Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

推荐一下个人可以使用的通过对话微调的模型

Answer

以下是一些个人可以使用的通过对话微调的模型相关信息:

会话补全(Chat completions)

  • GPT-3.5 系列中,gpt-3.5-turbo 和 text-davinci-003 有相似能力,但 gpt-3.5-turbo 价格仅为 text-davinci-003 的十分之一,在多数情况下更推荐使用 gpt-3.5-turbo。不过,gpt-3.5-turbo 不支持微调,从 2023 年 3 月 1 日起,只能对基于 GPT-3.5 的模型进行微调。

微调(Fine-tuning)

  • 案例研究:
    • 客户支持聊天机器人:通常包含相关上下文、对话摘要及最近消息,可能需要几千个示例处理不同请求和客户问题,建议审查对话样本确保代理消息质量,可使用单独文本转换微调模型生成摘要。
    • 基于技术属性列表的产品描述:将输入数据转换为自然语言很重要,确保完成基于所提供描述,若常查阅外部内容,自动添加此类内容可提高性能,若描述基于图像,提取图像文本描述可能有帮助。

模型(Models)

  • GPT-3.5 模型可理解和生成自然语言或代码,其中功能最强大、最具成本效益且针对聊天优化的型号是 gpt-3.5-turbo,建议使用它而非其他 GPT-3.5 模型,因其成本更低。
    • gpt-3.5-turbo:功能强大,针对聊天优化,成本低,会使用最新模型迭代更新,最大 Token 数 4096,训练数据截至 2021 年 9 月。
    • gpt-3.5-turbo-0301:2023 年 3 月 1 日的快照,不会更新,仅在 2023 年 6 月 1 日结束的三个月内提供支持,最大 Token 数 4096,训练数据截至 2021 年 9 月。
    • text-davinci-003:能完成任何语言任务,支持文本中插入补全,最大 Token 数 4097,训练数据截至 2021 年 6 月。
    • text-davinci-002:与 text-davinci-003 类似,使用监督微调而非强化学习训练,最大 Token 数 4097,训练数据截至 2021 年 6 月。
    • code-davinci-002:针对代码完成任务优化,最大 Token 数 8001,训练数据截至 2021 年 6 月。

请注意,OpenAI 模型具有不确定性,相同输入可能产生不同输出,将温度设置为 0 可使输出大部分具有确定性,但可能仍有少量可变性。

Content generated by AI large model, please carefully verify (powered by aily)

References

会话补全(Chat completions)

gpt-3.5-turbo和text-davinci-003两个模型拥有相似的能力,但前者的价格只是后者的十分之一,在大部分情况下,我们更推荐使用gpt-3.5-turbo。对于许多开发者来说,转换就像重写和重新测试prompt一样简单。例如,假设你使用下面的补全prompt来让英语转换成法语:一个对应的对话会话是这样的:或者甚至只要用户消息:[heading2]常见问题[heading3]gpt-3.5-turbo模型支持微调(fine-tuning)吗?[content]不支持。从2023年3月1日起,你只能对基于GPT-3.5的模型进行微调。有关如何使用微调模型的更多细节,请参阅微调指南[heading3]你们会把通过API获取到的数据进行保存吗?[content]从2023年3月1日起,我们会将你通过API发送给我们的数据保留30天但不会使用这些数据来提升模型。了解更多关于我们的数据使用条款。[heading3]添加调节层[content]如果你想要给聊天API的输出添加一个调节层,你可以根据我们的调节指南,以避免违反OpenAI使用政策的内容被展示出来。

微调(Fine-tuning)

聊天机器人通常会包含有关对话的相关上下文(订单详细信息)、到目前为止的对话摘要以及最近的消息。对于这个用例,相同的过去对话可以在数据集中生成多行,每次都有稍微不同的上下文,对于每个代理生成作为完成。这个用例将需要几千个示例,因为它可能会处理不同类型的请求和客户问题。为确保高质量的性能,我们建议审查对话样本以确保代理消息的质量。可以使用单独的文本转换微调模型生成摘要。数据集可能如下所示:在这里,我们有意分离不同类型的输入信息,但在提示和完成之间以相同的格式维护客户代理对话框。所有的完成都应该只由代理完成,我们可以\n在进行推理时用作停止序列。[heading4]案例研究:基于技术属性列表的产品描述[content]在这里,将输入数据转换为自然语言很重要,这可能会带来卓越的性能。例如,以下格式:不会像以下那样工作:为了获得高性能,请确保完成是基于所提供的描述。如果经常查阅外部内容,则以自动方式添加此类内容将提高性能。如果描述基于图像,则使用算法提取图像的文本描述可能会有所帮助。由于完成只有一个句子长,我们可以.在推理过程中用作停止序列。

