直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

sora模型不同于其他同类模型的优势

回答

Sora 模型不同于其他同类模型的优势主要体现在以下几个方面:

  1. 视频生成能力:能够根据文本提示生成长达 1 分钟的高质量视频,而早期模型通常只能生成短视频片段。生成的长视频具有高视觉质量和引人入胜的视觉连贯性,从第一帧到最后一帧有良好的视觉一致性。
  2. 处理复杂指令:展示了准确解释和执行复杂人类指令的显著能力,能生成包含多个执行特定动作的角色以及复杂背景的详细场景。
  3. 数据预处理:能够在原始尺寸上训练、理解和生成视频及图像,拥抱视觉数据的多样性,在从宽屏 1920x1080p 视频到竖屏 1080x1920p 视频以及之间的任何格式上采样,而不会损害原始尺寸。在原始尺寸上训练数据显著改善了生成视频的构图和框架,实现更自然和连贯的视觉叙事。
  4. 符合规模化定律:作为大型视觉模型,符合规模化原则,揭示了文本到视频生成中的几种新兴能力,是第一个展示确认新兴能力的视觉模型,标志着计算机视觉领域的一个重要里程碑。此外,还展示了包括遵循指令、视觉提示工程和视频理解等显著能力。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

[title]Sora:大型视觉模型的背景、技术、局限性和机遇综述【官方论文】[heading1]1引言自从2022年11月ChatGPT发布以来,人工智能技术的出现标志着一个重大的转变,重塑了交互方式,并深入融入日常生活和行业的各个方面[1,2]。基于这一势头,OpenAI在2024年2月发布了Sora,一个文本到视频的生成式AI模型,能够根据文本提示生成现实或想象场景的视频。与之前的视频生成模型相比,Sora的特点是能够在遵循用户文本指令的同时,生成长达1分钟的高质量视频[3]。Sora的进步体现了长期以来人工智能研究任务的实质,即赋予AI系统(或AI代理)理解和与运动中的物理世界互动的能力。这涉及到开发不仅能解释复杂用户指令,而且能将这种理解应用于通过动态和富有上下文的模拟解决现实世界问题的AI模型。图2:Sora在文本到视频生成中的示例。文本指令被给予OpenAI Sora模型,它根据指令生成三个视频。Sora展示了准确解释和执行复杂人类指令的显著能力,如图2所示。该模型能生成包含多个执行特定动作的角色以及复杂背景的详细场景。研究人员将Sora的熟练程度归因于不仅处理用户生成的文本提示,而且还能辨别场景内元素之间复杂的相互作用。Sora最引人注目的方面之一是其生成长达一分钟的视频的能力,同时保持高视觉质量和引人入胜的视觉连贯性。与只能生成短视频片段的早期模型不同,Sora的一分钟长视频创作具有进展感和从第一帧到最后一帧的视觉一致性之旅。此外,Sora的进步在于其生成具有细腻运动和互动描绘的扩展视频序列的能力,克服了早期视频生成模型所特有的短片段和简单视觉呈现的限制。这一能力代表了AI驱动创意工具向前的一大步,允许用户将文本叙述转换为丰富的视觉故事。总的来说,这些进步展示了Sora作为世界模拟器的潜力,为描绘场景的物理和上下文动态提供了细腻的见解。[3]。

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

[title]Sora:大型视觉模型的背景、技术、局限性和机遇综述【官方论文】[heading1]3技术[heading2]3.2数据预处理[heading3]3.2.1变化的持续时间、分辨率、宽高比Sora的一个区别特征是其能够在原始尺寸上训练、理解和生成视频及图像,如图5所示。传统方法通常会调整视频的大小、裁剪或调整宽高比,以适应一个统一标准——通常是以固定低分辨率的正方形帧的短片段[27][28][29]。这些样本通常在更宽的时间跨度上生成,并依赖于分别训练的帧插入和分辨率渲染模型作为最后一步,这在视频中造成了不一致性。利用扩散变换器架构[4](见3.2.4节),Sora是第一个拥抱视觉数据多样性的模型,并且可以在从宽屏1920x1080p视频到竖屏1080x1920p视频以及之间的任何格式上采样,而不会损害它们的原始尺寸。图5:Sora可以生成从1920x1080p到1080x1920p及其间任何尺寸或分辨率的图像。图6:Sora(右)与一个修改版的模型(左)之间的比较,后者将视频裁剪成正方形——这是模型训练中的一种常见做法——凸显了优势。在原始尺寸上训练数据显著改善了生成视频的构图和框架。经验发现,通过保持原始宽高比,Sora实现了更自然和连贯的视觉叙事。如图6所示,Sora与一个在统一裁剪的正方形视频上训练的模型之间的比较展示了明显的优势。Sora生成的视频展示了更好的框架,确保场景中完全捕捉到了主体,与正方形裁剪导致的有时被截断的视图相反。

