直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

近期的大模型进展

回答

近期大模型的进展主要包括以下方面:

  • 多模态大模型:
    • 现状:随着数据集和模型规模扩大,传统多模态模型计算量大,研究重点在于各模态的连接,利用现成训练好的单模态基础模型可减少训练费用和提升效率。通过多模态预训练和指令微调实现模态对齐及模型输出与人类意图对齐是核心挑战。
    • 发展历程:最初集中在多模态内容理解和文本生成,如 Flamingo、BLIP-2 等;同时实现多模态输入和输出工作,如 MM-LMM;将 LLM 和外部工具继承进来,实现“any-to-any”的多模态理解和生成,如 visual-chatgpt 等;还有为减少级联过程中传播误差的工作。
  • 大型视觉模型 Sora:符合视觉模型的规模化定律,展示了新兴能力,包括遵循指令、视觉提示工程和视频理解等,是第一个展示确认新兴能力的视觉模型,标志着计算机视觉领域的重要里程碑。
  • OpenAI 的新模型 o1-preview/mini:复杂问题思考过程长,相对简单问题也需 5 - 10 秒,使用条数少,冷却时间长,但推理模型准确率不断攀升,为行业注入了强心剂。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

多模态大模型入门指南-长文慎入【持续更新】

最近,多模态大模型取得重大进展。随着数据集和模型的规模不断扩大,传统的MM模型带来了巨大的计算量,尤其是从头开始训练的话。研究人员意识到MM的研究重点工作在各个模态的连接上,所以一个合理的方法是利用好现成的训练好的单模态基础模型,尤其是LLM。这样可以减少多模态训练的费用,提升训练效率。MM-LLM利用LLM为各种MM任务提供认知能力。LLM具有良好的语言生成,zero-shot和ICL的能力。其他模态的基础模型则提供了高质量的表征。考虑到不同模态的模型是分开训练的,如何将不同模态连接起来,实现协同推理,是核心挑战。这里面的主要工作便是通过多模态预训练和多模态的指令微调,来实现模态之间的对齐,以及模型输出与人类意图的对齐。[heading3]1.2多模态的发展历程:[content]关于多模态的发展主要有:最初的发展集中在多模态的内容理解和文本的生成:Flamingo,BLIP-2,Kosmos-1,LLaVA/LLaVA-1.5/LLaVA-1.6,MiniGPT-4,MultiModal-GPT,Video-Chat,VIdeo-LLaMA,IDEFICS,Fuyu-8B,Qwen-Audio同时实现多模态的输入和输出工作MM-LMM,探索特定模态的生成,例如Kosmos-2,Mini-GPT5,以及语音生成的SpeechGPT将LLM和外部工具继承进来,实现“any-to-any”的多模态理解和生成。visual-chatgpt,ViperGPT,MM-React,HuggingGPT,AudioGPT同样,有为了减少级联过程中传播误差的工作,有NExT-GPT和CoDI-2,来开发任意模式的多模态模型

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

视觉模型的规模化定律。有了LLMs的规模化定律,自然会问视觉模型的发展是否遵循类似的规模化定律。最近,Zhai等人[24]展示了,有足够训练数据的ViT模型的性能-计算前沿大致遵循(饱和)幂律。继他们之后,谷歌研究[25]提出了一种高效稳定训练22B参数ViT的方法。结果显示,使用冻结模型产生嵌入,然后在顶部训练薄层可以实现出色的性能。Sora作为一个大型视觉模型(LVM),符合这些规模化原则,揭示了文本到视频生成中的几种新兴能力。这一重大进展强调了LVMs实现类似LLMs所见进步的潜力。新兴能力。LLMs中的新兴能力是在某些规模上——通常与模型参数的大小有关——表现出的复杂行为或功能,这些行为或功能并未被开发者明确编程或预期。这些能力被称为“新兴”,因为它们源于模型在多样化数据集上的全面训练,以及其庞大的参数数量。这种组合使模型能够形成联系并做出超越简单模式识别或死记硬背的推断。通常,这些能力的出现不能通过从小规模模型的性能外推来直接预测。虽然许多LLMs,如ChatGPT和GPT-4,展示了新兴能力,但直到Sora的出现,展示类似能力的视觉模型还很少。根据Sora的技术报告,它是第一个展示确认新兴能力的视觉模型,标志着计算机视觉领域的一个重要里程碑。除了其新兴能力,Sora还展示了其他显著能力,包括遵循指令、视觉提示工程和视频理解。Sora的这些功能方面代表了视觉领域的重大进步,并将在后续部分进行探讨和讨论。