模型(Models)

[title]模型(Models)[heading2]GPT-3.5GPT-3.5模型可以理解和生成自然语言或代码。我们在GPT-3.5系列中功能最强大、最具成本效益的型号是gpt-3.5-turbo,它已针对聊天进行了优化,但也适用于传统的补全(Completion)任务。|MODEL|描述|最大Token数|训练数据|<br>|-|-|-|-|<br>|gpt-3.5-turbo|功能最强大的GPT-3.5型号,针对聊天进行了优化,成本仅为text-davinci-003的1/10。将使用我们最新的模型迭代进行更新。|4096 Token|截至2021年9月|<br>|gpt-3.5-turbo-0301|gpt-3.5-turbo 2023年3月1日的快照。与gpt-3.5-turbo不同,此模型不会更新,并且仅在2023年6月1日结束的三个月内提供支持。|4096 Token|截至2021年9月|<br>|text-davinci-003|可以以比curie、babbage、ada模型更好的质量、更长的输出和一致的指令遵循来完成任何语言任务。还支持在文本中[插入](https://platform.openai.com/docs/guides/completion/inserting-text)补全。|4097 Token|截至2021年6月|<br>|text-davinci-002|与text-davinci-003类似的功能,但使用监督微调而不是强化学习进行训练|4097 Token|截至2021年6月|<br>|code-davinci-002|针对代码完成任务进行了优化|8001 Token|截至2021年6月|我们建议使用gpt-3.5-turbo而不是其他GPT-3.5模型,因为它的成本更低。:::tip注意OpenAI模型是不确定的,这意味着相同的输入可以产生不同的输出。将温度(Temperature)设置为0将使输出大部分具有确定性,但可能会保留少量可变性。:::

