Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

GPT4自主学习

Answer

GPT4 具有一定的自主学习能力:

  • Ilya Sutskever 在 5 年前分享过名为 Self-play 的概念,即两个 AI 在虚拟环境中相互博弈,通过 RL 最终实现学习能力。在 ChatGPT Code Interpreter 环境下,用户使用自然语言 Prompt 转为 code,Code Interpreter 反馈出错信息,GPT 会根据错误信息再次调整 code 直至成功运行,完成指令。基于这样的技术框架,GPT 通过 prompt to code 实现语义理解、语音转换、视觉分析、图像生成、API 调度等一系列 Action,用户甚至可以自定义 AR 的交互方式。
  • 在报告《GPT-4 通用人工智能的火花》中,测试了该模型在计划和解决问题方面的能力,以及通过玩各种游戏和与工具互动来快速学习和从经验中学习的能力。特别是,GPT-4 能够使用工具(包括自身),这对构建真实世界应用程序非常重要。
  • 在编程方面,要求 GPT-4 和 ChatGPT 编写自定义优化器模块,虽然两个模型都生成了语法有效的代码,但只有 GPT-4 的响应在很大程度上与指令匹配。
Content generated by AI large model, please carefully verify (powered by aily)

References

用GPT4V写AR交互

Ilya Sutskever在5年前分享过[meta-learning](https://www.bilibili.com/video/BV1wb4y1M7iY/?spm_id_from=333.337.search-card.all.click&vd_source=c9c37a9df0798c5655ccd8a46fd4d281),其中有一个叫Self-play概念。就是两个AI在一个虚拟环境(play ground)相互博弈,通过RL最终实现学习能力。所以在ChatGPT Code Interpreter环境下,用户可以使用自然语言Prompt转为code,Code Interpreter反馈出错信息,GPT会根据错误信息再次调整code直到成功运行,完成指令。基于这样的技术框架,GPT通过prompt to code实现语义理解,语音转换,视觉分析,图像生成,API调度等一系列Action。用户甚至可以自定义AR的交互方式。

报告:GPT-4 通用人工智能的火花

[title]报告:GPT-4通用人工智能的火花[heading1]1.介绍[heading2]1.2我们的演示结构3.在第5部分,我们测试了该模型在计划和解决问题方面的能力,以及在某种程度上通过让它玩各种游戏(或者说是模拟游戏环境)以及与工具互动来快速学习和从经验中学习的能力。特别是,GPT-4能够使用工具(包括自身),这肯定对使用GPT-4构建真实世界应用程序非常重要。4.我们论证的一个重要部分是,GPT-4在许多任务上达到了人类水平的表现,因此,自然会问GPT-4对人类本身的理解有多好。我们在第6部分展示了关于这个问题的几个实验,既包括理解人类,也包括GPT-4使自己能够被人类理解的问题,即解释性问题。我们特别注意到,这些任务需要大量的常识,这在LLM中迄今为止一直是众所周知的痛点[DM15]。在下图中,我们给出了一个GPT-4在常识问题上表现得比ChatGPT好得多的例子,并在附录A中提供了更多的例子。5.在整个论文中,我们明确讲了发现的所有限制,同时也专门在第8部分对GPT-4架构中的自回归特性导致的缺乏规划能力进行了深入分析。6.最后,在第9部分,我们讨论了这种早期形式的AGI的预期社会影响,而在第10部分,我们分享了该领域的关键挑战、方向和下一步行动。很多读者可能心中仍然有一个问题,即GPT-4是否真正理解了所有这些概念,还是仅仅比以前的模型更擅长即时改进(improvisation),而没有真正或深刻的理解。我们希望在阅读本文后,这个问题几乎应该反过来了,人们可能会想知道真正的理解远比即兴表演复杂得多。如果一个系统能够通过软件工程候选人的考试(下图),难道就不能说它真正具有智能吗?也许理解的唯一真正测试是能否产生新知识,例如证明新的数学定理,这在LLM中目前仍然是不可实现的。

