Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有哪些免费使用的数据分析模型?

Answer

以下是一些免费使用的数据分析模型:

此外,OpenAI API 由具有不同功能和价位的多种模型提供支持,如:

  • GPT-4Beta:一组改进 GPT-3.5 的模型,可以理解和生成自然语言或代码。
  • GPT-3.5:一组改进 GPT-3 的模型,可以理解并生成自然语言或代码。
  • DALL·EBeta:可以在给定自然语言提示的情况下生成和编辑图像的模型。
  • WhisperBeta:可以将音频转换为文本的模型。
  • Embeddings:一组可以将文本转换为数字形式的模型。
  • CodexLimited Beta:一组可以理解和生成代码的模型,包括将自然语言转换为代码。
  • Moderation:可以检测文本是否敏感或不安全的微调模型。
  • GPT-3:一组可以理解和生成自然语言的模型。

需要注意的是,智谱 AI 提供的所有开源模型均可下载后基于完全离线的环境使用,用户无需担心数据泄露等风险。但 AI 模型可能犯错,由于模型回答造成的后果,智谱 AI 不承担相应责任。

Content generated by AI large model, please carefully verify (powered by aily)

References

模型(Models)

[title]模型(Models)[heading2]概述我们还发布了开源模型,包括[Point-E](https://github.com/openai/point-e),[Whisper](https://github.com/openai/whisper),[Jukebox](https://github.com/openai/jukebox)和[CLIP。](https://github.com/openai/CLIP)访问[供研究人员的模型索引](https://platform.openai.com/docs/model-index-for-researchers)详细了解我们的研究论文中介绍了哪些模型以及InstructGPT和GPT-3.5等模型系列之间的差异。

智谱·AI 开源模型列表

智谱AI提供的所有开源模型均可以在以下平台进行下载:[Huggingface](https://huggingface.co/THUDM)|[魔搭社区](https://modelscope.cn/organization/ZhipuAI)|[启智社区](https://openi.pcl.ac.cn/Zhipu.AI)|[始智社区](https://wisemodel.cn/organization/ZhipuAI)|[SwanHub](https://swanhub.co/ZhipuAI)欢迎开发者和用户下载我们的开源模型。[heading2]模型声明[heading3]数据隐私[content]智谱AI提供的所有开源模型均可下载后基于完全离线的环境使用,用户无需担心数据泄露等风险![heading3]商业化行为[content]智谱AI所有的开源模型对学术研究完全开放,部分模型(ChatGLM系列)在填写[问卷](https://open.bigmodel.cn/mla/form)进行登记后亦允许免费商业使用。AI模型可能犯错,由于模型回答造成的后果,智谱AI不承担相应责任。[ChatGLM3技术文档](https://zhipu-ai.feishu.cn/wiki/WvQbwIJ9tiPAxGk8ywDck6yfnof)[CogAgent & CogVLM](https://zhipu-ai.feishu.cn/wiki/LXQIwqo1OiIVTykMh9Lc3w1Fn7g)[智谱AI API开发文档](https://zhipu-ai.feishu.cn/wiki/FelEwysrFiM81ekrRqfcWN24nXb)[GLM解决方案](https://zhipu-ai.feishu.cn/wiki/OuUfwIuADizeYYkagBzcWZfQntf)

模型(Models)

[title]模型(Models)[heading2]概述OpenAI API由具有不同功能和价位的多种模型提供支持。您还可以通过[微调(fine-tuning)](https://ywh1bkansf.feishu.cn/wiki/ATYCwS5RRibGXNkvoC4ckddLnLf),针对您的特定用例对我们的原始基本模型进行有限的定制。|模型|描述|<br>|-|-|<br>|[GPT-4](https://platform.openai.com/docs/models/gpt-4)Beta|一组改进GPT-3.5的模型,可以理解和生成自然语言或代码|<br>|[GPT-3.5](https://platform.openai.com/docs/models/gpt-3-5)|一组改进GPT-3的模型,可以理解并生成自然语言或代码|<br>|[DALL·E](https://platform.openai.com/docs/models/dall-e)Beta|可以在给定自然语言提示的情况下生成和编辑图像的模型|<br>|[Whisper](https://platform.openai.com/docs/models/whisper)Beta|可以将音频转换为文本的模型|<br>|[Embeddings](https://platform.openai.com/docs/models/embeddings)|一组可以将文本转换为数字形式的模型|<br>|[Codex](https://platform.openai.com/docs/models/codex)Limited Beta|一组可以理解和生成代码的模型,包括将自然语言转换为代码|<br>|[Moderation](https://platform.openai.com/docs/models/moderation)|可以检测文本是否敏感或不安全的微调模型|<br>|[GPT-3](https://platform.openai.com/docs/models/gpt-3)|一组可以理解和生成自然语言的模型|