OpenAI:我憋了个新大招儿,它叫o1-preview/mini

[title]OpenAI:我憋了个新大招儿,它叫o1-preview/mini其次,今天凌晨第一批吃螃蟹的用户已经体验过了,从各群、各微、各推的反馈来看,复杂问题的思考过程长达30s,而相对简单的问题则要5-10s之间。就连OpenAI给出的模型速度示例中,o1-preview的速度也是偏慢的。最后,让人有点郁闷的是,新模型(o1-preview/mini)的使用条数太少了,而且冷却时间相当长,按照少数AI先锋(@陈财猫)的测试,o1-preview的冷却时间长达7天。这一周几十条的用量也顶多算是打打牙祭...最后,我想分享一些个人的思考和感悟。随着这两年来对模型发展的观察,我看到了一个明显的趋势:仅仅依靠生成式应用的场景是相当有限的。尤其是toB领域,我们遇到的更多是对准确性要求极高的场景,甚至需要100%准确的情况,比如安全领域和金融领域,这些都是差之毫厘谬之千里的业务。而大模型的局限性也是常常在于此(幻觉)。但推理模型的准确率不断攀升、甚至达到完全可信的地步确实是一件非常惊喜又恐怖的事情。之前让模型干创意的活儿,现在又能干精确的活儿,这属于全场景覆盖!这意味着AI技术可以渗透到更多行业、更多高精尖业务中去!同时,我回想起老师曾经对我说过的一句话:"不管现在的大模型处理速度多慢,操作多么繁琐,只要能保证最终结果的正确性,它就拥有无限的可能性。"我觉得老师的话不无道理,不要看现在新模型的推理速度慢,但这些都可以通过增配新硬件去解决,只要钱到位,这都不是问题。况且,这也可能是慢思考系统的一种呢?你说对吧!再者,在今年上半年,甚至是上个月,很多人还在担忧大模型的前景。但OpenAI推出的新模型无疑给这个行业注入了一剂强心剂,为整个领域带来了新的活力和希望。这是令人赞叹和振奋的。

