Function Calling 是一种在 AI 领域中重要的技术和应用方式:
可以发现为了让ChatGPT返回符合要求的JSON格式,prompt的定制就尤为重要和复杂。好消息是,在当地时间6月13日,OpenAI发布函数调用及其他API更新。现在开发人员可以向gpt-4-0613和gpt-3.5-turbo-0613描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的JSON对象。这是一种更可靠地将GPT的能力与外部工具和API连接起来的新方法。传送门:[Function calling and other API updates](https://openai.com/blog/function-calling-and-other-api-updates)官网有很详细的例子,这里就不再描述代码了。我用本文案例总结大致流程:有个好处是不需要让ChatGPT生成SQL了,减少SQL注入的风险。本地写一个函数执行this.app.mysql.select(table,condition),根据GPT返回的函数名、参数(字段和where)来查询数据,更为安全。但这个方法又有局限性,事先定义函数查询不如SQL查询来的灵活,所以这里也可以让函数改为SQL查询this.app.mysql.query(sql),GPT的函数调用改为:getSqlQuery(sql:string),函数名getSqlQuery,参数:sql,更为灵活。总结:让GPT与函数调用结合,本地控制返回JSON格式,prompt的定制更为简单,AI的输出更为可控。根据实际业务需求采用函数查询或SQL查询,值得一试![heading2]SQL分析示例[content]注:以下SQL分析的数据均是在数据库中伪造的数据,仅供测试。分析每种图表的使用情况分析图表类型是柱状图的创建时间和数量
这个部分我们来讲解什么是Function Calling,以及Funcation Calling的具体用法。在这个用例中,假设你是一个从事金融方面业务的用户,你想通过模型搜索欧元兑美元的当前汇率。但在一切开始前,我们还是需要做好配置,不过这次我们使用Gemini 1.5 Flash模型。
函数调用为我们的AI系统带来了几个至关重要的优势,显著提升了用户体验和系统效率。首先,它大大简化了用户体验。用户不再需要在模型和应用程序之间繁琐地复制粘贴信息,整个过程变得更加流畅和直观。其次,这种方法显著减少了错误发生的可能性。通过最小化用户手动输入的需求,我们降低了输入不正确信息的风险,提高了整体的准确性。最后,也许是最令人兴奋的,函数调用为更高级的自动化开辟了道路。它使我们能够处理更复杂的操作,如酒店预订或制定旅行计划,这些都可以直接由用户对Gemini模型的简单请求触发。这种级别的集成和自动化不仅提高了效率,还为创新的AI应用打开了无限可能:用户只需一个简单的语音命令就能完成一系列复杂的任务,从查询实时数据到执行多步骤的操作。这就是函数调用为我们的AI系统带来的革命性变化,它正在重新定义我们与技术互动的方式。以上就是关于多模态提示词培训课程的所有内容了,希望这个课程能对你产生帮助。这样也就不枉我花费时间重新编排、翻译了。谢谢。