报告:GPT-4 通用人工智能的火花

[title]报告:GPT-4通用人工智能的火花[heading1]3.编程[heading2]3.1从指令到代码-深度学习-编写深度学习代码需要掌握数学、统计学知识,并熟悉框架和库,如PyTorch、TensorFlow、Keras等。在下图中,我们要求GPT-4和ChatGPT编写自定义优化器模块,这对于即使是深度学习专家来说也可能是具有挑战性和容易出错的任务。我们给这些模型提供自然语言描述,其中包括一系列非常规操作,例如应用SVD,对矩阵进行谱截断,在top-k和top-2k特征值上进行截断,使用top-2k截断矩阵的F-norm对top-k截断矩阵进行归一化,应用动量和权重衰减。这些指令没有详细解释,例如「在Gk上应用动量」需要「深度学习的常识」。值得注意的是,这种优化器在文献或互联网上不存在,因此模型不能将其记忆,而必须正确组合概念才能生成代码。虽然两个模型都生成了语法上有效的代码,但只有GPT-4的响应在很大程度上与指令匹配,而它忘记了「循环遍历维度」和「根据动量规范化Gk」,这些指令特别含糊不清。相比之下,ChatGPT在应用动量时犯了一个相当致命的错误(用红色突出显示)。请注意,将动量应用于PyTorch是一项非平凡的任务,需要将移动平均值存储和读取到一个单独的状态缓冲区中。