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

视觉模型的规模化定律。有了LLMs的规模化定律,自然会问视觉模型的发展是否遵循类似的规模化定律。最近,Zhai等人[24]展示了,有足够训练数据的ViT模型的性能-计算前沿大致遵循(饱和)幂律。继他们之后,谷歌研究[25]提出了一种高效稳定训练22B参数ViT的方法。结果显示,使用冻结模型产生嵌入,然后在顶部训练薄层可以实现出色的性能。Sora作为一个大型视觉模型(LVM),符合这些规模化原则,揭示了文本到视频生成中的几种新兴能力。这一重大进展强调了LVMs实现类似LLMs所见进步的潜力。新兴能力。LLMs中的新兴能力是在某些规模上——通常与模型参数的大小有关——表现出的复杂行为或功能,这些行为或功能并未被开发者明确编程或预期。这些能力被称为“新兴”,因为它们源于模型在多样化数据集上的全面训练,以及其庞大的参数数量。这种组合使模型能够形成联系并做出超越简单模式识别或死记硬背的推断。通常,这些能力的出现不能通过从小规模模型的性能外推来直接预测。虽然许多LLMs,如ChatGPT和GPT-4,展示了新兴能力,但直到Sora的出现,展示类似能力的视觉模型还很少。根据Sora的技术报告,它是第一个展示确认新兴能力的视觉模型,标志着计算机视觉领域的一个重要里程碑。除了其新兴能力,Sora还展示了其他显著能力,包括遵循指令、视觉提示工程和视频理解。Sora的这些功能方面代表了视觉领域的重大进步,并将在后续部分进行探讨和讨论。