Others are asking
微调
微调(Finetuning)是一种迁移学习技术,常用于深度学习中。其基本思路是先有一个在大量数据上预训练过的模型,该模型已学会一些基本模式和结构,然后在特定任务数据上继续训练,使其适应新任务。 例如在情感分类中,可先使用大量语料库预训练模型学会基本语法和单词语义,再用标注过的电影评论继续训练以判断情感。在图像分类中,先使用大量图片预训练模型学会识别基本形状和纹理,再用标注的猫和狗图片继续训练以区分二者。 创建微调模型时,假设已准备好训练数据,可使用 OpenAI CLI 开始微调工作。需确定从哪个基本模型(如 ada、babbage、curie 或 davinci)开始,并可使用后缀参数自定义微调模型名称。运行命令会上传文件、创建微调作业、流式传输事件直至作业完成。每个微调工作默认从 curie 模型开始,模型选择会影响性能和成本。作业开始后可能需几分钟或几小时完成,若事件流中断可恢复。此外,还可列出现有作业、检索作业状态或取消作业。 微调的超参数方面,选择了适用于一系列用例的默认超参数,唯一需要的参数是训练文件。但调整超参数通常可产生更高质量输出的模型,可能需配置的内容包括:要微调的基本模型名称(如“ada”“babbage”“curie”“davinci”);训练模型的时期数(n_epochs,默认为 4);批量大小(batch_size,默认为训练集中示例数量的 0.2%,上限为 256);微调学习率乘数(learning_rate_multiplier,默认为 0.05、0.1 或 0.2);是否计算分类指标(compute_classification_metrics,默认为假)。配置这些超参数可通过 OpenAI CLI 上的命令行标志传递。
2025-01-11
微调是什么意思
微调(Finetuning)是一种迁移学习技术,常用于深度学习中。其基本思路是:先有一个在大量数据上预训练过的模型,该模型已学会一些基本模式和结构(如自然语言处理中学会基本语法和单词语义,图像识别中学会基本形状和纹理)。然后,在特定任务数据上继续训练这个模型,使其适应新的任务。 以下是两个例子帮助理解: 1. 情感分类:先使用大量语料库预训练模型,使其学会基本语法和单词语义。再收集标注过的电影评论(一部分积极,一部分消极),在这些评论上继续训练模型,使其学会判断评论情感。 2. 图像分类:先使用大量图片(如 ImageNet 数据集)预训练模型,使其学会识别图片中的基本形状和纹理。再收集标注过的图片(一部分是猫,一部分是狗),在这些图片上继续训练模型,使其学会区分猫和狗。 微调在 LLM 应用中,是在已经训练好的模型基础上进一步调整,让模型的输出更符合预期。Finetune、Finetuning 是常用的英文写法。微调是在较小的、针对特定任务的标注数据集上进一步训练已经预训练过的 LLM 的过程,可调整部分模型参数以优化其在特定任务或任务集上的性能。 微调可让您从 API 提供的模型中获得更多收益,如比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省 Token、更低的延迟请求。GPT3 已在大量文本上预训练,微调通过训练比提示中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示中提供示例,这样可以节省成本并实现更低延迟的请求。 微调涉及以下步骤: 1. 准备和上传训练数据。 2. 训练新的微调模型。 3. 使用您的微调模型。 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。这些是原始模型,在训练后没有任何说明(例如 textdavinci003)。您还可以继续微调微调模型以添加其他数据,而无需从头开始。建议使用 OpenAI 命令行界面,安装时需注意相关要求。
2025-01-11
如何微调大模型
微调大模型主要包括以下几个方面: 1. 理解大模型:大模型是通过输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程,包括找学校(需要大量 GPU 进行训练)、确定教材(需要大量数据)、找老师(选择合适算法)、就业指导(微调)和搬砖(推导)。 2. 准备数据集:数据集是让大模型重新学习的知识。例如,对于 Llama3 的微调,可以参考相关文档获取和了解数据集,如下载数据集。 3. 选择微调方式:从参数规模的角度,大模型的微调分成两条技术路线,全量微调 FFT(Full Fine Tuning)对全量的模型参数进行全量训练,PEFT(ParameterEfficient Fine Tuning)只对部分模型参数进行训练。从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 4. 进行微调操作:有了数据集后,将其上传到服务器,编写微调代码并执行,大概 15 分钟左右可完成微调。 5. 参考资源:OpenAI 官方微调教程 。 微调的好处包括提高模型在特定任务中的性能和提高模型效率。经过微调的模型可能会失去一些通用性,但对于特定任务会有更好的表现,同时还能实现更低的延迟和成本。
2025-01-10
微调和增量训练的区别
微调和增量训练是在人工智能领域中用于改进模型性能的两种不同方法,它们有以下区别: 微调: 参数调整范围:分为全量微调(FFT)和参数高效微调(PEFT)。全量微调对全量的模型参数进行全量训练,PEFT 则只对部分模型参数进行训练。 数据使用:在较小的、特定领域的数据集上继续大语言模型(LLM)的训练过程,通过调整模型本身的参数来提高在特定任务中的性能。 效果和优势: 能大幅提高模型在特定任务中的性能,因为可以输入更多示例。 提高模型效率,可通过专门化模型使用更小的模型,且由于只对输入输出对进行训练,能舍弃示例或指令,进一步改善延迟和降低成本。 但经过微调的模型可能会失去一些通用性。 增量训练:文中未明确提及增量训练的相关内容。 总的来说,微调是一种针对特定任务和数据集对模型参数进行调整的有效方法,而增量训练的具体特点和与微调的详细对比在提供的内容中未充分阐述。