Others are asking
数据分析产品的智能体有哪些
以下是一些常见的数据分析产品的智能体类型: 1. 简单反应型智能体:根据当前的感知输入直接采取行动,不维护内部状态和考虑历史信息。例如温控器,根据温度传感器的输入直接控制加热器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入进行建模,能推理未来的状态变化并据此行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体:具有明确的目标,能根据目标评估不同的行动方案并选择最优行动。像机器人导航系统,有明确目的地并规划路线以避开障碍。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣并权衡利弊。例如金融交易智能体,根据市场条件选择最优交易策略。 5. 学习型智能体:能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。比如强化学习智能体,通过与环境互动不断学习最优策略。 此外,还有一些具体的数据分析产品智能体,如颖子团队的“市场分析报告”生成智能体,它能根据输入的行业/类目关键词自动检索关联信息并生成报告,数据化呈现且附带信息来源网址便于校正,适用于企业管理层、投资者、创业者、营销人员等,可减少信息收集时间,聚焦决策判断。 在智谱 BigModel 开放平台工作流搭建中,也有相关的智能体节点,如具有自主规划任务、使用工具、记忆的 Agent 节点。
2025-02-17
如果我想做数据分析,用什么AI不用翻墙,且免费
以下是一些不用翻墙且免费的可用于数据分析的 AI 工具: 1. Mistral 发布的全新聊天应用:基于 Pixtral Large 124B 多模态模型,支持网络搜索、写作画布与 Flux Pro 图像生成功能。亮点包括网络搜索工具获取最新信息、写作画布功能适合文档创作与协作、高质量图像生成工具 Flux Pro 支持免费使用。在线体验网址: 。 2. 亚马逊实验环境平台:安全性和体验不错,在国内不用翻墙就可体验,对有云需求和免费体验模型的伙伴有帮助。目前加入该平台的模型厂商包括 AI21 Labs、Anthropic、Cohere、Meta、Stability AI、Mistral 和 Amazon。但该测试网址目前只能记住添加的模型,无法像 Claude、GPT 网页一样记住过往交流信息。 在进行数据分析时,您可以利用 AI 进行信息收集,例如与权威网站结合获取关键数据,辅助提取结构化表格数据或编写抓取程序。针对报告需求将内容拆分,避免 AI 单次处理任务过长。借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。通过整理数据,利用 AI 辅助分析后撰写报告初稿,不过最终内容需人工主导校验,避免误导性结论。
2025-02-16
有什么适合销售的AI数据分析及方案梳理的工具
以下是一些适合销售的 AI 数据分析及方案梳理的工具: 1. Salesforce 爱因斯坦:来自 Salesforce 的 AI 工具,能通过分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让销售团队专注关键方面。 2. Clari:专门从事智能收入运营的软件,以创建高度准确的收入预测能力闻名,能统一各种来源数据并以易理解方式呈现,简化财务预测过程。 3. Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 使用 AI 完成阿里巴巴营销技巧和产品页面优化,可以采取以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量产品图片,展示产品特点。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐,增加销售额。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务,解答疑问,提高满意度。 10. 营销活动分析:AI 分析不同营销活动效果,了解哪些活动更吸引顾客并产生销售。 11. 库存管理:AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 帮助卖家在社交媒体上找到目标客户群体,精准营销提高品牌知名度。 14. 直播和视频营销:AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 以下是部分 AI 应用示例: 1. 图虫网:AI 摄影作品销售平台,利用图像识别、数据分析技术,为摄影爱好者提供作品销售渠道,市场规模达数亿美元。 2. 网易云音乐音乐人平台:AI 音乐作品发布平台,运用音频处理、数据分析技术,为音乐创作者提供作品发布等服务,市场规模达数亿美元。 3. 好好住 APP:AI 家居用品推荐平台,通过数据分析、自然语言处理技术,根据用户需求推荐家居用品,市场规模达数亿美元。 4. 东方财富网投资分析工具:AI 金融投资分析平台,借助数据分析、机器学习技术,分析金融市场,提供投资建议,市场规模达数十亿美元。