其他人在问
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21
sairi是不是使用大模型技术
Sora 是使用大模型技术的。周鸿祎认为 Open AI 训练这个模型会阅读大量视频,大模型加上 Diffusion 技术需要对世界进一步了解,学习样本以视频和摄像头捕捉到的画面为主。Sora 在训练数据上采用在原始尺寸上进行训练的策略,避免了传统 AI 对人为抽象的依赖。此外,Sora 还采用了一些数据预处理技术,如将视觉图块压缩成低维潜在表示,并将其排列成序列,注入噪声后输入扩散变换器的输入层,同时采用时空分块化来降低后续对时间信息建模的复杂性。这种对原始视频和图像特征的细腻处理标志着生成模型领域的重大进步。
2024-11-21
模型微调怎么解决多轮对话容易受到上轮对话的影响问题
在解决模型微调中多轮对话容易受到上轮对话影响的问题时: 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
2024-11-21
企业做自己的小模型,需要用到的工具及工具背后的公司都有哪些?
企业做自己的小模型,可能会用到以下工具及背后的公司: 1. 在编排(Orchestration)方面,涉及的公司如 DUST、FIAVIE、LangChain 等,其提供的工具可帮助管理和协调各部分及任务,确保系统流畅运行。 2. 部署、可扩展性和预训练(Deployment, Scalability, & PreTraining)类别中,像 UWA mosaicm、NMAREL、anyscale 等公司提供的工具,有助于部署模型、保证可扩展性及进行预训练。 3. 处理上下文和嵌入(Context & Embeddings)的工具,相关公司有 TRUDO、Llamalndex、BerriAI 等,能帮助模型处理和理解语言上下文,并将词语和句子转化为计算机可理解的形式。 4. 质量保证和可观察性(QA & Observability)方面,例如 Pinecone、drant、Vald 等公司提供的工具,可确保模型表现并监控其性能和状态。 此外,还有以下工具和相关公司: 1. 图片生成 3D 建模工具,如 Tripo AI(由 VAST 发布)、Meshy、CSM AI(Common Sense Machines)、Sudo AI、VoxCraft(由生数科技推出)等。 企业还可能涉及具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体、Zeabur 等云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助、文生图(可灵、即梦等)等方面,可能需要相应资质。
2024-11-20
你认为目前最好用的大模型有哪些?
目前最好用的大模型包括: 1. OpenAI 的 GPT4:是最先进和广泛使用的大型语言模型之一,在多种任务上表现卓越,如文本生成、理解、翻译及各种专业和创意写作任务,能通过大量数据学习理解和生成人类语言,处理复杂问题和理解上下文能力出色。 2. Anthropic 公司的 Claude 3。 3. 谷歌的 Gemini。 4. 百度的文心一言。 5. 阿里巴巴的通义大模型。 大型模型主要分为两类: 1. 大型语言模型:专注于处理和生成文本信息。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。 大型多模态模型与大型语言模型的不同点: 1. 处理的信息类型不同:大型语言模型专注于文本,大型多模态模型能处理多种类型信息。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,大型多模态模型应用领域更广泛。 3. 数据需求不同:大型语言模型依赖大量文本数据训练,大型多模态模型需要多种类型数据训练。 此外,如果想了解国内的大模型效果,可以参考第三方基准评测报告: 。需注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-19
能生成sql语句的ai模型或工具,能提供api调用的
以下是一些能生成 SQL 语句并提供 API 调用的 AI 模型或工具的相关信息: OpenAI 的 GPT 系列模型,如 gpt40613 和 gpt3.5turbo0613 ,可以通过函数调用及其他 API 更新,让开发人员向模型描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的 JSON 对象。但需要注意的是,为了让 ChatGPT 返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。 在使用代码执行来进行更精确的计算或调用外部 API 时,不能依赖模型自行准确地执行算术或长计算。可以指示模型编写和运行代码,例如将代码放入三重反引号中。生成输出后,可以提取并运行代码。同时,模型在正确使用 API 的指导下,可以编写使用 API 的代码,但需要通过提供 API 文档或代码示例进行指导。 但需要注意的是,执行模型生成的代码存在安全风险,建议在安全的沙箱环境中运行代码,避免潜在危害。
2024-11-19
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
主流大厂目前的agi 进展
