直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

推荐一下个人可以使用的通过对话微调的模型

回答

以下是一些个人可以使用的通过对话微调的模型相关信息:

会话补全(Chat completions)

  • GPT-3.5 系列中,gpt-3.5-turbo 和 text-davinci-003 有相似能力,但 gpt-3.5-turbo 价格仅为 text-davinci-003 的十分之一,在多数情况下更推荐使用 gpt-3.5-turbo。不过,gpt-3.5-turbo 不支持微调,从 2023 年 3 月 1 日起,只能对基于 GPT-3.5 的模型进行微调。

微调(Fine-tuning)

  • 案例研究:
    • 客户支持聊天机器人:通常包含相关上下文、对话摘要及最近消息,可能需要几千个示例处理不同请求和客户问题,建议审查对话样本确保代理消息质量,可使用单独文本转换微调模型生成摘要。
    • 基于技术属性列表的产品描述:将输入数据转换为自然语言很重要,确保完成基于所提供描述,若常查阅外部内容,自动添加此类内容可提高性能,若描述基于图像,提取图像文本描述可能有帮助。

模型(Models)

  • GPT-3.5 模型可理解和生成自然语言或代码,其中功能最强大、最具成本效益且针对聊天优化的型号是 gpt-3.5-turbo,建议使用它而非其他 GPT-3.5 模型,因其成本更低。
    • gpt-3.5-turbo:功能强大,针对聊天优化,成本低,会使用最新模型迭代更新,最大 Token 数 4096,训练数据截至 2021 年 9 月。
    • gpt-3.5-turbo-0301:2023 年 3 月 1 日的快照,不会更新,仅在 2023 年 6 月 1 日结束的三个月内提供支持,最大 Token 数 4096,训练数据截至 2021 年 9 月。
    • text-davinci-003:能完成任何语言任务,支持文本中插入补全,最大 Token 数 4097,训练数据截至 2021 年 6 月。
    • text-davinci-002:与 text-davinci-003 类似,使用监督微调而非强化学习训练,最大 Token 数 4097,训练数据截至 2021 年 6 月。
    • code-davinci-002:针对代码完成任务优化,最大 Token 数 8001,训练数据截至 2021 年 6 月。

请注意,OpenAI 模型具有不确定性,相同输入可能产生不同输出,将温度设置为 0 可使输出大部分具有确定性,但可能仍有少量可变性。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

会话补全(Chat completions)

gpt-3.5-turbo和text-davinci-003两个模型拥有相似的能力,但前者的价格只是后者的十分之一,在大部分情况下,我们更推荐使用gpt-3.5-turbo。对于许多开发者来说,转换就像重写和重新测试prompt一样简单。例如,假设你使用下面的补全prompt来让英语转换成法语:一个对应的对话会话是这样的:或者甚至只要用户消息:[heading2]常见问题[heading3]gpt-3.5-turbo模型支持微调(fine-tuning)吗?[content]不支持。从2023年3月1日起,你只能对基于GPT-3.5的模型进行微调。有关如何使用微调模型的更多细节,请参阅微调指南[heading3]你们会把通过API获取到的数据进行保存吗?[content]从2023年3月1日起,我们会将你通过API发送给我们的数据保留30天但不会使用这些数据来提升模型。了解更多关于我们的数据使用条款。[heading3]添加调节层[content]如果你想要给聊天API的输出添加一个调节层,你可以根据我们的调节指南,以避免违反OpenAI使用政策的内容被展示出来。

微调(Fine-tuning)

聊天机器人通常会包含有关对话的相关上下文(订单详细信息)、到目前为止的对话摘要以及最近的消息。对于这个用例,相同的过去对话可以在数据集中生成多行,每次都有稍微不同的上下文,对于每个代理生成作为完成。这个用例将需要几千个示例,因为它可能会处理不同类型的请求和客户问题。为确保高质量的性能,我们建议审查对话样本以确保代理消息的质量。可以使用单独的文本转换微调模型生成摘要。数据集可能如下所示:在这里,我们有意分离不同类型的输入信息,但在提示和完成之间以相同的格式维护客户代理对话框。所有的完成都应该只由代理完成,我们可以\n在进行推理时用作停止序列。[heading4]案例研究:基于技术属性列表的产品描述[content]在这里,将输入数据转换为自然语言很重要,这可能会带来卓越的性能。例如,以下格式:不会像以下那样工作:为了获得高性能,请确保完成是基于所提供的描述。如果经常查阅外部内容,则以自动方式添加此类内容将提高性能。如果描述基于图像,则使用算法提取图像的文本描述可能会有所帮助。由于完成只有一个句子长,我们可以.在推理过程中用作停止序列。

模型(Models)