2025-01-07
训练以及部署微调模型
以下是关于训练以及部署微调模型的相关信息: 创建微调模型: 假设您已准备好训练数据。使用 OpenAI CLI 开始微调工作,需指定从哪个 BASE_MODEL(如 ada、babbage、curie 或 davinci)开始,可使用后缀参数自定义微调模型的名称。运行命令后会进行以下操作: 1. 使用文件 API 上传文件(或使用已上传的文件)。 2. 创建微调作业。 3. 流式传输事件直到作业完成,这通常需要几分钟,但如果队列中有很多作业或数据集很大,可能需要数小时。 每个微调工作都从默认为 curie 的基本模型开始,模型的选择会影响性能和成本。您的模型可以是 ada、babbage、curie 或 davinci,可访问定价页面了解微调费率的详细信息。 开始微调作业后,可能需要一些时间才能完成。工作可能排在其他工作之后,训练模型可能需要几分钟或几小时,具体取决于模型和数据集的大小。若事件流中断,可通过运行特定命令恢复。工作完成后,会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。 GPT 助手的训练: 在有监督的微调阶段,收集少量但高质量的数据集,要求人工承包商收集提示和理想响应的数据,通常是几万个或类似数量。然后对这些数据进行语言建模,算法不变,只是训练集从互联网文档变为问答提示响应类型的数据。训练后得到有监督的微调模型(SFT 模型),可实际部署。 大型语言模型的微调: 一旦有了基础模型,进入计算成本相对较低的微调阶段。编写标签说明,明确助手的表现期望,雇佣人员创建文档,如收集 100,000 个高质量的理想问答对来微调基础模型,此过程可能只需一天。然后进行大量评估,部署模型并监控表现,收集不当行为实例并纠正,将正确答案加入训练数据,重复此过程。由于微调成本较低,可每周或每天进行迭代。 例如 Llama2 系列,Meta 发布时包括基础模型和助手模型。基础模型不能直接使用,助手模型可直接用于回答问题。若想自己微调,Meta 完成的昂贵的第一阶段结果可提供很大自由。
2025-01-06
全量微调与少量参数微调
在参数规模的角度,大模型的微调分为全量微调(FFT,Full Fine Tuning)和少量参数微调(PEFT,ParameterEfficient Fine Tuning)两条技术路线。 全量微调是对全量的模型参数进行全量的训练。少量参数微调则只对部分模型参数进行训练。从成本和效果的综合考虑,PEFT 是目前业界较流行的微调方案。 微调是在较小的、特定领域的数据集上继续 LLM 的训练过程,通过调整模型本身的参数,而非像提示工程和 RAG 那样仅更改提示,能大幅提高模型在特定任务中的性能。微调有两大好处:一是提高模型在特定任务中的性能,可输入更多示例,经过微调的模型可能会失去一些通用性,但对于特定任务会有更好表现;二是提高模型效率,实现更低的延迟和成本,可通过专门化模型使用更小的模型,且只对输入输出对进行训练,舍弃示例或指令进一步改善延迟和成本。 关于微调的具体实现,LoRA 微调脚本见:。 在微调的超参数方面,选择了适用于一系列用例的默认超参数,唯一需要的参数是训练文件。调整超参数通常可产生更高质量输出的模型,可能需要配置的内容包括:model(要微调的基本模型的名称,可选择“ada”“babbage”“curie”或“davinci”之一)、n_epochs(默认为 4,训练模型的时期数)、batch_size(默认为训练集中示例数量的 0.2%,上限为 256)、learning_rate_multiplier(默认为 0.05、0.1 或 0.2,具体取决于 final batch_size)、compute_classification_metrics(默认为假,若为 True,为对分类任务进行微调,在每个 epoch 结束时在验证集上计算特定于分类的指标)。要配置这些额外的超参数,可通过 OpenAI CLI 上的命令行标志传递。 OpenAI 官方微调教程:
2025-01-06
豆包、DeepSeek、ChatGPT分别有些什么功能用于解决用户整理对话的需求
以下是豆包、DeepSeek、ChatGPT 在解决用户整理对话需求方面的功能: ChatGPT: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 2. 聊天机器人:作为聊天机器人的后端,提供自然的对话体验。 3. 问答系统:为用户提供准确的答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:在这方面有不错的表现。 6. 群聊总结:能够对群聊内容进行总结。 7. 代码生成:生成代码片段,帮助开发者解决编程问题。 8. 教育:帮助学生解答问题或提供学习材料。 9. 浏览器插件:如 webpilot 。 10. PDF 对话:通过相关网站实现与 PDF 的对话。 11. PPT 生成:协助高效制作 PPT 。 12. 音视频提取总结:通过特定网站进行总结。 13. 播客总结:通过特定网站完成总结。 14. 生成脑图:通过相关网站生成。 关于豆包和 DeepSeek 在解决用户整理对话需求方面的功能,上述内容中未提及。
2025-02-13
与deepseek高效对话的五个黄金法则