其他人在问
如何能让大模型自动读取到微信上的聊天内容。
要让大模型自动读取到微信上的聊天内容,可以参考以下几种方法: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,并可白嫖大模型接口。 2. 搭建,这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,最后回答问题。若不想接入微信,搭建完成即可使用其问答界面。 3. 搭建,其中的cow插件能进行文件总结、MJ绘画等。 此外,还有作者张梦飞的方法,即把自己微信中的聊天记录导出,用自己的聊天记录去微调一个模型,最终将这个微调后的模型接入微信中替您回复消息。 另外,在创作方面,鉴于聊天记录属于绝对的个人隐私,不适合接入第三方大模型提取信息,可本地化部署LLM。例如采用百川2的国产大模型开源,如Baichuan2作为底模,先用提示工程对聊天记录进行信息提取,并在此基础上使用自有数据进行模型微调。
2024-10-31
大模型下的数据生产和应用
大模型下的数据生产和应用主要包括以下方面: 整体架构: 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 数据层:包括企业根据自身特性维护的静态知识库和动态的三方数据集。 模型层:如 LLm(大语言模型),一般使用 Transformer 算法实现,还有多模态模型,如文生图、图生图等,其训练数据与 LLm 不同,为图文或声音等多模态数据集。 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用间的组成部分。 表现层:即应用层,是用户实际看到的地方。 模型特点: 预训练数据量大,往往来自互联网上的论文、代码、公开网页等,通常以 TB 级别计。 参数众多,如 Open 在 2020 年发布的 GPT3 已达 170B 的参数。 架构方面,目前常见的大模型多为右侧只使用 Decoder 的 Decoderonly 架构,如 ChatGPT 等。 工作流程: 训练过程类似于上学参加工作,包括找学校(需要大量 GPU 等硬件支持)、确定教材(需要大量数据)、找老师(选择合适算法)、就业指导(微调)、搬砖(推导)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,输入文本会被分割并数字化形成词汇表。
2024-10-30
大模型的数字资产管理系统
大模型的数字资产管理系统涉及以下方面: 大模型的整体架构: 1. 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 2. 数据层:包括静态的知识库和动态的三方数据集,是企业根据自身特性维护的垂域数据。 3. 模型层:包含 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)或多模态模型(如文生图、图生图等模型,训练数据与 llm 不同,用的是图文或声音等多模态的数据集)。 4. 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用间的组成部分。 5. 表现层:即应用层,是用户实际看到的地方。 大模型的通俗理解: 大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练、使用过程: 1. 找学校:训练 LLM 需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练大模型。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:用合适算法让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 企业大模型的误区: 1. 总想搞一个宏大的产业大模型:目前大模型能力不足以支持,更适合在场景里解决专业问题。 2. 总想用一个万能大模型解决所有企业问题:企业不同场景可能需要不同的大模型。 3. 认为有了大模型,原来的 IT 系统就淘汰了:大模型需要与原业务系统连接协同工作,原数字化搞得越好,大模型效果越好。 4. 认为大模型不用做数字化,直接一步到位弯道超车:企业没有基本的 IT 系统、数字化系统,没有数据积累和知识沉淀,无法做大模型。
2024-10-30
《2024大模型人才报告》
以下是与您查询的相关报告: 2024 年 9 月 10 日: 《》由蚂蚁集团和中国信通院联合发布,探讨了大模型在金融、医疗、政务等行业的应用挑战和解决方案。报告提出了一个系统化的可信应用框架,强调了专业性、可控性、真实性和安全性四个核心要素,并从数据质量、模型能力、推理过程、系统安全等方面提供了具体的技术实现建议。 《》 《》 《》 《》 2024 年 7 月 10 日: 极客邦科技通过《》报告深入探讨 AIGC 技术在企业中的应用,提供实战经验和趋势洞察。这份报告集合了多篇文章和案例,覆盖互联网产品、企业生产、医疗、教育等行业,展现大模型应用潜力。 《》 《》 《》 《》 2024 年 9 月 18 日: 《》探讨了 AI 技术,尤其是大模型技术对劳动力市场的影响。 《》探讨了 AI 技术在营销领域的应用现状和发展趋势。 《》 《》 您可以通过相应的链接获取更详细的内容。
2024-10-29
在一个设定中,使用阿里千问模型,设定角色为“美嘉”,知识库为《爱情公寓》全季剧情,实现问答。
在一个设定中,使用阿里千问模型,将角色设定为“美嘉”,知识库设定为《爱情公寓》全季剧情来实现问答。 大语言模型就像一个学习过无数本书、拥有无穷智慧的人,对公共知识、学识技能、日常聊天很擅长,但在工作场景中需要提示词来告诉它角色和专注技能,变成所需的“员工”。知识库则相当于给这个“聪明员工”发放的工作手册,比如知道老板娘吃饭要打三折等特定信息。 这里的设定为:AI 模型使用阿里千问模型,提示词设定的角色是“美嘉”,按照其人设、背景和对话风格设定,知识库是《爱情公寓》全季剧情,让“美嘉”拥有过往“记忆”。 例如,提问“你是谁?你和子乔在台球厅吵架那次是为了什么吵架?”,回复是“我是陈美嘉,那次在台球厅和吕子乔吵架是因为他约会被人撞见,我讽刺他脸大影响信号,他还反击我。后来谈到过去的事情,我指责他忘恩负义,他就说我平。最后,我伤心地说要分手,因为他之前甩过我。” 然而,有时回答会不准确,比如提问“一菲为美嘉找了一份助教工作”,AI 可能未根据正确的知识库内容回答,这是常见的错误场景,在严肃场景中不能接受。优化 AI 更准确回答问题的过程称为 RAG(RetrievalAugmented Generation),即检索增强生成,由检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统,能提供详细准确的回答。