2025-02-15
AI数据分析
以下是关于 AI 数据分析的相关内容: ChatGPT 助力数据分析: 本文重点介绍了 AI 与数据分析结合的应用,通过实际案例与相关技巧,描述 ChatGPT 如何助力数据分析。 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身的使用情况,输入一句话可分析用户配置图表相关的数据。用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL 后执行,将数据传给 GPT 分析,最后返回分析结论和建议及结果数据给前端渲染图表。 个性化分析:平台上支持上传数据,可提供数据信息(非必填),自定义分析用户自己上传的数据。用户上传文件,前端解析后传给 GPT 分析,后续步骤与 SQL 分析一致。 生成式 AI 季度数据报告 2024 月 1 3 月: 作者包括郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara 。 报告目录包含总体流量概览、分类榜单、文字相关(个人生产力、营销、教育、社交)、创意相关(图像、视频)、音频大类、代码大类、Agent、B2B 垂类等,并附有重要榜单。 作者介绍及各自负责的工作,如郎瀚威 Will 是 AI 数据分析&出海社媒增长 GPTDAO 首席分析师,负责数据准备、分类标准图谱准备等。
2025-02-12
数据分析相关的AI应用
以下是关于数据分析相关的 AI 应用的介绍: ChatGPT 助力数据分析: 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身的使用情况,输入一句话可分析用户配置图表相关的数据。 个性化分析:平台上支持上传数据,可提供数据信息(非必填),以此自定义分析用户自己上传的数据。分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图,可随意切换。 个性化分析示例:包括单维度数据、多维度数据(折线图和柱状图)。有时 AI 会误将数据项作为维度分析,可输入提示告诉它用哪个字段作为维度,也可以描述其他数据信息,使分析更为准确。 总结和展望:ChatGPT 在数据分析领域具有广泛应用前景,在提高效率、降低技能门槛和支持决策等方面有显著优势。但案例分析结果可能简单,真正接入业务可定制多种分析模板,增加分析多样性。实际业务中处理大量数据需指定允许查询或解析的字段并校验结果,做到前后两次校验更可控。随着技术进步,相信会为数据分析带来更多创新和突破。 100 个 AI 应用中的部分数据分析相关应用: AI 游戏道具推荐系统:利用数据分析和机器学习,根据玩家需求推荐游戏道具,已有游戏内商城推荐功能,市场规模达数亿美元。 AI 天气预报分时服务:通过数据分析和机器学习,提供精准的分时天气预报,如彩云天气分时预报,市场规模达数亿美元。 AI 医疗病历分析平台:借助数据分析和自然语言处理,分析医疗病历辅助诊断,如医渡云病历分析系统,市场规模达数十亿美元。 AI 会议发言总结工具:运用自然语言处理和机器学习,自动总结会议发言内容,如讯飞听见会议总结功能,市场规模达数亿美元。 AI 书法作品临摹辅助工具:基于图像识别和数据分析,帮助书法爱好者进行临摹,如书法临摹软件,市场规模达数亿美元。
2025-02-08
如何利用 AI辅助数据分析
利用 AI 辅助数据分析可以通过以下方式实现: 1. SQL 分析: 用户描述想分析的内容,后台连接数据库。 附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 不能通过。 校验通过后执行 SQL 返回结果数据,再将数据传给 GPT(附带上下文),让其学习并分析数据,最后输出分析结论和建议,与结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析: 用户上传文件,如有需要可以简单描述数据、字段意义或作用辅助分析。 前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与 SQL 分析一致。 此外,利用 AI 技术来辅助写作课题可以参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:借助 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-02-08
ai生成短视频,有没有免费的工具