以下是与 Deepseek 高效对话的五个黄金法则: 1. 像教实习生:别指望它读心术,要给明确“操作手册”。 亮身份(就像相亲自我介绍):说清角色(新人/专家)、处境(紧急任务/长期规划)、特殊需求(老板的喜好/公司制度)。例如,错误示范是“帮我写个方案”,正确示范是“我是刚入职的行政专员,要给 50 人团队策划元旦团建,预算人均 200 元”。 派任务(像教小朋友做家务):明确要做什么、范围多大、重点在哪、要几个结果。例如,错误示范是“分析下市场”,正确示范是“请对比蜜雪冰城和茶百道最近 3 个月的新品策略,找出年轻人最爱的 3 个创新点”。 立规矩(像点菜提要求):包括时间限制、资源条件、雷区预警、特殊偏好。例如,请 AI 当健身教练,正确示范是“我是 996 上班族,每天最多锻炼 30 分钟,家里只有瑜伽垫,帮我制定减脂计划,不要深蹲伤膝盖”。 定格式(像下单选规格):根据需求选择文档类(PPT 页数、报告部分)、数据类(表格或图表)、创意类(小红书风格或知乎体)等格式。例如,做会议纪要,正确示范是“用表格呈现,左边列讨论主题,右边分决策事项/负责人/截止时间三栏,最后用红色标出待确认事项”。 2. 像拼乐高:复杂任务拆成小模块,逐个击破。 3. 像打乒乓球:有来有往多回合,好答案都是改出来的。 4. 下次和 AI 对话前,先花 30 秒填这个 checklist: 我说清自己身份了吗? 任务目标够具体吗? 特殊要求列全了吗? 要什么格式交代了吗? 留好修改的余地了吗? 5. 一个提示词,让 DeepSeek 的能力更上一层楼: 效果对比:用 Coze 做了个小测试,大家可以对比看看。 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定)。 完整提示词。 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 是项目最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 掌握这套方法,您会突然发现:原来 AI 这么听话!从此刻开始,告别无效对话,让您的每个问题都换来实实在在的干货。
2025-02-13
怎么与多个pdf进行对话
要与多个 PDF 进行对话,可以考虑使用以下方法和工具: 1. ChatDOC:这是一个 AI 文档阅读助手,能够在数秒内总结长文档、解释复杂概念和查找关键信息。它具有以下优势: 可靠性和准确性高,在所有 ChatPDF 类产品中居首。 精通表格理解,选择表格或文本可立即获取详细信息。 支持多文档对话,不受每个文档页数限制。 每个回答均可溯源至原文,有原文档中的直接引用支持。 支持多种文档类型,包括扫描件、ePub、HTML 和 docx 格式文档。 2. AskYourPDF Research Assistant:可以与多个文件聊天,生成带有引文的文章,分析和生成论文的参考文献,创建文件的知识库并与之交互等。 在进行互动式问答时,需要注意以下几点: 1. 对于更新的数据或最新出版的书籍、报告和文件,ChatGPT 的知识库可能无法提供答案。 2. 如果有现成的 PDF,建议通过 CHATDOC 网站进行互动式问答。 3. 提问时应遵循一定的模板,例如: 输入信息:向 ChatGPT 提供要查询的书籍、报告或文件的详细信息,包括书籍的书名、作者、出版日期、出版社,报告的时间、主题,文件的名称等,提供越详细越能获得准确答案。 提出问题:例如询问书籍中提到的某些方面、原则、方法,报告中行业的增长趋势,对报告或书籍的概括、主要观点等。
2025-02-11
什么工具能实现和多个pdf或word文档对话
以下工具可以实现和多个 PDF 或 Word 文档对话: 1. ChatDOC(海外官网:chatdoc.com):是一个 AI 文档阅读助手,能在数秒内总结长文档、解释复杂概念和查找关键信息。在可靠性和准确性方面,它在所有 ChatPDF 类产品中居首。其优势包括精通表格理解、多文档对话、每个回答均可溯源至原文,还支持多种文档类型,如扫描件、ePub、HTML 和 docx 格式文档。 2. IncarnaMind:是一个可以使用大型语言模型(如 GPT)与个人文档(PDF、TXT)进行聊天的工具。它通过滑动窗口分块机制和检索器,能高效查询细粒度和粗粒度信息,支持多文档查询和稳定的解析,还具有自适应分块、多文档对话问答、文件兼容性和模型兼容性等特点。
2025-02-11
与多文档对话
以下是关于多文档对话的相关信息: ChatDOC 是一个 AI 文档阅读助手,具有以下特点: 1. 可以在数秒内总结长文档、解释复杂概念和查找关键信息。 2. 在可靠性和准确性方面,是所有 ChatPDF 类产品之首。 3. 优势包括精通表格理解,只需选择任何表格或文本,即可立即深入获取其详细信息。 4. 支持多文档对话,且不用担心每个文档的页数限制。 5. 每个回答均可溯源至原文,所有答案都有来自原文档中的直接引用支持。 6. 支持多种文档类型,可以丝滑处理扫描件、ePub、HTML 和 docx 格式文档。 IncarnaMind 是一个可以使用大型语言模型(如 GPT)与个人文档(PDF、TXT)进行聊天的工具,支持多文档查询和稳定的解析,还具有自适应分块、多文档对话问答、文件兼容性和模型兼容性等特点。 熊猫大侠中的文档总结对话功能: 1. 依赖 LinkAI 的知识库及对话功能,需要在项目根目录的 config.json 中设置 linkai_api_key,同时根据插件配置说明,在插件 config.json 添加 summary 部分的配置,设置 enabled 为 true。如果不想创建 plugins/linkai/config.json 配置,可以直接通过 $linkai sum open 指令开启该功能。 2. 功能开启后,向机器人发送文件、分享链接卡片、图片即可生成摘要,进一步可以与文件或链接的内容进行多轮对话。如果需要关闭某种类型的内容总结,设置 summary 配置中的 type 字段即可。 3. 存在一些限制,如文件目前支持 txt、docx、pdf、md、csv 格式,文件大小由 max_file_size 限制,最大不超过 15M,文件字数最多可支持百万字的文件,但不建议上传字数过多的文件;分享链接目前仅支持公众号文章,后续会支持更多文章类型及视频链接等;总结及对话的费用与 LinkAI 3.5 4K 模型的计费方式相同,按文档内容的 tokens 进行计算。