2024-10-29
目前最先进的算法模型是什么
目前较为先进的算法模型包括: 1. GPT4:是 OpenAI 最新且最强大的模型。 2. GPT3.5Turbo:为 ChatGPT 提供支持,专为对话模式优化。 大模型具有以下特点: 1. 预训练数据量大:往往来自互联网,包括论文、代码、公开网页等,先进的大模型通常用 TB 级别的数据进行预训练。 2. 参数众多:如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。 在模型架构方面: 1. encoderonly 模型:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 2. encoderdecoder 模型:结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 Google 的 T5。 3. decoderonly 模型:更擅长自然语言生成任务,如故事写作和博客生成,众多熟知的 AI 助手基本采用此架构。 在模型部署方面: 由于大模型参数众多,如 GPT2 有 1.5B 参数,LLAMA 有 65B 参数,因此在实际部署时会进行模型压缩。在训练中,CPU 与内存之间的传输速度往往是系统瓶颈,减小内存使用是首要优化点,可使用内存占用更小的数据类型,如 16 位浮点数,英伟达在其最新一代硬件中引入了对 bfloat16 的支持。
2024-10-29
sora 是什么工具
Sora 是一个大型视觉模型,具有以下应用和原理: 应用: 教育:能将文本描述或课程大纲转化为针对个别学习者特定风格和兴趣量身定制的动态、引人入胜的视频内容,还能将静态教育资产转换为互动视频,支持一系列学习偏好,增加学生参与度,使复杂概念更易于理解和吸引人。 游戏:生成动态、高保真视频内容和实时效果的真实声音,克服传统游戏开发的限制,为开发者提供创建响应玩家行动和游戏事件的不断发展的游戏环境的工具,创造前所未有的沉浸式体验,为叙事、互动和沉浸打开新的可能性。 原理: 类似于 DALLE3,在处理用户提供的文本提示时,可以利用 GPT 模型来扩展或优化提示。GPT 模型将简短的用户提示转化成更详细、更富有描述性的文本,有助于 Sora 更准确地理解并生成符合用户意图的视频。 用户提供文本提示,Sora 根据提示在潜在空间中初始化视频的生成过程。利用训练好的扩散模型,从初始化的时空潜伏斑块开始,逐步生成清晰的视频内容。 使用与视频压缩相对应的解码器将潜在空间中的视频转换回原始像素视频,并对生成的视频进行可能的后处理,如调整分辨率、裁剪等,以满足发布或展示的需求。
2024-10-09
Sora是什么
Sora 是 OpenAI 发布的一个文本到视频的生成模型。 其能力标志着人工智能在创意领域的重大飞跃,能够根据描述性的文本提示生成高质量的视频内容。它不仅可以创造出逼真且充满想象力的场景,还能生成长达 1 分钟的一镜到底的超长视频,视频中的人物和场景具有很高的一致性和稳定性。 本技术报告侧重于:(1)将各类视觉数据转换为统一表示的方法,使大规模训练生成模型成为可能;(2)对 Sora 能力和局限性的定性评估。但模型和实现细节未在报告中包括。 目前 OpenAI 并没有公开发布 Sora 的计划,而是选择仅向少数研究人员和创意人士提供有限的访问权限,以便获取他们的使用反馈并评估技术的安全性。
2024-08-26
微软 Sora 的论文
以下是关于微软 Sora 论文的相关信息: 论文标题:Sora:A Review on Background,Technology,Limitations,and Opportunities of Large Vision Models 作者:Yixin Liu,Kai Zhang,Yuan Li,Zhiling Yan,Chujie Gao,Ruoxi Chen,Zhengqing Yuan,Yue Huang,Hanchi Sun,Jianfeng Gao,Lifang He,Lichao Sun 期刊:arXiv 发表时间:2024/02/27 数字识别码:arXiv:2402.17177 摘要:Sora 是一个文本到视频生成的人工智能模型,由 OpenAI 于 2024 年 2 月发布。该模型经过训练,可以根据文本指令生成逼真或富有想象力的场景的视频,并显示出模拟物理世界的潜力。基于公开的技术报告和逆向工程,本文全面回顾了文本到视频人工智能模型的背景、相关技术、应用、剩余挑战和未来方向。我们首先追踪索拉的发展,并研究用于构建这个“世界模拟器”的底层技术。然后,我们详细描述了索拉在从电影制作、教育到营销等多个行业的应用和潜在影响。我们讨论了广泛部署索拉需要解决的主要挑战和局限性,例如确保安全、公正的视频生成。最后,我们讨论了索拉和视频生成模型的未来发展,以及该领域的进步如何能够实现人类人工智能交互的新方式,提高视频生成的生产力和创造力。 背景:Sora 是一项重大突破,类似于 ChatGPT 在 NLP 领域的影响。Sora 是第一个能够根据人类指令生成长达一分钟视频的模型,同时保持较高的视觉质量和引人注目的视觉连贯性,从第一帧到最后一帧都具有渐进感和视觉连贯性。这是一个里程碑,对生成式 AI 的研究和发展产生了深远影响。如图 2 所示,Sora 在准确解读和执行复杂的人类指令方面表现出非凡的能力。该模型可以生成包含多个角色的详细场景,这些角色在错综复杂的背景下执行特定的动作。研究人员认为,Sora 不仅能熟练处理用户生成的文本提示,还能辨别场景中各种元素之间复杂的相互作用。此外,Sora 的进步还体现在它能够生成具有细微运动和交互描绘的扩展视频序列,克服了早期视频生成模型所特有的短片段和简单视觉渲染的限制。这种能力代表了人工智能驱动的创意工具的飞跃,使用户能够将文字叙述转换成丰富的视觉故事。总之,这些进步显示了 Sora 作为世界模拟器的潜力,它可以提供对所描绘场景的物理和背景动态的细微洞察。为了方便读者查阅视觉生成模型的最新进展,研究者在论文附录汇编了近期的代表性工作成果。 您可以通过以下链接阅读论文原文:https://arxiv.org/abs/2402.17177