目前主流大厂在 AGI 方面的进展情况如下: 2023 年之前,国内 AI 行业自认为与美国差距不大,但 ChatGPT 和 GPT4 的出现打破了这种认知,OpenAI 直接拉开了 2 年的技术差距。 2023 年上半年,国内大厂纷纷囤卡招人,研究类 GPT 架构,或成立创业公司,试图创造国产 AGI。但下半年发现不容易后,纷纷转向“垂直应用”“商业化”,不再提 AGI。 国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 还有不小差距。 百度和阿里在大厂中比较高调,百度的“文心 4.0”是当前国内能力较好的模型之一,即将发布的阿里的“通义千问”也备受关注。 大厂们在人才、GPU、数据和资金储备方面具备冲击 AGI 的条件,但实际效果尚无明确亮点,且受内部短期考核压力影响,多数力量用于卷新产品和向上汇报工作,同时还背负其他业务和政治考量。
2024-11-12
AI加教育的最新进展
以下是 AI 加教育的最新进展: 案例方面: “AI 赋能教师全场景”,来自 MQ 老师的投稿贡献。 “未来教育的裂缝:如果教育跟不上 AI”,揭示了人工智能在教育领域从理论走向实际应用带来的颠覆性改变。 “化学:使用大型语言模型进行自主化学研究”。 “翻译:怎么把一份英文 PDF 完整地翻译成中文?”,介绍了 8 种方法。 对未来的预判: 个性化学习时代已到来,AI 将作为教育生态系统的一部分与人类教师协作,为孩子提供不同的学习体验,如混合式教学、定制学习路径等。 教育工作者将成为学习的引导者和伙伴,更多关注孩子的全人发展,如创造力和社交智慧。 未来 3 年,提升人机协作效率的领域,如 AI 作业批改、备课、定制教育规划、学前启蒙等,对教育从业者蕴藏着巨大机遇。 探索实践: 过去半年多,梳理教学和育儿工作流,每个环节与 AI 协作可大幅提升效率,但也加剧了知识获取的不平等。从家长的“育”、老师的“教”和学生的“学”进行了落地实践的拆解。
2024-11-05
近几个月,中国AI行业有什么重要进展?
以下是近几个月中国 AI 行业的一些重要进展: 过去 12 个月,人工智能行业流量增长显著。2022 年 9 月研究起始时,分析的工具产生 2.418 亿次访问,到 2023 年 8 月达到 28 亿次访问量。 从去年 11 月 ChatGPT 成为最快达到 100 万用户的平台后,行业热度持续攀升,2023 年 5 月访问量达到约 41 亿的峰值。 2023 年上半年国内笃信靠资金和卡能发展类 GPT 架构,但下半年纷纷转向“垂直应用”“商业化”,不提 AGI。目前国内最领先的模型水平大概在准 ChatGPT3.5 水平,和 GPT4 有差距。 百度的“文心 4.0”是当前国内能力较好的模型之一,即将发布的阿里的“通义千问”。 中国开源项目在今年赢得全球粉丝,成为积极开源贡献者。DeepSeek 在编码任务中表现出色,阿里巴巴发布的 Qwen2 系列视觉能力令人印象深刻,清华大学的自然语言处理实验室资助的 OpenBMB 项目催生了 MiniCPM 项目。
2024-11-04
最新AI进展
以下是关于最新 AI 进展的相关内容: AI 技术的发展历程: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到发展。 当前 AI 前沿技术点: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包括量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 10 月 14 日的 AI 相关进展: 1. ChatGPT 命令工具上线,提供搜索、图像、O1 推理三种命令,使普通模型也具备高级推理能力,测试表明所有模型均支持命令调用,显著提升了 ChatGPT 的整体能力。 2. Anthropic CEO 展望未来,认为 AI 将在 5 10 年内助力扫除几乎所有疾病,寿命翻倍至 150 岁,包括在医学进展方面实现 50 100 年的突破,如大规模预防自然传染病与开发“万能疫苗”,降低癌症死亡率,治愈遗传疾病,开发抗衰老疗法,帮助治疗抑郁症、精神分裂症等疾病,同时自动化劳动解放人类创造力,推动全球经济增长,但也需平衡风险与潜力。 3. ChatGPT 4.0 Canvas 功能助力写作,提供思路、润色语言、内容扩展,支持快速修改与撤回版本,极大提升写作效率,未来或将支持多人协作、数据图表生成、甚至直接生成 PPT。 对于新手学习 AI,要持续学习和跟进,关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。
2024-10-31
中国上市公司在ai应用方面的进展
目前,中国上市公司在 AI 应用方面取得了一定进展。 一方面,许多公司正将 AI 融入其工作流程,以快速达成 KPI、扩张规模和降低成本。例如,工作流程自动化平台 ServiceNow 通过 AI 驱动的 Now Assist,实现了近 20%的事件避免率;Palo Alto Networks 利用 AI 降低了处理费用的成本;Hubspot 利用 AI 扩大了能够支持的用户规模。瑞典金融科技公司 Klarna 最近宣布,通过将 AI 融入用户支持,他们在运行率方面节省了 4000 多万美元。 另一方面,对于 AI 应用层的创业者来说,存在一些问题和探索。中国企业软件的发展曾受人均 GDP 不够高、人力成本等因素限制,但如果 AI 能极大降低软件成本并提高效率,可能带来价值突破。我们期待中国 2B 的 AI 软件应用实现跨越式发展。 此外,还有一些相关的资源可供参考,如 2022 2024 年融资 2000 万美金以上的公司列表和详细公司分析、AI Grant 公司列表和详细公司分析、AIGC 行业与商业观察等。同时,也有关于 AI 变革公司/产业实践探索的相关内容,如 2023 年年报中中国上市公司对生成式 AI 的使用,以及安克创新的 AI 实践分析等。