2025-02-11
我几乎是一个AI小白,只能日常跟AI对话,让AI回答我的问题,我希望能系统的了解AI,认识AI,学会正确使用AI,让AI帮助我提高效率,希望你能给出学习建议
以下是为您提供的系统学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 与大语言模型交流的技巧: 对话尽量具体、丰富、少歧义,多说有用的。 假想特定场景,明确希望获得的内容。 把大模型当作大学生,指明方向,拆解任务,教其一步一步操作。 7. AI 教育方面: 以 Khanmigo AI 为例,AI 教师应具有友善和支持的性格,语言简明,不直接给答案,而是通过适当提问帮助学生独立思考,根据学生知识水平调整问题,检查学生是否理解,警惕学生滥用帮助等。
2025-02-10
学习大模型从哪里开始
学习大模型可以从以下几个方面入手: 1. 理解大模型的概念:大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用上学参加工作来类比大模型的训练和使用过程。 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。Token 被视为模型处理和生成的文本单位,是原始文本数据与大模型可以使用的数字表示之间的桥梁。 2. 了解大模型的整体架构: 基础层:为大模型提供硬件支撑、数据支持,例如 A100、数据服务器等。 数据层:分为静态的知识库和动态的三方数据集。 模型层:包括 LLm(如 GPT,一般使用 transformer 算法)或多模态模型(如文生图、图生图等)。 平台层:如大模型的评测体系、langchain 平台等,提供模型与应用间的组成部分。 表现层:即应用层,是用户实际看到的地方。 3. 熟悉大模型的发展历程:起源于 2017 年发布的 Attention Is All You Need 论文,之后有众多基于大量语料的预训练模型,如 2018 年 Google 提出的 BERT,开创了双向预训练并行获取上下文语义信息和掩码语言建模(MLM);2018 年 OpenAI 提出的 GPT,开创了仅使用自回归语言建模作为预训练目标;2021 年 Meta 提出的首个开源模型 LLAMA,为构建更大规模、更通用的语言模型提供了方法与工具。
2025-02-14
你调用的是哪个大模型?
我调用的是抖音集团的云雀大模型。在一些项目中,还会涉及到其他大模型的调用,比如在 COW 项目中可直接调用千问的某一模型,需更改 key 和 model 等操作,且要实名认证。此外,军师联盟 BOT 工作流中会调用月之暗面 KIMI、豆包、Minimax、通义千问和智谱清言这五个大模型。
2025-02-14
大模型如何使用应用系统数据
大模型使用应用系统数据可以通过检索增强生成(Retrieval Augmented Generation,RAG)技术来实现。 RAG 是一种结合检索和生成的技术,能够让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。其基本流程为:首先,当用户给出输入,如问题或话题,RAG 会从数据源(如网页、文档或数据库记录)中检索出相关的文本片段,这些片段称为上下文。然后,RAG 将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望的输出,如答案或摘要。最后,RAG 从大模型的输出中提取或格式化所需信息返回给用户。 从大模型的整体架构来看,其分为以下几层: 1. 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 2. 数据层:包括静态的知识库和动态的三方数据集。这里的数据层指的是企业根据自身特性维护的垂域数据。 3. 模型层:包含 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)或多模态模型(如文生图、图生图等模型,训练所用数据为图文或声音等多模态数据集)。 4. 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用之间的组成部分。 5. 表现层:即应用层,是用户实际看到的地方。
2025-02-14
基于大模型的应用开发主要包括哪些方向和相应的技术栈?
基于大模型的应用开发主要包括以下方向和相应的技术栈: IaaS 层: 百度智能云百舸 AI 异构计算平台,解决大模型应用中的算力问题,提供从集群创建到模型训练、推理的完整算力管理方案,通过引入自动故障预测与任务迁移技术,确保高达 99.5%的有效训练时间,为大模型应用落地提供强大的算力支撑。 PaaS 层: 百度智能云千帆大模型平台,解决大模型的调用、开发和应用开发问题,支持调用文心大模型全系列模型,提供全面的工具链,支持定制化的模型开发。通过 AppBuilder,提供企业级 Agent 和企业级 RAG 开发能力,还能将企业应用中产生的数据经过评估和对齐进一步反馈到模型中,形成良性循环,持续优化模型性能。 SaaS 层: 百度智能云提供丰富的常用应用供客户选择,如数字人平台曦灵、智能客服应用客悦等。 此外,还有一些其他的技术栈和框架,如: Langchain:是当前大模型应用开发的主流框架之一,提供了一系列的工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 Ollama:是一个开箱即用的用于在本地运行大模型的框架。