[title]模型(Models)[heading2]GPT-3.5GPT-3.5模型可以理解和生成自然语言或代码。我们在GPT-3.5系列中功能最强大、最具成本效益的型号是gpt-3.5-turbo,它已针对聊天进行了优化,但也适用于传统的补全(Completion)任务。|MODEL|描述|最大Token数|训练数据|<br>|-|-|-|-|<br>|gpt-3.5-turbo|功能最强大的GPT-3.5型号,针对聊天进行了优化,成本仅为text-davinci-003的1/10。将使用我们最新的模型迭代进行更新。|4096 Token|截至2021年9月|<br>|gpt-3.5-turbo-0301|gpt-3.5-turbo 2023年3月1日的快照。与gpt-3.5-turbo不同,此模型不会更新,并且仅在2023年6月1日结束的三个月内提供支持。|4096 Token|截至2021年9月|<br>|text-davinci-003|可以以比curie、babbage、ada模型更好的质量、更长的输出和一致的指令遵循来完成任何语言任务。还支持在文本中[插入](https://platform.openai.com/docs/guides/completion/inserting-text)补全。|4097 Token|截至2021年6月|<br>|text-davinci-002|与text-davinci-003类似的功能,但使用监督微调而不是强化学习进行训练|4097 Token|截至2021年6月|<br>|code-davinci-002|针对代码完成任务进行了优化|8001 Token|截至2021年6月|我们建议使用gpt-3.5-turbo而不是其他GPT-3.5模型,因为它的成本更低。:::tip注意OpenAI模型是不确定的,这意味着相同的输入可以产生不同的输出。将温度(Temperature)设置为0将使输出大部分具有确定性,但可能会保留少量可变性。:::