2024-10-28
近期有什么新的AI软件?
以下是近期一些新的 AI 软件: You.com:是一款具有多种搜索模式且注重隐私的搜索引擎。 Genspark:通过 Sparkpages 来满足用户个性化的搜索需求。 Rockset:刚被 OpenAI 收购,提供实时搜索和分析数据库服务。 Butterflies AI:人类与 AI 共存的社交软件。 MeetRecord:可以对销售通话进行记录和辅导的 AI 助手。 此外,还有以下一些 AI 应用: 超级简历优化助手:AI 简历优化工具,使用自然语言处理技术,帮助用户优化简历提高求职成功率。 酷家乐等设计软件:AI 室内设计方案生成,结合图像生成、机器学习技术,快速生成个性化室内设计方案。 Amper Music:AI 音乐创作辅助工具,运用机器学习、音频处理技术,协助音乐创作者进行创作。 松果倾诉智能助手:AI 情感咨询助手,基于自然语言处理、情感分析技术,为用户提供情感支持和建议。 小佩宠物智能设备:AI 宠物健康监测设备,借助传感器数据处理、机器学习技术,实时监测宠物健康状况。 马蜂窝智能行程规划:AI 旅游行程规划器,利用数据分析、自然语言处理技术,根据用户需求生成个性化旅游行程。 作业帮智能辅导:AI 在线教育个性化辅导,通过机器学习、自然语言处理技术,为学生提供个性化学习辅导。 另外还有: AI 游戏道具推荐系统:利用数据分析、机器学习技术,根据玩家需求推荐游戏道具。 AI 天气预报分时服务:基于数据分析、机器学习技术,如彩云天气分时预报,提供精准的分时天气预报。 AI 医疗病历分析平台:运用数据分析、自然语言处理技术,如医渡云病历分析系统,分析医疗病历,辅助诊断。 AI 会议发言总结工具:借助自然语言处理、机器学习技术,如讯飞听见会议总结功能,自动总结会议发言内容。 AI 书法作品临摹辅助工具:通过图像识别、数据分析技术,如书法临摹软件,帮助书法爱好者进行临摹。
2024-11-10
Way to AGI 近期更新
以下是关于 Way to AGI 的近期更新信息: Runway 官方镜头提示词相关: 官方镜头指南:https://help.runwayml.com/hc/enus/ 相关文章:articles/30586818553107Gen3AlphaPromptingGuide 生图官网:https://app.runwayml.com/videotools/teams/aimwisetonix/aitools/generativevideo 小互动:最下面一起生文字“WaytoAGI”回头剪辑到一起 此次更新适合参加本期 video battle 官方效果: Gen3 Alpha 上线,具有无限潜力,可将艺术视野带入生活。创建传达场景的强烈提示是生成与概念一致视频的关键,涵盖不同示例结构、关键字和提示帮助使用 Gen3 Alpha,鼓励实践时大胆实验。 知识库介绍: 原文《WaytoAGI:找到了 AI 知识付费的免费源头,让更多人因 AI 而强大!》 WayToAGI 是由热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,大家贡献并整合各种 AI 资源,方便大家学习 AI 知识、应用工具和实战案例等。 提供一系列开箱即用的工具,如文生图、文生视频、文生语音等详尽教程,将文字化为视觉与听觉现实。 追踪 AI 领域最新进展,时刻更新,每次访问都有新收获。 无论初学者还是行业专家,都能发掘有价值内容。 链接:https://waytoagi.com/(通往 AGI 之路) 即刻体验:https://waytoagi.com/
2024-11-04
近期融资的ai行业上市公司
以下是近期融资的 AI 行业上市公司的相关信息: Celestial AI 融资 1 亿美元,用于使用基于光的互连传输数据。 Zenarate 融资 1500 万美元,是提供 AI 模拟培训平台的公司。 Augmedics 获得 8250 万美元,用于使用 AR 和 AI 进行脊柱手术。 CalypsoAI 筹集了 2300 万美元,用于生成 AI 模型的护栏。 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15): |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Weka|20240513|1.4|E|16|AI 原生数据平台|应用|数据|Valor Equity Partners, 高通创投, Nvidia, 日立创投| |CoreWeave|20240501|11|C|190|GPU 基础设施|基础设施|硬件和云平台|Coatue, Fidelity, Altimeter Capital, Magnetar Capital| |Scale AI|202405|10|F|140|数据标记服务|应用|数据|Accel, Tiger Global, Spark Capital, 亚马逊| |Blaize|20240429|1.06|D||AI 边缘计算平台|基础设施|硬件和云平台|淡马锡, 富兰克林邓普顿, Bess