Others are asking
怎么注册gpt4
以下是注册 GPT4 的详细步骤: 苹果系统安装、订阅 GPT4 教程 一、注册一个苹果的美区 ID 1. 电脑上打开 Apple ID 的注册页面:[https://appleid.apple.com/ac 2. 填写验证码后点继续 3. 到您的谷歌邮箱接收邮箱验证码 4. 接着验证手机号码 5. 验证完后会出现相关页面,此时美区 ID 已注册但未激活,切换到手机操作 6. 打开 App Store,点击右上角的人形头像 7. 拉到最底下,点击退出登录,先退出国内的 ID 8. 之后再点击右上角的人形头像 9. 正常设置里会登录国内的 ID,这里选择否,手动输入美区 ID 10. 接着会收到短信进行双重验证 11. 之后完成美区的 ID 登录 12. 随便找个软件下载 13. 此时会弹出提示,因为是新注册的 ID,需要点击“检查”进行激活 14. 点击同意,进入下一页填写美国地址 15. 最关键的一步:付款方式中没有选项“无”或者“none”时,只需要输入街道地址和电话 16. 至此,通过中国 IP、中国手机号、免信用卡成功注册一个美区 ID,就可以用这个美区 ID 下载例如小火箭(科学上网必备)、ChatGPT、Discord、X、TikTok 等等 二、注册 ChatGPT 账号 1. 访问官方网站:打开浏览器,输入。如有账号直接登录,没有的话点击“注册” 2. 继续使用 Google 登录 3. 跳转到 OpenAl 的网页,然后会跳转到 OpenAl 的网页,填写您的名字跟出生日期 4. 点击“好的,开始吧”进入 chatgpt 主页面,可以免费使用 chatgpt3.5 了 使用 ChatGPT 4 建议需要注册的账号 1. 苹果用户:ChatGPT 账号、美区 AppleID、谷歌账号 2. 安卓用户:ChatGPT 账号、下载 GooglePlay、谷歌账号 注册谷歌账号 1. 访问注册页面:打开浏览器,输入进入谷歌账号注册页面 2. 填写个人信息:在注册页面,按照提示填写个人信息,包括姓名、用户名、密码(年龄最好大于 18 岁) 3. 填写邮箱账号:可以选择推荐前缀或者创新的邮箱地址 4. 设置密码 5. 验证电话号码:有一定概率跳到接收短信验证,这里填国内的号码就可以。有时不用验证手机号码 6. 填写辅助邮箱 7. 确认账户信息,同意服务条款和隐私政策:阅读谷歌的服务条款和隐私政策,点击“我同意”完成账号注册 8. 完成注册:可在“Personal info”里设置语言、头像等信息 注:使用以上软件需要会科学上网,不会的可以私信我。
2025-01-06
gpt4 可以免费了吗
GPT4 并非完全免费。免费用户有一定的对话次数限制,付费 Plus 用户可以批量对话。目前 ChatGPT 官网有两个版本,GPT3.5 是免费版本,而 GPT4 若要使用更多功能则需要升级到 PLUS 套餐,收费标准是 20 美金一个月。此外,微软 Copilot iOS 版中 GPT4 可免费使用,功能类似 ChatGPT 和 DALLE 3 图像生成,并提供 Image Creator 功能,可从文本提示创建海报。
2024-12-30
你和GPT4o、MJ、suno有什么区别呢
GPT4o 能快速返回答案,但可能存在错误且无法自动纠错。 o1 推理模型在给出最终结果前会反复推演和验证,耗时更长但结果更准确,o1 Pro 计算时间更长,推理能力更强,适合复杂问题。 MJ (Midjourney)是一款专注于生成图像的工具。 Suno 相关的特点未在提供的内容中有明确提及。 由于不清楚您提到的“Suno”的具体情况,无法给出更详细的对比。但总体来说,不同的工具在功能、性能、适用场景等方面存在差异。
2024-12-26
你和gpt4有什么区别
以下是关于我和 GPT4 的一些区别: 1. 在数学能力方面,GPT4 可能在比数学数据更多的代码上进行训练。相对于 ChatGPT,GPT4 在许多复杂数学问题中展示出更深入的理解,并能够应用适当的推理,而 ChatGPT 通常采用低级启发式方法,缺乏实际理解。 2. 在处理复杂约束及追问任务时,GPT4 不会像 GPT4o 那样首先主动询问用户的背景信息来判断提问意图。 3. 在局限性方面,GPT4 通常缺乏对 2021 年 9 月后发生事件的了解,不会从经验中学习,有时会犯简单推理错误,过于轻信用户虚假陈述,可能在预测中自信犯错且不注意复查工作。预训练模型高度校准,但后训练过程中校准度降低,其输出存在各种偏差。
2024-12-26
gpt4