其他人在问
我想了解一下关于模型微调的知识
以下是关于模型微调的知识: 介绍:微调可让您从 API 提供的模型中获得更多收益,比如比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了 Token、更低的延迟请求。GPT3 已在大量文本上预训练,微调通过训练更多示例改进小样本学习,让您在大量任务中取得更好结果。对模型微调后,无需在提示中提供示例,可节省成本并降低延迟。在高层次上,微调涉及准备和上传训练数据、训练新的微调模型、使用微调模型。 哪些模型可以微调:微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。还可以继续微调微调模型以添加其他数据,无需从头开始。 微调的概念和意义:在人工智能领域,通常根据应用领域将大模型分为通用大模型和领域特定模型。通用大模型如 GPT4.0、GPT3.5 等具有广泛的自然语言理解能力,但在特定领域表现可能不理想。对大模型针对特定领域进行的训练过程称为微调,通过在特定领域数据上训练,优化所有层参数,提高在该领域的专业性。微调可节省成本、加快模型部署和应用速度。 相关应用开发:除了调用 ChatGPT 之外,还需学会模型微调、设计 Prompt、优化用户交互的解决方案等。在开发中,程序读取结构化数据,如 JSON 格式。通过稳定的提示词设计及一些模型参数(如温度 Temperature 等)来让 ChatGPT 保持稳定输出。
2024-11-12
如何做大模型的云端部署与微调
做大模型的云端部署与微调,主要包括以下步骤: 1. 选择合适的部署方式: 本地环境部署。 云计算平台部署。 分布式部署。 模型压缩和量化。 公共云服务商部署。需根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源: 确保有足够的训练数据覆盖目标应用场景。 准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础: 可以使用开源的预训练模型如 BERT、GPT 等。 也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练: 根据具体应用场景对预训练模型进行微调训练。 优化模型结构和训练过程以提高性能。 5. 部署和调试模型: 将训练好的模型部署到生产环境。 对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护: 大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 例如,对于 SDXL 的大模型,本地部署时要注意模型分为 base+refiner 以及配套的 VAE 模型,需将其放入对应文件夹,并在秋叶启动器中将 webUI 的版本升级到 1.5 以上。而对于 Llama3 的部署和微调,实操分两部分,包括本地部署并通过 webdemo 对话,以及使用特定数据集进行微调,具体流程为购买服务器、安装代码环境、下载通用模型和数据集、挑选微调框架、编写微调程序和验证结果。 总的来说,部署和微调大模型需要综合考虑多方面因素,根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2024-10-26
使用主模型及微调模型进行图像生成的过程是什么?
使用主模型及微调模型进行图像生成的过程通常包括以下步骤: 1. 对于像 Video LDM 这样的模型,首先训练一个 LDM(隐扩散模型)图像生成器。 2. 以 OpenAI 的文本到图像模型为例,在大量由图像和描述图像的文本组成的数据集上进行训练。训练时,先将字符串用分词器分解为离散的 token,通过最大化似然函数构建文本语言模型,然后对图像进行调整将其转换为描述生成器。 3. 为改进在图像生成数据集上的描述效果,对描述生成器进行微调。例如,OpenAI 构建小规模描述数据集来描述图像主对象,诱导模型偏向于描述主对象,此为“短合成描述”;或者创建更长、更丰富的文本数据集来描述图像内容。 4. 对于视频生成,如 Video LDM 向解码器添加额外的时间层,并使用用 3D 卷积构建的逐块时间判别器在视频数据上进行微调,同时编码器保持不变,以实现时间上一致的重建。类似于 Video LDM,Stable Video Diffusion(SVD)也是基于 LDM,在每一个空间卷积和注意力层之后插入时间层,并在整个模型层面上执行微调。 5. 在视频生成的微调过程中,长度为 T 的输入序列会被解释成用于基础图像模型的一批图像,然后再调整为用于时间层的视频格式。其中有 skip 连接通过学习到的融合参数导向时间层输出和空间输出的组合。在实践中,实现的时间混合层有时间注意力和基于 3D 卷积的残差模块等。但 LDM 的预训练自动编码器存在只能看见图像、永远看不见视频的问题,直接用于生成视频会产生闪动伪影和时间一致性差的情况,所以需要进行上述微调操作。
2024-10-19
推荐一下国内可以通过对话微调的预训练模型
以下是为您推荐的国内可以通过对话微调的预训练模型相关信息: 为优化 Llama2 的中文能力,可使用以下数据: 网络数据:互联网上公开的网络数据,包括百科、书籍、博客、新闻、公告、小说等高质量长文本数据。 :中文 Wikipedia 的数据。 :中文悟道开源的 200G 数据。 :Clue 开放的中文预训练数据,经过清洗后的高质量中文长文本数据。 竞赛数据集:近年来中文自然语言处理多任务竞赛数据集,约 150 个。 :MNBVC 中清洗出来的部分数据集。 社区提供预训练版本 Atom7B 和基于 Atom7B 进行对话微调的模型参数供开放下载,关于模型的进展详见社区官网 https://llama.family。 另外,关于会话补全(Chat completions): gpt3.5turbo 和 textdavinci003 两个模型能力相似,但前者价格只是后者的十分之一,在大部分情况下更推荐使用 gpt3.5turbo。 gpt3.5turbo 模型不支持微调。从 2023 年 3 月 1 日起,只能对基于 GPT3.5 的模型进行微调。有关如何使用微调模型的更多细节,请参阅微调指南。 从 2023 年 3 月 1 日起,OpenAI 会将您通过 API 发送的数据保留 30 天但不会使用这些数据来提升模型。 关于安仔:Coze 全方位入门剖析 免费打造自己的 AI Agent(国内版): 目前国内版暂时只支持使用“云雀大模型”作为对话引擎,其携带上下文轮数默认为 3 轮,可修改区间是 0 到 30,具体轮数可根据业务需求决定。 在 Bot 编排页面的“技能”区域,可为 Bot 配置所需技能。不懂插件时,可选择区域右上角的“优化”按钮让 AI Bot 根据提示词自动选择插件。也可自定义添加所需插件,点击插件区域的“+”号选择加入具体插件。 在 Bot 编排页面的“预览与调试”区域,可测试 Bot 是否按预期工作,可清除对话记录以开始新的测试,确保 Bot 能理解用户输入并给出正确回应。