以下是一些免费生成短视频的工具: 1. Project Odyssey:这是全球最大的生成式 AI 视频竞赛之一,提供超过 30 种工具的免费额度,累计超过 75 万美元。 2. ChatGPT + 剪映:ChatGPT 可以生成视频小说脚本,剪映则可以根据脚本自动分析并生成对应的素材和文本框架。 3. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入转化为视频,且免费无限生成。 4. Pictory:AI 视频生成器,允许用户提供文本描述来生成相应的视频内容。 5. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划内容。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,能够帮助您快速生成吸引人的视频内容。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-18
免费图生视频AI有哪些
以下是一些免费的图生视频 AI 工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上生成视频,由 Stability AI 开源。 3. Adobe Firefly:支持文生视频、图生视频、视频翻译,免费用户赠送生成 2 个视频。访问。 4. 混元:腾讯视频模型,目前只支持文生视频,图生视频即将上线。 更多的文生视频的网站可以查看这里: 内容由 AI 大模型生成,请仔细甄别。
2025-02-17
国内有什么免费好用的文字转图片AI吗?
目前国内免费好用的文字转图片 AI 工具包括: 1. DALL·E:由 OpenAI 推出,可根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,能生成高质量图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和友好的用户界面而受欢迎,在创意设计人群中流行。 您还可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104 )查看更多相关工具。但需注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-17
免费生成ppt的ai工具
以下为您介绍一些免费生成 PPT 的 AI 工具: 1. 歌者 PPT(gezhe.com): 功能: 话题生成:一键生成 PPT 内容。 资料转换:支持多种文件格式转 PPT。 多语言支持:生成多语言 PPT。 模板和案例:海量模板和案例库。 在线编辑和分享:生成结果可自由编辑并在线分享。 增值服务:自定义模板、字体、动效等。 简介:是一款永久免费的智能 PPT 生成工具,用户可轻松将任何主题或资料转化为 PPT,并选择应用大量精美模板,适用于多种场景,操作便捷且智能化。 产品优势: 免费使用:所有功能永久免费。 智能易用:通过 AI 技术简化 PPT 制作流程,易于上手。 海量案例:大量精美模板和优秀案例可供选择和下载。 资料转 PPT 很专业:支持多种文件格式,转换过程中尊重原文内容。 AI 翻译:保持 PPT 原始排版不变,多语言在线即时翻译。 推荐理由: 完全免费,对学生和职场人士是福音。 智能化程度高,通过 AI 技术快速将资料转换成精美 PPT,高效准确。 模板和案例库丰富,总能找到适合的模版或案例。 对多语言支持实用,可一键生成目标语言的 PPT 或翻译。 几乎无需学习成本就能上手使用。 2. 讯飞智文(http://zhiwen.xfyun.cn):免费的 AI 制作 PPT 工具。 目前市面上大多数 AI 生成 PPT 按照如下思路完成设计和制作: 1. AI 生成 PPT 大纲。 2. 手动优化大纲。 3. 导入工具生成 PPT。 4. 优化整体结构。 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 此外,还有一些相关工具,如百度文库,有自动 PPT 功能,分为免费和付费版本。橙篇是百度文库于 2024 年 5 月 30 日发布的综合性 AI Native 产品,集多种功能于一身。
2025-02-17
有哪些免费的文生图中文软件
以下是一些免费的文生图中文软件: 1. 豆包 App 支持文生图中文文字生成。 2. Stability AI 推出的基于 Discord 的媒体生成和编辑工具可用于文生图,您可以通过以下步骤使用: 点击链接进入官方 DISCORD 服务器:https://discord.com/invite/stablediffusion 。 进入 ARTISAN 频道,任意选择一个频道。 输入/dream 会提示您没有权限,点击链接,注册登录,填写信用卡信息以及地址,点击提交,会免费试用三天,三天后开始收费。输入/dream 提示词,这部分和 MJ 类似,可选参数有五类,包括提示词(必填项)、负面提示词(选填项)、种子值(选填项)、长宽比(选填项)、模型选择(选填项)、张数(选填项)。完成后选择其中一张。 3. 您还可以参考以下教程: SD 做中文文字生成的教程: 找到一款喜欢的字体,写上主题例如“端午”。 打开 SD,选择文生图,输入关键词咒语。 打开 Controlnet,启用 lineart 和 canny 固定字体,如果希望有景深效果,也可以打开 depth(增加阴影和质感)。 打开高清修复,分辨率联系 1024 以上,步数:29 60 。 直接生成。这里可以举一反三,选择一些水果模型,珠宝模型,毛毡等等快来试一试吧,附免费参数。
