y45LrXJiwe4SgYc5tMZcVVtqn6b
2024-10-31
《2024大模型人才报告》
以下是与您查询的相关报告: 2024 年 9 月 10 日: 《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案。报告提出了一个系统化的可信应用框架,强调了专业性、可控性、真实性和安全性四个核心要素,并从数据质量、模型能力、推理过程、系统安全等方面提供了具体的技术实现建议。 《》 《》 《》 《》 2024 年 7 月 10 日: 极客邦科技通过《》报告深入探讨 AIGC 技术在企业中的应用,提供实战经验和趋势洞察。这份报告集合了多篇文章和案例,覆盖互联网产品、企业生产、医疗、教育等行业,展现大模型应用潜力。 《》 《》 《》 《》 2024 年 9 月 18 日: 《》探讨了 AI 技术,尤其是大模型技术对劳动力市场的影响。 《》探讨了 AI 技术在营销领域的应用现状和发展趋势。 《》 《》 您可以通过相应的链接获取更详细的内容。
2024-10-29
Ai上中下游报告
以下是为您提供的关于 AI 上中下游的相关报告内容: 2024 年人工智能发展状况: 在上一届 SOAI 发布后不久,斯坦福大学发布了其首个基础模型透明度指数。模型开发者的平均得分起初为 37 分,中期更新时攀升至 58 分。2024 年 5 月的最新一期基于 100 项指标,评估了 14 家领先的基础模型开发者的透明度,涵盖“上游”因素数据、劳动力、计算、“模型级”因素(围绕能力和风险)、“下游”标准(围绕分布)以及社会影响。其中,计算和使用政策的评分改善强劲,而“上游”评分仍较疲弱。 AI 产业的产业链结构: 大致分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。对于上中下游分别有哪些值得重点关注的企业(或产品),经过大量的信息收集和汇总工作,并结合几家知名咨询机构的文档,绘制了相关图谱,但为避免广告嫌疑,未展开详细说明。 生成式 AI 季度数据报告(2024 年 1 3 月): 经讨论,根据 a16z 榜单重新整理分类,从原有红杉模态分类改为从用户特性出发的分类,如生产力、社交、教育、创意内容等。部分赛道如 LLM 基础设施/开发者生态、垂类分类、Agent 赛道等的热度参考存在局限性。同时提到了一些相关的公众号,如 aiwatch.ai 等。
2024-10-29
AI 分析调查结果并生成洞察报告
以下是关于 AI 分析调查结果并生成洞察报告的相关内容: User Evaluation: 这是一个利用人工智能(AI)来提升用户研究和数据分析的工具。 功能特点包括: AI 驱动的转录:支持 57 种以上语言的转录功能,能够即时转录视频和音频内容。 AI 洞察:从数据中快速生成有用的洞察,每个洞察都附有数据来源。 集合管理:使用直观的看板(Kanban)板来组织和分享洞察,添加标签和笔记。 AI 生成报告:生成包含文本、表格和图表的行为分析报告等。 AI 生成演示文稿:一键生成包含 AI 洞察和数据可视化的 PPTX 演示文稿。 多样化数据源:分析来自音频、视频、文本或 CSV 文件的信息以改进产品用户体验。 洞察模板:提供多种洞察模板,帮助提取最有价值的数据洞察。 情感分析:解释音频和视频文件中的客户情感,识别情绪趋势以优化策略。 FeaturesVote: 这是一个帮助企业通过用户反馈来驱动产品增长的工具。 主要功能有: 用户投票板:用户可以发布和投票他们希望看到的功能,企业可以根据投票结果优先开发这些功能。 快速设置:只需 2 分钟即可完成设置,并提供免费计划。 无缝集成:可以将投票小部件无缝添加到应用中,用户无需再次登录即可发布和投票,减少摩擦并增加反馈。 定制化:支持内置的浅色/深色模式,用户识别和配置。 透明度和信任:通过展示不断交付和构建用户需要的功能来增加用户信任和留存率。 中小企业利用人工智能(AI)进行转型: 在数据驱动决策方面,特别是数据分析和洞察部分: 目标是通过使用人工智能(AI)工具来分析大量的客户和市场数据,为企业决策提供有力支持。 首先,利用 AI 工具分析客户数据、市场数据,深入理解客户行为、市场趋势和业务机会。根据企业需求选择能处理大数据并提供深度分析的工具,如数据挖掘、机器学习模型等。收集不同渠道数据,进行分析,识别模式、趋势和相关性。 其次,为营销、产品开发等部门提供基于数据的建议和指导。利用数据分析结果指导企业策略,如市场定位、产品优化等。理解 AI 分析提供的洞察和建议,将其转化为实际业务策略。与相关部门紧密合作,确保数据洞察被有效利用。基于数据洞察制定或调整策略,实施后持续监控效果并收集数据,反馈到 AI 分析中形成闭环,不断优化数据分析和业务决策。 邬嘉文:AI 做用户研究|Claude 3 Opus 可以直接输出用户研究报告: 报告范例中包含了优势和劣势的相关内容及对应的频次。例如优势方面,高质量显示被提及 44 次等;劣势方面,兼容性问题被提及 68 次等。同时提到 GPT 有一定幻觉问题。
2024-10-29
可以实现测试用例设计、测试脚本、测试执行、测试报告 的AI 有哪些?
以下是一些可以实现测试用例设计、测试脚本、测试执行和测试报告的 AI 工具和方法: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 相关工具和平台: Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。
2024-10-24
LLM解决方案报告
以下是关于 LLM 解决方案的相关内容: 对抗性提示的防御策略:可利用 LLM 检测对抗提示并过滤,如 Armstrong 和 Gorman(2022)提出的方案,需先定义提示评估器,已准备相关笔记本供尝试。 Apple Intelligence 中智能应用的提示词:包括帮助回复邮件的提示词和总结邮件的提示词,其中 Apple 解决 LLM 幻觉问题的方式是在提示词中加“Do not hallucinate”,其效果存疑。 LLM 应用程序的新兴架构:原文地址为 https://a16z.com/2023/06/20/emergingarchitecturesforllmapplications/,发表于 2023 年 6 月 20 日。文中分享了新兴 LLM 应用程序堆栈的参考架构,此工作基于与相关人员的对话。
2024-10-21