Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Function Calling in AI

Answer

以下是关于“Function Calling in AI”的相关内容:

函数调用为 AI 系统带来了诸多重要优势,包括简化用户体验,使用户无需在模型和应用程序间繁琐地复制粘贴信息,过程更流畅直观;显著减少错误发生的可能性,降低输入不正确信息的风险,提高准确性;为更高级的自动化开辟道路,能够处理如酒店预订或制定旅行计划等复杂操作,用户通过简单的语音命令就能完成一系列复杂任务,重新定义了人与技术的互动方式。

在 ChatGPT 中,为让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 于当地时间 6 月 13 日发布函数调用及其他 API 更新,开发人员可向 gpt-4-0613 和 gpt-3.5-turbo-0613 描述函数,让模型智能地选择输出包含调用函数所需参数的 JSON 对象,这是将 GPT 能力与外部工具和 API 连接的新方法。结合函数调用,本地控制返回 JSON 格式,prompt 定制更简单,AI 输出更可控,可根据实际业务需求选择函数查询或 SQL 查询。

在 AI 智能体方面,工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加新层。工具本质上是预先编写的代码组件,执行特定操作,如网页浏览、代码解释和授权认证等。系统向 LLM 呈现可用工具,LLM 选择工具、构建必要的结构化 JSON 输入并触发 API 执行以产生最终操作。例如 Omni 的“计算 AI”功能,利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。但工具使用仅凭自身不能视为“主动性”,逻辑控制流程仍由应用程序预先定义。

Content generated by AI large model, please carefully verify (powered by aily)

References

谷歌Gemini多模态提示词培训课——Part3

函数调用为我们的AI系统带来了几个至关重要的优势,显著提升了用户体验和系统效率。首先,它大大简化了用户体验。用户不再需要在模型和应用程序之间繁琐地复制粘贴信息,整个过程变得更加流畅和直观。其次,这种方法显著减少了错误发生的可能性。通过最小化用户手动输入的需求,我们降低了输入不正确信息的风险,提高了整体的准确性。最后,也许是最令人兴奋的,函数调用为更高级的自动化开辟了道路。它使我们能够处理更复杂的操作,如酒店预订或制定旅行计划,这些都可以直接由用户对Gemini模型的简单请求触发。这种级别的集成和自动化不仅提高了效率,还为创新的AI应用打开了无限可能:用户只需一个简单的语音命令就能完成一系列复杂的任务,从查询实时数据到执行多步骤的操作。这就是函数调用为我们的AI系统带来的革命性变化,它正在重新定义我们与技术互动的方式。以上就是关于多模态提示词培训课程的所有内容了,希望这个课程能对你产生帮助。这样也就不枉我花费时间重新编排、翻译了。谢谢。

ChatGPT 助力数据分析:实际案例与技巧

可以发现为了让ChatGPT返回符合要求的JSON格式,prompt的定制就尤为重要和复杂。好消息是,在当地时间6月13日,OpenAI发布函数调用及其他API更新。现在开发人员可以向gpt-4-0613和gpt-3.5-turbo-0613描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的JSON对象。这是一种更可靠地将GPT的能力与外部工具和API连接起来的新方法。传送门:[Function calling and other API updates](https://openai.com/blog/function-calling-and-other-api-updates)官网有很详细的例子,这里就不再描述代码了。我用本文案例总结大致流程:有个好处是不需要让ChatGPT生成SQL了,减少SQL注入的风险。本地写一个函数执行this.app.mysql.select(table,condition),根据GPT返回的函数名、参数(字段和where)来查询数据,更为安全。但这个方法又有局限性,事先定义函数查询不如SQL查询来的灵活,所以这里也可以让函数改为SQL查询this.app.mysql.query(sql),GPT的函数调用改为:getSqlQuery(sql:string),函数名getSqlQuery,参数:sql,更为灵活。总结:让GPT与函数调用结合,本地控制返回JSON格式,prompt的定制更为简单,AI的输出更为可控。根据实际业务需求采用函数查询或SQL查询,值得一试![heading2]SQL分析示例[content]注:以下SQL分析的数据均是在数据库中伪造的数据,仅供测试。分析每种图表的使用情况分析图表类型是柱状图的创建时间和数量