2025-02-16
现在大语言模型的跑分对比
对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。 4. 泛化能力:处理未见过的任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。 6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等性能指标来量化比较。 当前领先的大型语言模型的排行榜,例如聊天机器人竞技场,由伯克利的团队管理,根据 ELO 评级对不同语言模型进行排名,计算方式与国际象棋中的类似。在排行榜中,顶部多为专有模型,下方有开放权重的模型。 大语言模型的特点包括: 1. 架构:有 encoderonly、encoderdecoder、decoderonly 等,如 BERT 是 encoderonly 模型,google 的 T5 是 encoderdecoder 模型,众多 AI 助手多为 decoderonly 模型。 2. 数据和参数:预训练数据量大,往往来自互联网,包括论文、代码、公开网页等,参数多,如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。
2025-02-18
现在大语言模型的跑分对比
对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。 4. 泛化能力:处理未见过的任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。 6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等性能指标来量化比较。 当前领先的大型语言模型的排行榜,例如聊天机器人竞技场,由伯克利的团队管理,根据 ELO 评级对不同语言模型进行排名,计算方式与国际象棋中的类似。在排行榜中,顶部多为专有模型,下方有开放权重的模型。 大语言模型的特点包括: 1. 架构:有 encoderonly、encoderdecoder、decoderonly 等,如 BERT 是 encoderonly 模型,google 的 T5 是 encoderdecoder 模型,众多 AI 助手多为 decoderonly 模型。 2. 数据和参数:预训练数据量大,往往来自互联网,包括论文、代码、公开网页等,参数多,如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。
2025-02-18
什么是大模型一体机
大模型一体机是一个相对复杂的概念。通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其本质是两个文件:一个是参数文件,类似于问答机器人的“大脑镜像”,负责处理和生成文本信息;另一个是包含运行这些参数的代码文件。 大模型的训练和使用过程可以类比为上学参加工作: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 大模型的特点包括: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 在架构方面,大模型有 encoderonly、encoderdecoder、decoderonly 等类型。目前常见的 AI 助手多采用 decoderonly 架构。
2025-02-18
传统AI、大模型、AGI的区别
传统 AI、大模型、AGI 存在以下区别: 传统 AI: 语音技能 NLU 通常通过一系列规则、分词策略等训练而成。 运作逻辑规律可观测,具有 ifelse 式的逻辑性。 大模型: 凭借海量数据在向量空间中学习知识的关联性。 运作逻辑难以观测,脱离了 ifelse 的层面。 Transformer 是其底层结构,是一个大参数(千亿级别)的回归方程,底层是 function loss 损失函数,能在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。 大语言模型是一个 perfect memory,repeat 曾经出现的内容。与 Alpha Go 相比,Alpha Go 是增强学习模型,有推理能力,而大语言模型这块很弱。 AGI(通用人工智能): 部分人觉得 LLM(大语言模型)具有 AGI 潜力,但 LeCun 反对。 目前对于能否到达 AGI 阶段尚不明确。 在公众传播层面: AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。 LLM 指 NLP 领域的大语言模型,如 ChatGPT。 GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。 公众传播一般会混用上述名词,但底层是 transformer 结构。