以下是关于 GPT4 的相关信息: 技术报告: GPT4 是一个能够处理图像和文本输入并产生文本输出的大型多模态模型。 此类模型是重要研究领域,有潜力用于多种应用,如对话系统、文本摘要和机器翻译,近年来备受关注并取得进展。 开发目标之一是提高理解和生成自然语言文本能力,尤其在复杂细致场景中。 GPT4 在为人类设计的考试中表现出色,如在模拟律师考试中分数位列前 10%,与 GPT3.5 形成鲜明对比。 在传统 NLP 基准测试中,超过以前大型语言模型和大多数先进系统,在 MMLU 基准测试中,不仅在英语中优势明显,在其他语言中也表现强大。 报告还讨论了项目关键挑战,即开发在各种规模下表现可预测的深度学习基础设施和优化方法。 GPT4 有类似早期 GPT 模型的局限性,如不完全可靠、上下文窗口有限、不从经验学习,使用其输出结果需谨慎。 能力测试: 在一系列不同基准上进行测试,包括模拟为人类设计的考试。 考试中的少数问题是模型在训练中看到的,会运行去除这些问题的变体,并报告较低分数,相信结果有代表性。 考试来源为公开材料,包括选择题和自由回答题,为每种形式设计单独提示,在需要输入的问题中加入图像。 评估设置根据考试验证集成绩设计,报告的最终结果基于预留测试考试,总分通过结合选择题和自由回答题分数确定,并报告应试者百分数。 对于 AMC 10 和 AMC 12 2022 年考试,人类百分位数未公布,报告数字是推断的,可能有不确定性。 常见问题解答: 所用模型为 GPT4。 若 GPT4 总结内容质量不行,可点击“重试”按钮让其重新总结。 无法让 GPT 输出排版内容时直接不输出“”,强制不输出会导致总结内容效果大幅下降。 前面提到的剪切板共享工具是微信输入法。
2024-12-25
我想用gpt4写实习契约,想让它写的有水平一些,该怎么办
以下是一些利用 GPT4 写有水平实习契约的建议: 1. 先确定实习契约的大纲目录,可以参考老师提供的示例或相关模板,也可以用手机识别截图获取。 2. 明确整体的语言风格和特色,比如要求逻辑清晰、层层递进、条理分明。您可以把范文提供给类似 Claude 2 的工具,让其总结语言风格。 3. 详细描述实习契约的各项条款,包括实习的时间、地点、职责、报酬、保密条款等。 4. 注意语言表达的准确性和规范性,避免模糊不清或产生歧义的表述。 需要注意的是,GPT4 有时会产生语法无效或语义不正确的内容,您需要仔细检查和修改。
2024-11-22
Ai有自主思考能力吗?
AI 可能具备自主学习和自我改进的能力,能够自主决策,甚至可能已有轻微的自我意识。但对于 AI 是否具有真正的自主思考能力,目前仍存在诸多争议和探讨。 有人认为,当 AI 给出“完美”答案时,可能只是对海量数据的巧妙重组,而非真正理解问题本质。也有人质疑,我们在认为 AI 展现出类人思维时,可能是自身的拟人化偏差在起作用。 在企业决策中,AI 具有双刃剑效应,既能提升效率,也可能带来认知陷阱和伦理困境。例如,可能会用看似客观的数据合理化主观偏见,消耗独立思考能力,以及在道德决策方面存在责任归属问题等。 总之,对于 AI 是否具有自主思考能力,还需要更深入的研究和思考。
2024-12-19
人工智能会出现自主意识吗
目前对于人工智能是否会出现自主意识尚无定论。 一方面,有观点认为模仿可能是使 AI 具有“自主意识”的一种可能路径。如果一个 AI 可以长期观察人类,在类似条件再次触发时,可能会判断形成某一动机是大概率事件,进而通过长期模仿训练而产生动机。并且,如果让数字克隆体可以交流、融合,形成群体智能,也可能促使其产生自主意识。 另一方面,按照一些专家的预测,当 AI 变得比人类更聪明,达到奇点时,机器可能会具有自我意识和超级智能,届时我们对机器意识的概念将有重大转变,可能会面对真正的数字生命形式。但目前的 LLM 应用程序和智能体还未达到完全自主智能体的水平。 总之,关于人工智能是否会出现自主意识仍在探讨和研究中。
2024-12-18
我想要AI工具帮我快速梳理出这10个左右PDF文档/PDF文档链接中我想要的关键信息,并且整理成表格,请推荐可以实现相关功能、支持自主阅读多个篇幅10页以上文档并且能快速响应的工具给我
以下是一些可以帮助您快速梳理 PDF 文档关键信息并整理成表格的工具推荐: 1. Inhai: Agentic Workflow:能够重塑获取信息的方式,辅助高效处理信息,实现信息表达更简便。 2. 彩云小译(App):下载后点击「文档翻译」,可导入多种格式文档并翻译,但有免费次数限制且进阶功能需付费。 3. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击相关操作可进行翻译。 4. DeepL(网站):,点击页面「翻译文件」按钮,上传相应格式文件即可。 5. 沉浸式翻译(浏览器插件):,安装插件后按相关操作进行。 6. Calibre(电子书管理应用):,下载安装并安装翻译插件「Ebook Translator」。 7. 谷歌翻译(网页):,需先将 PDF 转成 Word 再上传。 8. 百度翻译(网页):,点击导航栏「文件翻译」上传相应格式文件,支持选择领域和导出格式,但进阶功能基本需付费。
2024-09-25
零基础学习ai
以下是为零基础学习 AI 提供的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有一个案例供您参考:二师兄来自上海,是典型的 80 后,房地产行业从业二十年,计算机零基础。2024 年 2 月,他在七彩虹的售后群中,因老哥分享用 AI 绘画的心得,要了 SD 秋叶安装包,下载了教学视频,迈出了 AI 学习的第一步。之后他不断学习和实践,如在 3 月啃完 SD 的所有教程并开始炼丹,4 月与小伙伴探讨 AI 变现途径,5 月加入 Prompt battle 社群,开始 Midjourney 的学习。