AI 智能体:企业自动化的新架构 - Menlo Ventures

工具使用或函数调用通常被视为从RAG到主动行为的第一个半步,为现代人工智能栈增加了一个新的层。这些工具,本质上是预先编写的代码组件,执行特定的操作。流行的原语如网页浏览([Browserbase](https://www.browserbase.com/)、[Tiny Fish](https://www.tinyfish.io/))、代码解释([E2B](https://e2b.dev/))和授权+认证([Anon](https://www.anon.com/))已经出现。它们使LLMs能够导航网络、与外部软件(如CRM、ERP)交互并运行自定义代码。该系统向LLM呈现可用的工具,后者然后选择一个工具,构建必要的结构化JSON输入,并触发API执行以产生最终操作。Omni的[计算AI](https://omni.co/blog/introducing-calculations-ai)功能体现了这种方法。它利用LLM直接输出适当的Excel函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。就此而言,工具的使用是强大的,但仅凭自身并不能被视为"主动性"。逻辑控制流程仍然由应用程序预先定义。我们将在即将到来的设计中探索的真正智能体人,使LLMs能够动态地编写全部或部分自己的逻辑。

Others are asking
chatbot对话和AI搜索区别
Chatbot 对话和 AI 搜索存在以下区别: 1. 产品形态: Chatbot 主要交互是一个对话框+RAG 联网检索,如 ChatGPT、Kimi Chat 等。这类产品依赖大模型的理解能力提供问答服务,RAG 检索作为补充手段,弥补大模型在实时信息获取方面的不足。 AI 搜索产品主要交互是一个搜索框+搜索详情页,如 Perplexity、秘塔等。这类产品主要侧重点在检索,优先保证检索召回的信息质量,在首次回答的准确度方面有所要求,而对话(Chat)则作为补充步骤,方便用户对检索结果进行追问或二次检索。 2. 市场定位: 大部分产品聚焦在国内,如大模型厂商推出的 ChatBot 产品(智谱清言、Kimi Chat、百小应、海螺 AI 等),搜索厂商或创业团队推出的 AI 搜索产品(360 AI 搜索、秘塔、博查 AI、Miku 等)。 海外也有很多成熟的和新出的泛 AI 搜索产品(Perplexity、You、Phind 等),中国公司和团队也有面向全球市场的出海产品(ThinkAny、GenSpark、Devv 等)。市场定位的选择跟创始团队的背景或认知有关。 3. 搜索类型: 通用搜索:没有明显的受众倾向,任何人可以搜任何问题,都能得到一个相对还不错的搜索结果,如 Perplexity、ThinkAny。 垂直搜索:面向特定的人群或特定的领域,对特定的信息源做索引和优化,在某类问题的搜索上会有更好的结果,如 Devv 主要面向开发者人群,问编程相关的问题,搜索结果和回复准确度都比较高,问旅游或其他类型的问题,回答质量则不如通用搜索。 目前存在能联网检索的 AI,例如 ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网,Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,Bing Copilot 旨在简化在线查询和浏览活动,还有 You.com 和 Neeva AI 等搜索引擎,它们提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。这些 AI 搜索工具的出现标志着在信息检索领域的一个重要发展,大幅提升了数据集命中预期,并为实际应用带来了更多可能性。但请注意内容由 AI 大模型生成,请仔细甄别。
2025-03-07
AI指令
以下是关于 AI 指令的相关内容: Midjourney 生成 UI 界面的指令: 若想指定生成某个页面(如首页、登录页等),可添加页面指令描述,如“landing page”“Profile Page”。对于社交平台,关键词“landing page”可生成登录页设计;对于信息类,关键词“Profile Page”可生成人力资源类产品的个人资料页,包含照片、自我介绍、基本信息等内容。 对于生成某种 APP 没有固定的 Prompt(指令),可先使用指令模板“ui design forapplication,mobile app,iPhone,iOS,Apple Design Award,screenshot,single screen,high resolution,dribbble”,将“类型”替换为想设计的产品的英文关键词描述,如出行类的“距离、车费、费用结算、优惠金额、地图”,餐饮类的“介绍咖啡的特色、口味、咖啡豆产地、价格”,运动类的“卡路里、步数、距离、某种运动”等。 Cursor 的自定义指令: 可以通过修改 Cursor Settings 下的 Rules for AI 部分来向 Cursor 添加自定义指令,此自定义说明将包含在 Cursor Chat 和 Ctrl/⌘K 等功能中。对于特定于项目的指令,可以将其包含在项目根目录的.cursorrules 文件中,该文件中的指令同样适用于 Cursor Chat 和 Ctrl/⌘K 等功能。