2024-08-08
sora背后的核心技术是啥
Sora 是一种基于扩散模型的视频生成模型,其核心技术是一个预训练的扩散变换器。扩散模型是一种生成式模型,通过学习输入数据的分布来生成新的数据。在 Sora 中,扩散模型被用来学习视频的分布,从而生成新的视频。 Sora 的核心技术源自 Diffusion Transformers(DiT),它结合了 VAE、ViT、DDPM 技术,优化了视频生成。具体来说,Sora 将原始输入视频压缩成一个时空潜在表示,然后从压缩视频中提取一系列时空潜在补丁,以封装短时间间隔内的视觉外观和运动动态。这些补丁类似于语言模型中的单词标记,为 Sora 提供了用于构建视频的详细视觉短语。Sora 的文本到视频生成是通过扩散变换器模型执行的。从一个充满视觉噪声的帧开始,模型迭代地去除噪声并根据提供的文本提示引入特定细节。本质上,生成的视频通过多步精炼过程出现,每一步都使视频更加符合期望的内容和质量。 总的来说,Sora 的核心技术是一个预训练的扩散变换器,它能够解析文本并理解复杂的用户指令,然后通过扩散模型生成视频。
2024-06-10
sora是什么
Sora 是 OpenAI 发布的一个文本到视频的生成模型,可以根据描述性的文本提示生成高质量的视频内容。其能力标志着人工智能在创意领域的重大飞跃,有望将简单的文本描述转变为丰富的动态视频内容。 Sora 模型的发布,在技术界引起了广泛的关注和讨论,但目前 OpenAI 并没有公开发布 Sora 的计划,而是选择仅向少数研究人员和创意人士提供有限的访问权限,以便获取他们的使用反馈并评估技术的安全性。 We explore largescale training of generative models on video data.Specifically,we train textconditional diffusion models jointly on videos and images of variable durations,resolutions and aspect ratios.We leverage a Transformer architecture that operates on spacetime patches of video and image latent codes.Our largest model,Sora,is capable of generating a minute of high fidelity video.Our results suggest that scaling video generation models is a promising path towards building general purpose simulators of the physical world. This technical report focuses onqualitative evaluation of Sora’s capabilities and limitations.Model and implementation details are not included in this report. Sora is a diffusion model; given input noisy patches,it’s trained to predict the original “clean” patches.Importantly,Sora is a diffusion transformer.Transformers have demonstrated remarkable scaling properties across a variety of domains,including language modeling,computer vision,and image generation. In this work,we find that diffusion transformers scale effectively as video models as well.Below,we show a comparison of video samples with fixed seeds and inputs as training progresses.Sample quality improves markedly as training compute increases.Base compute32x compute
2024-06-04
什么是 Sora 能否简单介绍一下?
Sora 是 OpenAI 发布的一个文本到视频的生成模型,可以根据描述性的文本提示生成高质量的视频内容。从核心本质上看,Sora 是一个具有灵活采样维度的扩散变压器,有三个部分:时空压缩器、ViT 和类似 CLIP 的条件机制。Sora 将视觉数据转换成补丁,通过一个专门的网络来降低视觉数据的维度,提取一系列的时空补丁,作为变换器模型的输入令牌,然后通过预测输入噪声补丁的原始“干净”版本进行训练,结合了变换器架构,从而生成新的视频内容。
2024-05-20
有没有与pika.art 同类的产品
以下是与 pika.art 同类的产品: 1. Dora AI:使用一次 prompt 借助 AI 3D 动画生成强大网站,支持文字转网站、生成式 3D 互动、高级 AI 动画。 2. Bard(免费):谷歌推出的官方 ChatGPT 竞争者,由谷歌的对话应用语言模型(LaMDA)提供支持。 3. Chat.DID(免费):有史以来首个允许人们以人类方式与 AI 进行视频聊天的 APP,正在将“面孔”重新带回界面,现已进入测试阶段。
2024-10-30