2025-02-18
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
动漫制作中如何使用ai辅助工作
在动漫制作中使用 AI 辅助工作,大致流程如下: 1. 面临时间和金钱的双重压力,需找到适合的制作捷径。AI 目前主要是辅助工具,负责搞定图和片,其他部分仍依赖人工。 2. 效率至关重要。和视频相关的所有内容、资料都记录在飞书文档里。 3. 分工方面,有人负责前期的内容构思和脚本编写,有人主要负责图片、视频生成和视频剪辑。 4. Midjourney 提示词围绕皮克斯、迪士尼、3D 风格来写,例如:"a small white Chiense dragon,anthropomorphic,Smile with surprise,wearing a school uniform,looking at a blurry gift box in the foreground,super closeup shot,camera focus on his face,3D render,Unreal Engine,Pixar 3D style,blurry classroom scene,bright sunshinear 16:9niji 6",重点是"a small white Chiense dragon,anthropomorphic,3D render,Unreal Engine,Pixar 3D style",尺寸比例 16:9,模型选择 niji 6,其他根据需求调整。 5. 动画制作主要使用 Runway,因其控制笔刷有优势。
2025-02-18
哪一款AI 可以实现参考一张柱状图,使用我提供的数据,生成同样的柱状图
以下两款 AI 可以实现参考一张柱状图,使用您提供的数据生成同样的柱状图: 1. PandasAI:这是让 Pandas DataFrame“学会说人话”的工具,在 GitHub 已收获 5.4k+星。它并非 Pandas 的替代品,而是将 Pandas 转换为“聊天机器人”,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。例如,输入“pandas_ai.run”,即可生成相关柱状图。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:这是一款自动进行数据清理并可视化执行过程的数据分析工具,能帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业。平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/
2025-02-18
deepseek使用小技巧
以下是关于 DeepSeek 使用的一些小技巧: 1. 高阶能力调用: 文风转换矩阵:包括作家风格移植(如“用鲁迅杂文风格写职场 PUA 现象”)、文体杂交(如“将产品说明书改写成《史记》列传格式”)、学术口语化(如“把这篇论文摘要翻译成菜市场大妈能听懂的话”)。 领域穿透技术。 2. 场景化实战策略:包括商业决策支持、创意内容生成、技术方案论证。 3. 效能增强技巧: 对话记忆管理:如上下文锚定(“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(“请复述之前确认的三个设计原则”)、焦点重置(“回到最初讨论的供应链问题”)。 输出质量控制:针对不同问题类型进行修正,如过度抽象(“请具体说明第三步操作中的温度控制参数”)、信息过载(“用电梯演讲格式重新组织结论”)、风格偏移(“回归商务报告语气,删除比喻修辞”)。 4. 特殊场景解决方案: 长文本创作:如分段接力法(“先完成故事大纲→逐章扩展→最后进行伏笔校验”)、逻辑粘合剂(“确保新章节与前文的三处细节呼应”)。 敏感内容处理:如概念脱敏法(“用经济学原理类比说明网络审查机制”)、场景移植法(“假设在火星殖民地讨论该议题”)。 5. 通用于任何大模型的提示词针对性技巧: 身份定位技巧:目的是让 AI 理解您的背景和专业水平,例如“作为一名刚入职的电商运营,需要为天猫美妆店铺制定 618 活动方案”。 场景描述技巧:提供具体的应用场景和限制条件,例如“为新上市的儿童智能手表写一篇朋友圈文案,目标用户是 25 35 岁的年轻父母,预算 3000 以内,需强调安全定位功能”。 