2025-03-07
在飞书的多维表格字段类型选择”ai音频摘要&文案提取“时,要求关联账号,提示需要通过API KEY关联,如何获取api key?
获取 API key 的方法如下: 火山引擎 API 申请:在火山引擎申请 API,注册链接有送代金券,可用于 token 消耗。 通义千问大模型:先去,点击创建 API key,复制保存即可。 腾讯云(新用户): 1. 点击去注册腾讯云:。 2. 进入腾讯云,微信扫码注册。 3. 首次注册选择推荐页面的第一个或第二个。 4. 点击立即试用,选择地域和镜像(下拉框最上边的宝塔 8.1.0),然后点击“立即试用”。 5. 进入腾讯云服务台,点击“登录”。 6. 登录后,在当前页面复制 sudo /etc/init.d/bt default,粘贴进入图示位置,然后点击回车,保存此处输出的内容。 7. 返回服务器控制台,点击空白区域,选择“防火墙”菜单栏,点击【添加规则】按钮,新增规则,手动输入相关内容,除图中的内容外,需要再添加一个 3000 备注 FastGPT。
2025-03-07
普通人打工人AI制作短视频,请给出具体执行步骤
以下是普通人利用 AI 制作短视频的具体执行步骤: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,制作一部 2 分钟短片,不论是使用镜头拍摄还是使用 AI 工具生成,本质上都脱离不了影视制作的基础逻辑。在角色设计阶段,需要保持角色的一致性,并为角色增加个性化特性。在分镜图片生成阶段,为了及时调整分镜画面,决定生成一张合适的图片就直接开始进行对应动画镜头的生成。在动画镜头制作阶段,主要使用了 pixverse、pika、runway 三种视频生成工具。我们这里讲的短片都是以短故事片为主,后续也会带领大家讨论广告片等不是以故事为主要基底的影片类型。
2025-03-07
如何学习AI
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-07
我是一个快手个体箱包电商AI对我有哪些帮助
对于快手个体箱包电商,AI 可以提供以下帮助: 1. 电商优化:分析销售数据,为您提供增长策略,帮助您了解箱包的销售趋势、客户喜好等,从而优化产品选择和营销策略。 2. 数据处理:收集、清理和分析与您电商业务相关的数据,并以图表、仪表盘等直观方式呈现,让您更清晰地了解业务状况。 3. 商业决策支持:进行市场分析和竞争对手研究,为您的业务发展提供决策依据。 以下是一些相关的案例: 1. 在“Show Me 扣子 AI 挑战赛大消费行业专场”中,有帮助企业快速建立产品智能客服体系的作品,通过用户意图识别、知识库检索答案等方式提升用户体验和客服人效,提高回答准确率,降低企业商用 AI 客服门槛。 2. 还有为中小型消费品企业提供销售订单管理的作品,智能识别和提取销售订单信息并存储至飞书多维表格,降低时间和人力成本,省去昂贵的 ERP 系统购买费用。 3. 面向亚马逊卖家的自动化处理和分析商品负面评论的服务,生成深度洞察报告,帮助卖家快速识别产品问题并改进,提高客户满意度、减少退货率、增加复购率和提升品牌形象。
2025-03-06
function calling 这是什么?
Function Calling 是一种在自然语言处理和人工智能模型中的技术。 在金融业务场景中,例如搜索欧元兑美元的当前汇率,使用前需要做好配置,如使用 Gemini 1.5 Flash 模型。 对于 ChatGPT 而言,为了让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 发布函数调用及其他 API 更新后,开发人员可以向 gpt40613 和 gpt3.5turbo0613 描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的 JSON 对象,这是将 GPT 的能力与外部工具和 API 连接起来的新方法。例如,本地写函数执行 this.app.mysql.select。 对于 OpenAI 的 GPT 模型,Chat completions API 允许在请求中传递一系列函数描述,使模型能够根据提供的模式生成函数参数,API 以 JSON 格式返回生成的函数参数,可用于执行函数调用,函数调用的输出还可在后续请求中反馈给模型形成交互循环。想深入了解可查看 GPT 入门指南里的函数调用部分和 OpenAI Cookbook 里的用例。 需要注意的是,模型生成的代码不一定都是正确和安全的,在运行代码前要确保环境安全,最好在沙盒中进行。