Ventures| |Augment|20240424|2.27|B|10|AI 编码辅助|应用|编程|Lightspeed Venture Partners, Index Ventures, Sutter Hill Ventures| |Cognition|20240424|1.75||20|端到端软件 Agents|应用|编程|Founders Fund, Ramp 联合创始人 Eric Glyman, Stripe 联合创始人 Patrick 和 John Collison, DoorDash 联合创始人 Tony Xu| |Xaira Therapeutics|20240423|10|A||AI 药物研发|应用|医学|Foresite Capital, ARCH Venture Partners| 近期热门融资 AI 产品速递 1 st : You.com 已完成多轮融资,包括来自 Salesforce CEO Marc Benioff 的 2000 万美元资金和 4500 万美元的募资。目前,You.com 用户数量稳定增长,已超过 10 万。体验链接:www.you.com
2024-10-28
近期数字人比较成熟的应用有哪些
数字人目前有以下较为成熟的应用: 1. 影视行业:真人驱动的数字人通过动捕设备或视觉算法还原真人动作表情,用于影视制作。 2. 直播带货:真人驱动的数字人在直播带货领域发挥作用。 3. 家庭:未来可能会有数字人管家,全面接管智能家居或其他设备。 4. 学校:未来可能会有数字人老师,为学生答疑解惑。 5. 商场:未来可能会有数字人导购,为顾客提供指路、托管个人物品等服务。 数字人的构建方式包括: 1. 2D 引擎:风格偏向二次元,亲和力强,定制化成本低,代表如 Live2D Cubism。 2. 3D 引擎:风格偏向超写实的人物建模,拟真程度高,定制化成本高,代表如 UE、Unity、虚幻引擎 MetaHuman 等。 3. AIGC:虽然省去建模流程,但在数字人 ID 一致性和帧连贯性上存在弊端,不过算法发展迅速,未来可能会有改善。AIGC 还有直接生成 2D/3D 引擎模型的探索方向。
2024-10-16
Way to AGI 近期更新
以下是 Way to AGI 的近期更新: Runway 官方镜头提示词相关: 官方镜头指南:https://help.runwayml.com/hc/enus/ 相关文章:articles/30586818553107Gen3AlphaPromptingGuide 生图官网:https://app.runwayml.com/videotools/teams/aimwisetonix/aitools/generativevideo 互动:最下面有个小互动,一起生文字“WaytoAGI”回头剪辑到一起 适合参加本期 video battle:https://waytoagi.feishu.cn/wiki/CufGwGyeXiomZnkiLTwcIgd3nnb 官方效果: https://waytoagi.feishu.cn/wiki/Eun9wqDgii1Q7GkoUvCczYjln7r Gen3 Alpha 上线,具有无限潜力,创建传达场景的强烈提示是生成与概念一致视频的关键,涵盖不同示例结构、关键字和提示。 观点方面: 作者 Allen 认为热爱与行动是通往 AGI 之路。 更新日志:补充对共创模式的思考,删减部分内容。 端午假期实践了三篇教程,难度从低到高排序为: 1. https://waytoagi.feishu.cn/wiki/QWQ0w1QOZiNZz9kreQecY4hYn4c (入门级网速好的话,一个小时能搞定) 2. https://waytoagi.feishu.cn/wiki/XnvIwd8NkiDefHkmbobcCfsBnKg 3. https://waytoagi.feishu.cn/wiki/YeBiwZx2TiyNLMk8pdjcmdQfnjd 关于加强写作能力的训练,准备调整工作流,先把初稿发在飞书上(可能是原来 2 篇或 3 篇的集合,有一些不方便说的也先发在初稿,后续再删),获取大家反馈后再拆分细化。 自我介绍:Allen,一个小镇青年,是 WaytoAGI 共创者。
2024-10-12
近期更新的虚拟陪伴产品
以下是近期更新的一些虚拟陪伴产品: 1. Character.ai:这是一个 AI 虚拟陪伴平台,用户可与数百个 AI 驱动的角色交流,包括名人、动漫角色等,还能创建自己的角色并赋予其描述、图像、个性等特性。 2. Replika:一款 AI 虚拟陪伴应用,用户能设计理想伴侣,其会存储记忆并在未来对话中参考,甚至可发送照片。 3. Talkie:主打情感路线的 AI 虚拟陪伴应用,设计有大量 npc,游戏和休闲娱乐体验感更强,每个 npc 带有自己的剧情体系,交流中会触发抽取卡牌机会。 享受型虚拟陪伴方面:享受是人不用付出就能得到想要的。过去 20 年,互联网产品在让用户享受上有成熟方法论,如交互简便、流程便利、连接畅通、内容无限。但用这些标准衡量 AI 产品,尤其是虚拟陪伴产品时,能经受审视的不多。当前虚拟陪伴产品本质上是角色扮演对话工具,用户核心体验是和 AI 扮演的虚拟角色通过文字消息、图片消息、语音消息、语音通话、视频通话等方式聊天。 此外,主流虚拟陪伴产品以一问一答的多轮对话作为基础交互方式,通过更产品化的信息收集方式降低高质量 Prompt 获得的门槛。但仍有人表示不会使用此类产品。推荐大家收听如等播客。 以上内容由 AI 大模型生成,请仔细甄别。
2024-09-10