2025-02-14
采用GPL许可证的AI开源模型有哪些
以下是一些采用 GPL 许可证的智谱·AI 开源模型: 其他模型: WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统,旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。代码链接: WebGLM2B:代码链接无,模型下载: MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT4 在相同测试数据上 18.84%的准确率。代码链接: MathGLM500M:代码链接无,模型下载: MathGLM100M:代码链接无,模型下载: MathGLM10M:代码链接无,模型下载: MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。此外,还使用 ChatGLM6B 和 ChatGLM26B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。模型下载: 多模态模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型。CogAgent18B 拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。代码链接:、始智社区 CogVLM17B:强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM 可以在不牺牲任何 NLP 任务性能的情况下,实现视觉语言特征的深度融合。我们训练的 CogVLM17B 是目前多模态权威学术榜单上综合成绩第一的模型,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。代码链接无,模型下载: Visualglm6B:VisualGLM6B 是一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 Chat 模型: ChatGLM6Bint4:ChatGLM6B 的 Int4 版本。最低只需 6GB 显存即可部署,最低只需 7GB 显存即可启动微调(,模型权重下载链接:魔搭社区、始智社区、启智社区 ChatGLM6Bint8:ChatGLM6B 的 Int8 版本。上下文 token 数:2K,代码链接:,模型权重下载链接:魔搭社区、始智社区、启智社区 AgentLM7B:1. 提出了一种 AgentTuning 的方法;2. 开源了包含 1866 个高质量交互、6 个多样化的真实场景任务的 Agent 数据集 AgentInstruct;3. 基于上述方法和数据集,利用 Llama2 微调了具备超强 Agent 能力的 AgentLM7B、AgentLM13B、AgentLM70B。上下文 token 数:4K,代码链接: AgentLM13B:上下文 token 数:4K,代码链接无,模型权重下载链接: AgentLM70B:上下文 token 数:8K,代码链接无,模型权重下载链接:
2025-02-14
开源模型的MIT模式、Apache、GPL、BSD模式的模型案例有哪些?
目前开源模型的 MIT 模式、Apache、GPL、BSD 模式的具体案例众多且不断更新。MIT 模式的开源模型如 TensorFlow Lite;Apache 模式的有 MXNet;GPL 模式的像 Gnuplot;BSD 模式的例如 OpenCV 等。但请注意,这只是其中的一部分,实际情况可能会有所变化。
2025-02-14
推荐一些AI作曲工具
以下是为您推荐的一些 AI 作曲工具: 1. Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。网址:https://www.udio.com/ 2. Suno AI:是一款革命性的人工智能音乐生成工具,它通过先进的深度学习技术,能够将用户的输入转化为富有情感且高质量的音乐作品。网址:https://suno.com/ 此外,关于 AI 作曲还有以下相关知识: AI 生成曲子的反向利用:可以让 AI 生成曲子的基础框架,然后在这个基础框架上进行修改和完善,以提高曲子的质量。 AI 生成曲子的二次处理:对 AI 生成的曲子进行二次处理,包括调整曲子的频段、动态等,以提高曲子的质量。 AI 生成曲子的风格和语言:在创建 AI 生成曲子的过程中,需要注意风格和语言的选择,以确保生成的曲子符合自己的需求。 AI 音乐创作的风格与特点:AI 可以生成多种音乐风格,如雷鬼、流行等,但在某些风格上可能存在理解和表现的困难。 AI 音乐创作的注意事项:投喂给 AI 的旋律应保持清晰,避免复杂的节奏构架和变化,以提高 AI 的辨识度和创作效果。 另外,5 月 1 日的 XiaoHu.AI 日报中提到 AI 音乐工具 Udio 有更新,增加了上下文窗口,使音乐作品过渡更自然,音轨最大长度扩展至 15 分钟,适合长篇混音和复杂音乐制作,并引入基于树的音轨历史查看方式。详细介绍:https://x.com/imxiaohu/status/1785666886648447251
2025-02-14
帮做PPT的AI推荐