2025-03-06
Function Calling
Function Calling 是一种将 AI 模型(如 ChatGPT、谷歌 Gemini 等)的能力与外部工具和 API 连接起来的方法。 对于 ChatGPT: 为让其返回符合要求的 JSON 格式,prompt 的定制重要且复杂。 OpenAI 发布函数调用及其他 API 更新,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能输出包含调用函数所需参数的 JSON 对象。 好处是减少 SQL 注入风险,可本地写函数执行查询,也可让函数改为 SQL 查询,使 GPT 与函数调用结合,本地控制返回 JSON 格式,prompt 定制更简单,AI 输出更可控。 对于谷歌 Gemini: 在金融业务用例中,可用于搜索欧元兑美元的当前汇率,使用前需做好配置,如使用 Gemini 1.5 Flash 模型。 函数调用带来多个优势,包括简化用户体验、减少错误发生可能性、为更高级自动化开辟道路,能处理如酒店预订或制定旅行计划等复杂操作,重新定义了人与技术的互动方式。
2025-03-05
Function Calling 是什么
Function Calling 是一种将模型的能力与外部工具和 API 连接起来的方法。 在金融业务场景中,例如搜索欧元兑美元的当前汇率,需要先做好配置,可使用 Gemini 1.5 Flash 模型。 对于 ChatGPT 而言,为了让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 发布函数调用及其他 API 更新后,开发人员可以向 gpt40613 和 gpt3.5turbo0613 描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的 JSON 对象。 使用 Function Calling 有好处,如不需要让 ChatGPT 生成 SQL,减少 SQL 注入的风险,本地写函数执行查询数据更为安全。但也有局限性,事先定义函数查询不如 SQL 查询灵活,也可让函数改为 SQL 查询以增加灵活性。 对于 OpenAI 的 GPT 模型,Chat completions API 允许在请求时附带一系列函数描述,使模型能按照提供的格式产生函数参数,API 以 JSON 格式返回参数用于执行函数调用,函数调用的结果还可反馈给模型形成交互循环。想深入了解可查看 GPT 入门指南里的函数调用部分和 OpenAI Cookbook 里的用例。同时要注意模型写的代码不一定都正确和安全,运行前要确保环境安全。
2025-02-23
function calling的资料
以下是关于 Function Calling 的相关资料: 函数调用为 AI 系统带来了诸多优势,包括简化用户体验、减少错误发生可能性以及为更高级的自动化开辟道路。例如在处理金融信息时,它能使整个过程更加流畅、准确,并能实现如酒店预订或制定旅行计划等复杂操作。 OpenAI 的 Chat completions API 允许在请求中附带一系列函数描述,使模型能够根据提供的模式生成函数参数,API 会以 JSON 格式返回生成的参数,可用于执行函数调用,函数调用的结果还能在后续请求中反馈给模型形成交互循环。想深入了解可查看 GPT 入门指南里的函数调用部分和 OpenAI Cookbook 里的用例。 对于让 ChatGPT 返回符合要求的 JSON 格式,prompt 的定制至关重要且较为复杂。OpenAI 发布函数调用及其他 API 更新后,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能选择输出包含调用函数所需参数的 JSON 对象,这是将 GPT 能力与外部工具和 API 连接的新方法。将 GPT 与函数调用结合,本地控制返回 JSON 格式,能使 prompt 的定制更简单,AI 的输出更可控,可根据实际业务需求选择函数查询或 SQL 查询。
2025-02-21
Function Calling in AI