2025-02-18
有哪些比较好的AI知识库学习网站
以下是一些比较好的 AI 知识库学习网站及相关学习建议: 通往 AGI 之路知识库: 提供了全面系统的 AI 学习路径,帮助您了解从 AI 常见名词到 AI 应用等各方面知识。 包含关于 AI 知识库使用及 AIPO 活动的介绍、AIPO 线下活动及 AI 相关探讨、way to AGI 社区活动与知识库介绍等内容。 信息来源有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。 有社区共创项目,如 AIPU、CONFIUI 生态大会,每月有切磋大会等活动,还发起了新活动 AIPO。 学习路径方面,有李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。 有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 初学者入门推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 有历史脉络类资料,整理了 open AI 的发展时间线和万字长文回顾等。 网站:ytoAGI.com 相关渠道:公众号“通往 AGI 之路”、 在线教育平台:如 Coursera、edX、Udacity 等,上面有一系列为初学者设计的课程,您可以按照自己的节奏学习,并有机会获得证书。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-02-18
作为前端开发人员,推荐学习哪些AI技术呢
作为前端开发人员,以下是一些推荐学习的 AI 技术: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习、自然语言处理等主要分支及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。 此外,如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 如果偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-18
我是不懂编码的文科生,我学习扣子Coze的应用,难度大吗?大概需要多长时间?
对于不懂编码的文科生来说,学习扣子 Coze 的应用是具有一定挑战性的,但并非不可逾越。 根据相关资料,扣子 Coze 应用于 11 月底推出,其低代码或零代码的工作流等场景做得较好。在学习过程中,您需要熟悉操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。 课程安排方面,第一天会熟悉扣子应用、认识界面、搭建证件照简单应用,解决表单使用等卡点。 不过,社区中很多不懂代码的设计师和产品经理在搭建时也感到吃力。对于学习所需的时间,难以给出确切的时长,这取决于您的学习能力和投入程度。但如果您能认真参与课程学习,逐步掌握相关知识和技能,相信会在一段时间内取得一定的成果。
2025-02-18
想做ai产品经理如何从0到1学习ai
如果您想从 0 到 1 成为 AI 产品经理,可以按照以下步骤学习: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考以下案例: 90 分钟从 0 开始打造您的第一个 Coze 应用,了解 Code AI 应用开发教学,包括其背景、现状、证件照应用案例以及学习过程,重点熟悉桌面网页版的用户界面。 参考北京分队成员的经验,如枫 share、行远、管子、猫先生、Andy 等在 AI 领域的技能、经验、职业、兴趣爱好等方面的情况。
2025-02-18
dify学习
Dify 是一个开源的大模型应用开发平台: 理念:结合后端即服务和 LLMOps 的理念。 特点:提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。具有强大的工作流构建工具,支持广泛的模型集成,有功能丰富的提示词 IDE 以及全面的 RAG Pipeline 用于文档处理和检索。允许用户定义 Agent 智能体,并通过 LLMOps 功能持续监控和优化应用程序的性能。 部署选项:提供云服务和本地部署,满足不同用户需求。 开源特性:确保对数据的完全控制和快速的产品迭代。 设计理念:注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实。 使用建议:个人研究时推荐单独使用,企业级落地项目推荐多种框架结合,效果更好。 Dify 官方手册:https://docs.dify.ai/v/zhhans
2025-02-18