2024-10-18
个人使用可以通过对话微调的大模型
大模型是指输入大量语料,使计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:用合适的算法让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:完成就业指导后,进行如翻译、问答等工作,在大模型里称为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,能代表单个字符、单词、子单词等,具体取决于分词方法。将输入分词时会数字化形成词汇表。 个人动手实验方面: macOS 系统可采用 GGML 量化后的模型。有名的项目如 ggerganov/llama.cpp:Port of Facebook's LLaMA model in C/C++ ,首先编译,利用 Metal 的 GPU 用相应命令编译,然后去下载模型,还提供了 WebUI,启动 server 后默认监听 8080 端口,打开浏览器可对话。 Whisper 与 llama 类似,用 make 命令编译,去指定地址下载量化好的模型,转换音频,目前只接受 wav 格式,可用 ffmpeg 转化。 张梦飞的教程《用聊天记录克隆自己的 AI 分身》全程本地操作,目标是把微信聊天记录导出,用其微调模型,最终接入微信替你回复消息。
2024-10-18
国内能通过对话微调的语言大模型
以下是国内一些能通过对话微调的语言大模型: 教育领域:桃李(Taoli) 地址: 简介:在国际中文教育领域数据上进行了额外训练的模型,基于国际中文教育教材等构建资源库和问答数据集,并利用数据进行指令微调,让模型习得将知识应用到具体场景中的能力。 数学领域:chatglmmaths 地址: 简介:基于 chatglm6b 微调/LORA/PPO/推理的数学题解题大模型,样本为自动生成的整数/小数加减乘除运算,可 gpu/cpu 部署,开源了训练数据集等。 文化领域:Firefly 地址: 简介:中文对话式大语言模型,构造了许多与中华文化相关的数据,如对联、作诗、文言文翻译、散文、金庸小说等,以提升模型在这方面的表现。 金融领域: Cornucopia(聚宝盆) 地址: 简介:开源了经过中文金融知识指令精调/指令微调的 LLaMA7B 模型。通过中文金融公开数据+爬取的金融数据构建指令数据集,并在此基础上对 LLaMA 进行了指令微调,提高了 LLaMA 在金融领域的问答效果。基于相同的数据,后期还会利用 GPT3.5 API 构建高质量的数据集,另在中文知识图谱金融上进一步扩充高质量的指令数据集。 BBTFinCUGEApplications 地址: 简介:开源了中文金融领域开源语料库 BBTFinCorpus,中文金融领域知识增强型预训练语言模型 BBTFinT5 及中文金融领域自然语言处理评测基准 CFLEB。 XuanYuan(轩辕) 地址: 简介:国内首个开源的千亿级中文对话大模型,同时也是首个针对中文金融领域优化的千亿级开源对话大模型。在 BLOOM176B 的基础上针对中文通用领域和金融领域进行了针对性的预训练与微调,不仅可以应对通用领域的问题,也可以解答金融相关的各类问题,为用户提供准确、全面的金融信息和建议。
2024-10-18
与PDF对话
以下是关于与 PDF 对话的相关内容: AIGC 落地应用中,有 ChatWithPDF 官方 Pulgin 可解决 Chat GPT 无法阅读、解析 PDF 的问题,推荐指数为🌟🌟🌟🌟。还有 Voice control for ChatGPT Chrome 插件用于和 ChatGPT 语音对话,支持多种语言,可当英语口语/听力老师,但 TTS 效果生硬,期待改善,推荐指数🌟🌟🌟,下载地址: 增强的 PDF 结构识别框架(pdflux.com)应用于 ChatDOC(海外官网:chatdoc.com),它是 AI 文档阅读助手,能在数秒内总结长文档、解释复杂概念和查找关键信息,在可靠性和准确性方面居所有 ChatPDF 类产品之首。其优势包括精通表格理解、多文档对话、每个回答均可溯源至原文、支持多种文档类型。 阅读书籍、论文的互动式问答场景对应的关键词库有 15 个,如书籍、报告、文件等。ChatGPT 知识库截止于 2021 年 9 月,对于新数据或最新出版的内容无法提供答案,如有现成 PDF,建议通过 CHATDOC 网站进行互动式问答,并提供了输入信息和提出问题的步骤及模板,还有相关案例。
2024-11-13
多轮对话训练中你如何训练模型掌握情感需求
在多轮对话训练中,让模型掌握情感需求可以通过以下几种方式: 1. 利用相关数据集进行训练,例如: Guanaco:地址为,是一个使用 SelfInstruct 的主要包含中日英德的多语言指令微调数据集。 chatgptcorpus:地址为,开源了由 ChatGPT3.5 生成的 300 万自问自答数据,包括多个领域,可用于训练大模型。 SmileConv:地址为,数据集通过 ChatGPT 改写真实的心理互助 QA 为多轮的心理健康支持多轮对话,含有 56k 个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更符合长程多轮对话的应用场景。 2. 在创建提示时采用结构化模式,为模型提供一些情感需求的示例,如: |输入|输出| ||| |一部制作精良且有趣的电影|积极的| |10 分钟后我睡着了|消极的| |电影还行|中性的| 然后单击页面右侧的提交按钮。该模型现在可为输入文本提供情绪。还可以保存新设计的提示。 3. 在多轮次对话中,定期总结关键信息,重申对话的目标和指令,有助于模型刷新记忆,确保准确把握对话的进展和要点。 4. 进行意图识别和分类,特别关注在单一模型或情境中处理多个小逻辑分支的情况。例如在客户服务场景中,快速确定用户提出咨询、投诉、建议等多种类型请求的意图,并分类到相应处理流程中。
2024-11-11
在车载语音多轮对话训练中你如何训练模型掌握情感需求