以下是关于“Function Calling in AI”的相关内容: 函数调用为 AI 系统带来了诸多重要优势。以谷歌 Gemini 为例,它简化了用户体验,使用户无需在模型和应用程序间繁琐地复制粘贴信息,过程更流畅直观;显著减少错误发生的可能性,降低输入不正确信息的风险,提高准确性;为更高级的自动化开辟道路,能处理如酒店预订或制定旅行计划等复杂操作,用户通过简单语音命令即可完成一系列复杂任务,重新定义了人与技术的互动方式。 对于 ChatGPT,为让其返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 于当地时间 6 月 13 日发布函数调用及其他 API 更新,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能输出包含调用函数所需参数的 JSON 对象,这是连接 GPT 能力与外部工具和 API 的新方法。结合函数调用,本地控制返回 JSON 格式,prompt 定制更简单,AI 输出更可控,可根据实际业务需求选择函数查询或 SQL 查询。 在 AI 智能体方面,工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加新层。工具本质是预先编写的代码组件,执行特定操作,如网页浏览、代码解释和授权认证等。系统向 LLM 呈现可用工具,LLM 选择并构建必要的结构化 JSON 输入触发 API 执行产生最终操作。例如 Omni 的“计算 AI”功能,利用 LLM 直接输出适当的 Excel 函数到电子表格中执行计算并生成复杂查询。但工具使用仅凭自身不能视为“主动性”,逻辑控制流程仍由应用程序预先定义。
2024-11-22
deepseek支持function calling,在dify的agent的prompt里要如何写才能调用工具。我说的是如何写提示词,才能让deepseek通过Function Calling调用工具。
要在 Dify 的 agent 的 prompt 里让 DeepSeek 通过 Function Calling 调用工具,您可以参考以下内容: 1. 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 提示词注入:将工具信息及使用工具的提示词添加到系统提示中。INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时注意用无关紧要的工具作示例避免混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,可动态调整。REUTRN_FORMAT 定义调用 API 的格式。 工具结果回传:利用正则表达式抓取输出中的“tool”和“parameters”参数。对于 interpreter 工具,使用另一种正则表达式提取 LLM 输出的代码。通过识别 LLM 返回的调用工具的字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受该角色的 LLM 接口,可改为回传给 user 角色。 2. 当模型判断需要调用工具函数时,检测到返回的 json 里 function_call 字段不为空,则执行异步函数调用,采用回调方式获取函数返回结果。通过判断返回的 functionCall 的名称执行不同函数并返回结果。 3. 在大模型请求中,最大的两个变量是 Messages 和 Tools。Messages 里放 sys prompt、memory、user query;Tools 里放能力的 Json Scheme,两者组合形成整个完全的 Prompt。Agent 应用开发的本质是动态 Prompt 拼接,通过工程化手段将业务需求转述成新的 prompt。短期记忆在 messages 里的历史 QA 对,长期记忆是 summary 之后的文本再塞回 system prompt。RAG 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。Action 是触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型交互,没有 tool_calls 标记则循环结束。Multi Agents 是更换 system prompt 和 tools。
2024-10-24
functioncall
Function Calling 是一种在 AI 领域中重要的技术和应用方式: 在 ChatGPT 中:为让 ChatGPT 返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。OpenAI 发布函数调用及其他 API 更新,开发人员可向 gpt40613 和 gpt3.5turbo0613 描述函数,让模型智能选择输出包含调用函数所需参数的 JSON 对象,这是将 GPT 能力与外部工具和 API 连接的新方法。好处是减少 SQL 注入风险,可本地写函数执行查询,也可让函数改为 SQL 查询,根据实际业务需求选择函数查询或 SQL 查询,使 AI 输出更可控。 在谷歌 Gemini 中:在金融业务用例中,如搜索欧元兑美元的当前汇率,需做好配置,使用 Gemini 1.5 Flash 模型。函数调用为 AI 系统带来多个优势,包括简化用户体验、减少错误发生可能性、为更高级自动化开辟道路,能处理如酒店预订或制定旅行计划等复杂操作,重新定义了人与技术的互动方式。
2025-02-14