结构化输出技巧:指定具体的输出格式和内容结构,例如“请用表格对比 2024 年 Q1 特斯拉、比亚迪的销量数据,包含以下维度:月度销量、同比增长、市场份额,并在表格下方总结三个关键发现”。 分步骤提问技巧:将复杂问题拆解为可管理的小任务,例如“请分三步指导新手做美食短视频:前期准备:需要哪些设备和技能 拍摄阶段:关键场景和机位选择 后期制作:剪辑节奏和音乐配合建议”。 反馈优化技巧:通过追问获得更精准的答案。 深度思考引导技巧:获得更深入的分析和见解。 6. 万能提示词:您是一名顶尖的提示词优化专家,请按以下步骤优化下方提示: 分析原提示的模糊性、冗余项和潜在歧义。 基于,重构提示结构(可参考 CRISPE/BROKE 框架)。 生成 3 个优化版本,并解释每版的改进逻辑。 7. 如果官网的搜索不能用,一直崩溃,可以用火山的满血版,在视频的最后 10 分钟左右有手把手教程。 8. 关于 DeepSeek 的论文解读,有直播视频回放和相关论文下载,如。
2025-02-18
deepseek使用说明
DeepSeek 的使用说明如下: 功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 生成单词:输入单词主题、图片风格、单词数量,选择 deepseekr1 模型,可生成指定数量的单词数组,以数组方式输出,包括单词、中文、美式音标、英文句子及其中文翻译。提示词方面,作为专业的单词生成助手,要围绕用户输入主题挖掘相关英语单词,仅输出相关内容,并以规定的数组形式呈现。 产品情况:Deep Research 是基于 AI 模型的产品,使用 GPT4o、o3 等推理模型,结合 UI 交互、搜索引擎等。DeepSeek 只是品牌名,需要搭配具体模型,如 DeepSeek V3(类 GPT4o)和 DeepSeek R1(类 OpenAI o1)。
2025-02-18
清华104页AI使用指南
以下是清华 104 页 AI 使用指南的相关内容: 智能纪要部分: 共学课程涵盖 config UI 从入门到精通,还有个人专栏研究报告、产品数据、全球投融资情况等内容,做项目时可查看细分赛道融资情况,也可学习 AI 功能创业,介绍了企业专栏内容如 Kimi 的技巧等。 提到了 AI 的案例和投稿,包含开发相关、微信机器人、人物角色等内容,还有日报动态、法律法规、历史更新和社区介绍等,布置了关于 AI 兴趣方向的小作业。 介绍了 CONFIUI 生态大会东京站 11 月 16 17 日的活动内容及报名,包括社区共创项目、大奖、首届活动情况、海外创作者共学等。 总结了关于 AI 知识库使用及 AIPO 活动的介绍,包括使用情况、发起背景、内容安排及相关资源等;AIPO 线下活动及 AI 相关探讨,包括规则、玩法、重要地位和研究方向等;way to AGI 社区活动与知识库介绍,包括活动安排、材料准备、使用和内容更新等;还包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。 介绍了 AI 相关技术与活动,如 AI 音乐创作、数字人语音合成、config UI 的应用,以及社区共创项目如东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等,还有作业与报名、线下寄送物料组织活动、AI 春晚即将开始、AIPO 活动及相关挑战、共学活动与技能提升、硬件机器人材料购买、自媒体发布与流量扶持、活动奖项与历史玩法、工具使用与新大赛预告等。
2025-02-17
语文教学如何使用大模型
在语文教学中使用大模型,可以参考以下方面: 1. 提示词设置: Temperature:参数值越小,模型返回结果越确定;调高参数值,可能带来更随机、多样化或具创造性的产出。对于质量保障等任务,可设置低参数值;对于诗歌生成等创造性任务,可适当调高。 Top_p:与 Temperature 类似,用于控制模型返回结果的真实性。需要准确答案时调低参数值,想要更多样化答案时调高。一般改变其中一个参数即可。 Max Length:通过调整控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。 Stop Sequences:指定字符串来阻止模型生成 token,控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,减少响应中单词的重复。 2. 了解大模型: 大模型通俗来讲是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 训练和使用大模型可类比上学参加工作:找学校(需要大量 GPU 计算)、确定教材(大量数据)、找老师(算法)、就业指导(微调)、搬砖(推导)。 Token 是模型处理和生成的文本单位,在将输入进行分词时会形成词汇表。 需要注意的是,在实际应用中,可能需要根据具体的教学需求和场景进行调整和实验,以找到最适合的设置和方法。
2025-02-17