目前知识库中暂时没有关于在车载语音多轮对话训练中如何训练模型掌握情感需求的相关内容。但一般来说,要训练模型掌握情感需求,可以从以下几个方面考虑: 1. 数据收集:收集包含丰富情感表达的车载语音对话数据,包括不同情感状态下的语音样本和对应的文本描述。 2. 特征提取:从语音和文本数据中提取能够反映情感的特征,如语音的语调、语速、音量,文本中的词汇、句式、语义等。 3. 模型选择:选择适合处理情感分析任务的模型架构,如基于深度学习的循环神经网络(RNN)、长短时记忆网络(LSTM)或门控循环单元(GRU)等。 4. 情感标注:对收集的数据进行准确的情感标注,以便模型学习不同情感的模式。 5. 多模态融合:结合语音和文本等多模态信息,提高情感识别的准确性。 6. 优化算法:采用合适的优化算法来训练模型,调整模型的参数,以提高模型的性能。 7. 模型评估:使用合适的评估指标来评估模型在情感需求掌握方面的性能,并根据评估结果进行调整和改进。
2024-11-11
提供“与知识库对话”的产品服务
以下是关于“与知识库对话”的产品服务相关内容: 如果想要对知识库进行更加灵活的掌控,可以使用额外的软件 AnythingLLM。其安装地址为:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 AnythingLLM 中有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。构建本地知识库时,首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,接着选择对话模式,包括 Chat 模式(大模型根据训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案),最后进行测试对话。 在商业化问答场景中,以一个问答机器人界面为例,其配置包括 AI 模型、提示词和知识库。模型好比是学习过无数知识的人,提示词是告诉模型扮演的角色和专注的技能,知识库则是给模型的工作手册。例如设定 AI 模型为阿里千问模型,提示词设定角色为“美嘉”,知识库放置《爱情公寓》全季剧情。 看十遍不如实操一遍,实操十遍不如分享一遍。如果对 AI Agent 技术感兴趣,可以联系相关人员或者加入免费知识星球(备注 AGI 知识库)。
2024-11-08
提供“与知识库对话”的产品服务
以下是关于“与知识库对话”的产品服务相关内容: 如果想要对知识库进行更加灵活的掌控,需要使用额外的软件 AnythingLLM。其安装地址为:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 AnythingLLM 中有 Workspace 的概念,可以创建独有的 Workspace 与其他项目数据隔离。构建本地知识库时,首先创建工作空间,然后上传文档并进行文本嵌入,接着选择对话模式,包括 Chat 模式(大模型根据训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案),最后进行测试对话。 在商业化问答场景中,以一个问答机器人界面为例,其左侧有三处配置:AI 模型、提示词、知识库。模型可以想象成学习过无数知识的人;提示词是告诉模型扮演的角色和专注的技能;知识库则相当于给模型发放的工作手册。例如设定 AI 模型为阿里千问模型,提示词设定角色为“美嘉”,知识库为《爱情公寓》全季剧情。
2024-11-08
图片对话模型有哪些
以下是一些常见的图片对话模型: ChatGLM: 地址: 简介:中文领域效果最好的开源底座模型之一,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持。 VisualGLM6B: 地址: 简介:一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。依靠来自于 CogView 数据集的 30M 高质量中文图文对,与 300M 经过筛选的英文图文对进行预训练。 ChineseLLaMAAlpaca: 地址: 简介:中文 LLaMA&Alpaca 大语言模型+本地 CPU/GPU 部署,在原版 LLaMA 的基础上扩充了中文词表并使用了中文数据进行二次预训练。 智谱·AI 开源的图片对话模型有: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型。拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。 代码链接: 模型下载:、始智社区 CogVLM17B:强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM 可以在不牺牲任何 NLP 任务性能的情况下,实现视觉语言特征的深度融合。是目前多模态权威学术榜单上综合成绩第一的模型,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。 代码链接: 模型下载: Visualglm6B:一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。 代码链接: 模型下载: 智谱·AI 开源的 Chat 模型有: ChatGLM6Bint4:ChatGLM6B 的 Int4 版本。最低只需 6GB 显存即可部署,最低只需 7GB 显存即可启动微调() 上下文 token 数:2K 代码链接: 模型权重下载链接:魔搭社区、始智社区、启智社区 ChatGLM6Bint8:ChatGLM6B 的 Int8 版本 上下文 token 数:2K 代码链接: 模型权重下载链接:魔搭社区、始智社区、启智社区 AgentLM7B: 简介:1. 提出了一种 AgentTuning 的方法;2. 开源了包含 1866 个高质量交互、6 个多样化的真实场景任务的 Agent 数据集 AgentInstruct;3. 基于上述方法和数据集,利用 Llama2 微调了具备超强 Agent 能力的 AgentLM7B、AgentLM13B、AgentLM70B。 上下文 token 数:4K 代码链接: 模型权重下载链接: AgentLM13B: 上下文 token 数:4K 模型权重下载链接: AgentLM70B: 上下文 token 数:8K 模型权重下载链接:
2024-11-08
什么是大模型
大模型通俗来讲,是输入大量语料,让计算机获得类似人类的“思考”能力,从而能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以用“上学参加工作”来类比: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 在大模型中,Token 被视为模型处理和生成的文本单位,会被数字化形成词汇表,便于计算机处理。为让计算机理解 Token 之间的联系,还需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 大模型的“大”指用于表达 token 之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数。 所谓的大模型,简而言之就是拥有庞大参数数量的模型,通过处理和理解海量数据,能够胜任一系列复杂的任务。大模型强大的原因在于庞大的参数数量和大量的数据,参数帮助模型更深入地理解和生成数据,大量数据是学习的基础,使其能掌握丰富的知识和技能。