以下是为您推荐的一些做 PPT 的 AI 产品: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包括互动元素和动画效果,以增强演示文稿的吸引力。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能,能帮助用户快速整理思路、优化文案,并生成结构化的文档。网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照以下思路来完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供您参考: 1. 《》 2. 《》 此外,还有以下工具可供选择: 1. 免费工具:讯飞智文 http://zhiwen.xfyun.cn 2. 付费工具:百度文库 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-02-14
推荐几款简历生成和润色的AI工具
以下为您推荐几款简历生成和润色的 AI 工具: 1. ResumeMatcher:这是一款 AI 驱动的开源简历优化工具。它能提供智能关键词匹配和深入的分析见解,有助于提升简历通过 ATS 筛选的几率。采用 FastEmbed 计算简历与职位的匹配度,并结合 textacy 提取核心术语,精准优化简历内容。相关链接: 2. 超级简历优化助手:帮助用户优化简历以提高求职成功率。它会分析简历内容并提供优化建议。 3. Napkin:这是一个生成多样风格图表的 AI 工具。可将选中文本转换为 mermaid 格式图表,支持 SVG 渲染,交互流畅且模板丰富。后台可能使用轻量模型(如 GPT4 mini),自动选择图标,生成多套模板供选择。当前免费,设计精美,适合需要快速生成图表的用户。相关链接:
2025-02-14
请推荐适合的ai工具
以下是为您推荐的不同类型的 AI 工具: AI 新闻写作工具: 1. Copy.ai:功能强大,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容,节省写作时间并提高效率。 2. Writesonic:专注于写作,提供新闻稿件生成、标题生成、摘要提取等功能,智能算法能根据用户信息生成高质量新闻内容,适合新闻写作和编辑人员。 3. Jasper AI:主打博客和营销文案,也可用于生成新闻类内容,写作质量较高,支持多种语言。 适合软件项目经理的 AI 工具: 1. 项目管理和任务跟踪工具:如 Jira、Trello 等,已集成 AI 功能,可辅助制定计划、分配任务、跟踪进度等。 2. 文档和协作工具:微软的 Copilot 可集成到 Office 套件中,为项目文档撰写、编辑等提供助手功能。云存储服务如 Google Drive 也提供 AI 驱动的文档管理和协作功能。 3. 风险管理和决策支持工具:可帮助识别和分析项目风险,并提供决策建议。 4. 沟通和协作工具:AI 助手可辅助进行团队沟通协调、客户关系维护等。 5. 创意生成工具:如文心一格、Vega AI 等绘画工具,可帮助快速生成创意图像素材。 在线 TTS 工具: 1. Eleven Labs:https://elevenlabs.io/ ,功能强大且多功能,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ ,人工智能驱动,可将文本转换为音频文件,有多种应用形式。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供 100 多种语言和方言的语音转文本和文本转语音功能,还提供自定义语音模型。 4. Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-14
推荐些跑团的AI网站
以下为您推荐的跑团相关 AI 网站是 WaytoAGI 网站(https://www.waytoagi.com/),该网站具有以下功能: 1. 您可以在此与 AI 知识库进行对话,询问任何关于 AI 的问题。 2. 集合了精选的 AI 网站,能够按您的需求帮您找到适合的工具。 3. 提供了精选的 AI 提示词,您可以复制到 AI 对话网站使用。 4. 会将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望能成为您学习 AI 路上的好助手。
2025-02-14
推荐智能体学习教程
以下是为您推荐的智能体学习教程: 1. 通往 AGI 之路知识库中提到,博主会精美地解释六大策略,小七姐在社区带来共学课程并有直播分享及回放,像喂饭教程般帮助理解 prompt。每个板块下有共学快闪,社区老师会带着大家动手操作并讲解思路,还提到官方最佳 prompt 有 6 个实践办法,看熟任意一个即可。同时,智能体由大语言模型衍生而来,因提示词不太可控才有此进阶。还讲述了智能体进阶案例拆解,推荐景淮老师的相关成果。扣子、千帆百炼属于智能体范畴,扣子更偏 ToC 应用,所以有专门讲解扣子相关内容。学习 AI agent 可能较痛苦,建议先吃透 prompt 再看相关内容。官方文档内容很全面,包含市面上 cos 的教程等。社区小伙伴参加 cos 比赛常拿大奖,有共学活动,获奖小伙伴会分享经验。cos 平台可用于工作生产,有很多功能,感兴趣可体验其官网,能进行对话感受功能。 2. 提示词培训课中,首先介绍了智能体是什么,指出现在接触到的智能体大多建立在大模型之上,具有强大的学习能力、灵活性和泛化能力。智能体的核心在于有效控制和利用大型模型,提示词设计直接影响智能体的表现和输出结果。之后深入探讨并动手实践制作智能体,鼓励基于公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等)尝试开发属于自己的智能体,包括点击“浏览 GPTs”“Create”按钮创建,使用自然语言对话或手工设置进行具体设置,然后调试并发布。 3. 元子的 WayToAGI 知识库中,对于纯小白,有现有常见 AI 工具小白扫盲的文章和视频,以及 AI 常见名词、缩写解释的内容。
2025-02-13