2024-11-16
混元大模型
腾讯混元大模型(HunyuanLarge)是全球最大的 MoE 开源模型,具有以下特点: 拥有 3890 亿参数,其中活跃参数为 520 亿。 具备强大的长文本处理和常识推理能力,支持 256K 上下文窗口。 通过数据增强,使用合成数据提升对未见内容的理解。 详细介绍: 模型下载: 技术报告:
2024-11-15
整合多家大预言模型的工具
以下为整合多家大语言模型的工具介绍: 1. Poe: 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验,但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性。 支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导能够启发用户,支持 Explore Chatbot,但丰富度不如后续要介绍的 Character,midjourney prompt 扩写 Chatbot 能力很惊人。 2. Ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小,以满足不同需求和硬件条件。模型库可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 提供 REST API,用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 下载安装地址:https://ollama.com/download/ ,安装完后,在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动,可通过 ollama list 确认,未下载模型时正常显示空,可通过 ollama 命令下载模型。 3. 未来还会不断丰富大模型的外延能力,例如知识库检索、计算工具、WolframAlpha、操作软件等。首先集成了 LangChain 框架,可更方便地基于 Llama2 开发文档检索、问答机器人和智能体应用等。针对 LangChain 框架封装的 Llama2 LLM 类见,简单的调用代码示例如下。
2024-11-15
大模型有哪些前沿论文
以下是一些关于大模型的前沿论文: 2017 年发布的《Attention Is All You Need》,开启了大模型发展的序幕。 2018 年 Google 提出的 BERT(Bidirectional Encoder Representations from Transformers),创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模,参数规模在 110M 到 340M 之间。 2018 年 OpenAI 提出的 GPT(Generative Pretrained Transformer),开创了仅使用自回归语言建模作为预训练目标的方式,参数规模达 1750 亿。 2021 年 Meta 提出的 Large LAnguage Model Approach(LLAMA),是首个开源模型,为构建更大规模、更通用的语言模型提供了方法与工具,参数规模在十亿到千亿之间。 2024 年苹果公布的《MM1:Methods,Analysis & Insights from Multimodal LLM Pretraining》,这是一个具有高达 30B 参数的多模态 LLM 系列,探讨了不同架构组件和数据选择的重要性。
2024-11-15
现在有哪些大模型效果与性能的对齐工具
目前对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的理解程度,涵盖语法、语义、上下文和隐含意义。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:衡量对广泛主题的知识掌握及特定领域的理解深度。 4. 泛化能力:测试处理未见过任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊指令的能力。 6. 偏见和伦理:评估生成文本是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,对用户反馈的适应和持续对话能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务,提供的 API 和工具的易用性。 为进行有效比较,可采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准评估基准。 2. 自定义任务:根据特定需求设计任务评估特定领域表现。 3. 人类评估:结合人类评估者的主观评价,尤其在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中比较不同模型表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等量化比较。 对于大模型的安全对齐,通过对齐(指令调优)能使语言模型更好理解人类意图并增加安全保障,避免输出有害内容。对齐任务可拆解为监督微调及获取 reward model 与进行强化学习调整输出分布两部分。LLAMA2 专门使用安全有监督微调确保安全。强化学习能根据人类反馈调整分布,使模型面对训练分布外数据时能拒绝不当回答。但 Alignment 并非能防护所有安全问题,存在越狱情况使模型对齐失效。 Qwen 2 开源后模型性能超越目前所有开源模型和国内闭源模型。玉宝搞过的 LLM 在线评估中可看到国内闭源大模型的 HUMANEVAL 测评得分,可与 Qwen 2 对比,参考网址:https://www.llmrank.cn/ 。2023 年 8 月起,通义千问推出 Qwen 系列,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen 2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,也已上线中国大语言模型评测竞技场 Compass Arena,测评地址:https://opencompass.org.cn/arena 。Compass Arena 集齐了国内主流的 20 多款大模型,用户可选择两两“对战”。
2024-11-14
lama模型
Llama 模型相关信息如下: 基于多模态大模型给现实世界加一本说明书:后端采用 llama.cpp 挂载 LLaVA 模型,为应用提供推理服务。同时,部署了一个 Flask 应用用于数据前处理和后处理,提供 Stream 流服务。前端页面采用 HTML5,用于采集画面和用户输入。 LLM 开源中文大语言模型及数据集集合:未直接提及 Llama 模型的具体内容。 LayerStyle 副本中的 LayerUtility 中的 LaMa:根据图像遮罩擦除物体,是对 IOPaint 的封装,由 SOTA AI 模型提供支持。提供 LaMa 等模型以及多种擦除方法,可下载模型文件放到指定位置,并对节点选项进行了说明,如选择模型或方法、设备选择、遮罩反转、遮罩扩张幅度、遮罩模糊幅度等。
2024-11-14
图片 视频处理 应用推荐
以下是为您推荐的一些图片和视频处理应用: Runway:具有文生视频、Prompt+图像生成视频、无 Prompt 直接图片转视频等功能。支持 motion 控制和运镜调节,还提供 30 多项图片、视频处理能力,如 Inpainting 视频修复、Motion Tracking 视频主体跟随运动、Remove Any Background 删除视频元素/背景、3D Texture 生成 3D 纹理等。近期控制台上线了 Watch 模块,可查看官方精选的创意案例。 AiLogoArt:将您的 Logo 融入 AI 生成的图象中,能在几分钟内获得专业品牌图片。 PlainScribe:可将大文件转录为完美的文本,上传文件处理完成后可搜索文本或下载 CSV 文件,适用于各种大文件,有灵活的按需付费模式。 RIX:面向开发者的人工智能搜索引擎,可使用 Web 搜索模式查找最新信息或切换到 GPTknowledge 模式获得预先训练的知识即时答案,还能通过流行网站快捷方式简化搜索。 Magic Clips:能让人工智能挑选出录制的最佳时刻,并转化为适合媒体的短视频片段,可添加字幕。 以下是一些从事相关工作的人员: yangzec:学习多模态 AI 的使用和开发应用 凯叔 AI:插画设计 清墨.SALEX:日常工作 above:批量作图 ehhe:绘画,视频,人像,电商背景图 kone:AI 商业应用 xman:自媒体创作 Alan:绘画和视频处理 在野:视频创作 tang:照片处理等 阿鲁:生产 大大大松树:视频工作流 BigPeng:好玩 冻奶味:工作+娱乐休闲 Lily:视频和电商,写真 tim:能用在生产中 木兰:广告推广素材制作 吴:电商 马化腾:Ai 绘画 蔡徐坤:Ai 视频,Ai 绘画,Ai 音乐 吴林林:爱好,家人做写真 初尘:文生视频,做自媒体 ning:工作流
2024-11-16
国内推荐的ai工具
以下是为您推荐的国内 AI 工具: 图像类: 可灵:由快手团队开发,用于生成高质量的图像和视频,图像质量高,但价格相对较高,重度用户年费可达几千元,临时或轻度使用有免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,生成图像质量高、操作界面简洁直观、能与阿里其他产品服务整合,目前免费,每天签到获取灵感值,但存在一些局限性,如某些类型图像无法生成、处理非中文或国际化内容可能不够出色、处理多元文化内容可能存在偏差。 内容仿写类: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风、实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,能一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发,能提升写作效率和创作体验。 更多 AI 写作类工具可查看:https://www.waytoagi.com/sites/category/2 (内容由 AI 大模型生成,请仔细甄别) 思维导图类: GitMind:免费跨平台,支持多种模式,可通过 AI 自动生成思维导图。 ProcessOn:国内思维导图+AIGC 的工具,可利用 AI 生成思维导图。 AmyMind:轻量级在线,无需注册登录,支持自动生成节点。 Xmind Copilot:Xmind 推出的基于 GPT 的助手,可一键拓展思路、生成文章大纲。 TreeMind:输入需求由 AI 自动完成思维导图生成。 EdrawMind:提供包括 AI 驱动的头脑风暴等功能,帮助提升生产力。
2024-11-15
我需要根据我提供的原素材和要求写作,原素材有可能是多个大型文件,推荐哪个或哪些AI工具?
以下是根据您的需求为您推荐的不同类型的 AI 工具: 对于需要修改医学课题的情况,您可以考虑: Scite.ai:是为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 Scholarcy:能从文档提取结构化数据,生成文章概要,包含多个分析板块。 ChatGPT:强大的自然语言处理模型,可提供医学课题修改意见。 对于内容仿写,推荐以下中文工具: 秘塔写作猫:是 AI 写作伴侣,支持全文改写等功能。 笔灵 AI 写作:是智能写作助手,支持多种写作需求。 腾讯 Effidit 写作:由腾讯 AI Lab 开发的创作助手。 对于文字生成视频,以下产品可供选择: Pika:擅长动画制作,支持视频编辑。 SVD:可在 Stable Diffusion 图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能转换视频风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关工具和信息您可以通过以下链接查看: 更多医学课题修改工具相关:无 更多内容仿写工具相关:https://www.waytoagi.com/sites/category/2 更多文字生成视频工具相关: 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-15
请为我推荐适合中老年人学习的AI课程,并提供对应的链接
以下为适合中老年人学习的 AI 课程推荐: 课程名称:野菩萨的 AIGC 资深课 课程由工信部下属单位【人民邮电出版社】开设,是全网技术更新较快的课程之一。 课程内容丰富,涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。 预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影穿越的大门等内容。 核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程有 ChatGPT 基础、核心文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程涉及通识欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 如果您想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 您可以扫码添加菩萨老师助理,了解更多课程信息。希望这门课程能满足您的学习需求,助您在 AI 学习的道路上不断提升自己。
2024-11-15
推荐几个出海产品,关于AI伴侣和日记管理等服务产品,不限于app
以下是为您推荐的出海产品,包括 AI 伴侣和日记管理等服务产品: 1. AI Diary:这是一款智能日记应用(https://aidiary.io/),采用人工智能技术,能进行真实对话、情绪和写作分析,为用户生成日记摘要和人工智能生成诗歌,为用户提供更深入的反思和个人成长体验。 2. Descript:这是一个多功能工具(https://www.descript.com),可帮助用户进行写作、录制、转录、编辑、协作和分享视频和播客,具有高精度和速度的转录和更正工具,能快速创建社交媒体平台所需的视频剪辑和字幕等。 3. ResearchAIde:这是一个论文分析工具(https://www.researchaide.org),适用于学生、研究人员和商业专业人士,能快速高效地从研究论文中提取并综合相关信息,还可在一个地方整理研究并轻松浏览多篇论文,提供强大的数据提取能力。 4. AI hits:这是一个 AI 生成的音乐排行榜(https://aihits.co/),包含各种由不同 AI 平台和创作者制作的 TikTok 病毒热门歌曲、翻唱、混音和合作作品。 5. Audio Pen:这是一款语音笔记应用(https://audiopen.ai/),可以记录和总结用户想法,适合喜欢通过说话思考的用户,不仅能录下声音,还能转成文字并进行摘要整理。
2024-11-14
给我推荐一款免费的数字人AI软件
以下为您推荐几款免费的数字人 AI 软件: HEYGEN: 优点:人物灵活,五官自然,视频生成很快。 缺点:中文的人声选择较少。 使用方法: 1. 点击网址注册后,进入数字人制作,选择 Photo Avatar 上传自己的照片。 2. 上传后效果如图所示,My Avatar 处显示上传的照片。 3. 点开大图后,点击 Create with AI Studio,进入数字人制作。 4. 写上视频文案并选择配音音色,也可以自行上传音频。 5. 最后点击 Submit,就可以得到一段数字人视频。 DID: 优点:制作简单,人物灵活。 缺点:为了防止侵权,免费版下载后有水印。 使用方法: 1. 点击上面的网址,点击右上角的 Create vedio。 2. 选择人物形象,您可以点击 ADD 添加您的照片,或者使用 DID 给出的人物形象。 3. 配音时,您可以选择提供文字选择音色,或者直接上传一段音频。 4. 最后,点击 Generate vedio 就可以生成一段视频。 5. 打开自己生成的视频,可以下载或者直接分享给朋友。 KreadoAI: 优点:免费(对于普通娱乐玩家很重要),功能齐全。 缺点:音色很 AI。 使用方法: 1. 点击上面的网址,注册后获得 120 免费 k 币,这里选择“照片数字人口播”的功能。 2. 点击开始创作,选择自定义照片。 3. 配音时,您可以选择提供文字选择音色,或者直接上传一段音频。 4. 打开绿幕按钮,点击背景,可以添加背景图。 5. 最后,点击生成视频。 此外,还有以下相关的数字人 AI 软件及信息: 网站名:Runway,网址:https://runwayml.com,有网页有 app 方便。 网站名:haiper,网址:https://app.haiper.ai/,免费。 网站名:SVD,网址:https://stablevideo.com/,有免费额度,对于景观更好用。 网站名:Pika,网址:https://pika.art/,收费 https://discord.gg/pika,可控性强,可以对嘴型,可配音。 网站名:PixVerse,网址:https://pixverse.ai/,免费,人少不怎么排队,还有换脸功能。 网站名:Dreamina,网址:https://dreamina.jianying.com/,剪映旗下,生成 3 秒,动作幅度有很大升级,最新 S 模型,P 模型。 网站名:Morph Studio,网址:https://app.morphstudio.com/,还在内测。 网站名:Heygen,网址:https://www.heygen.com/,数字人/对口型。 网站名:Kaiber,网址:https://kaiber.ai/。 网站名:Moonvalley,网址:https://moonvalley.ai/。 网站名:Mootion,网址:https://discord.gg/AapmuVJqxx,3d 人物动作转视频。 网站名:美图旗下,网址:https://www.miraclevision.com/。 网站名:Neverends,网址:https://neverends.life/create,2 次免费体验,操作傻瓜。 网站名:SD,Animatediff SVD deforum,免费,自己部署。 网站名:Leiapix,网址:https://www.leiapix.com/,免费,可以把一张照片转动态。 网站名:Krea,网址:https://www.krea.ai/,12 月 13 日免费公测了。 关于剪映数字人的“私有化”,您可以参考以下步骤: 1. 第一步打开谷歌浏览器,点击链接 https://github.com/facefusion/facefusioncolab 并点击 open colab 就进到程序主要运行界面。在右上角点击“代码执行程序”选择“全部运行”就行,无需安装,无需付费。点击红框对应的 URL 就会打开操作界面。 2. 第二步,点击“source”上传自己的照片和“target”上传之前的剪映数字人视频,保持默认参数,点击“START”就能生成。 3. 第三步:等着自己专属的数字人视频出炉。 有关数字人使用上的问题,欢迎在底部评论区留言,一起交流。同时如果对数字人课程感兴趣的话,欢迎查看通往 AGI 之路 X AI 沃茨的《克隆你自己》课程。在线观看第一节:https://www.bilibili.com/video/BV1yw411E7Rt/?spm_id_from=333.999.0.0 。
2024-11-14