Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

可以写出一个两数之和的Python实现代码吗

Answer

以下是一个用 Python 实现求两数之和的代码示例:

def sum_two_numbers(num1, num2):
    return num1 + num2

# 示例用法
num1 = 5
num2 = 10
result = sum_two_numbers(num1, num2)
print("两数之和为:", result)
Content generated by AI large model, please carefully verify (powered by aily)

References

OpenAI:GPT_最佳实践中文大白话版本_未来力场编译.pdf

4.3最后问它一句:哎,你有没有漏掉啥?Tactic:Ask themodel if it missed anything on previous5.2需要做精确计算的时候:⽤代码、或调API真的需要算,最好是让它写代码去算。运⾏代码输出结果后,再丢回给模型继续处理。写Python代码求实数根的⽤例SYSTEMYou canwrite and execute Python code by enclosing it in triple backticks,e.g.```code goes here```.Usethis to perform calculations.你可以编写并执⾏一段Python代码,代码放在三引号⾥⾯,⽐如:``代码放在这⾥```。请⽤这种⽅式来执⾏计算。USER找出以下多项式的所有实数根:3x**5 - 5x4 - 3*x3 - 7*x - 10。另外,模型也能帮忙写代码调⽤ API,这个过程也⽐较简单。最后要提请注意:模型写的代码不⻅得都是对的,都安全。跑代码之前要确保环境安全,最好在沙盒⾥。输出结果:import numpy as np# Define the coe cients of the polynomialcoe cients =[3,-5,-3,0,-7,-10]

Others are asking
怎么学python,以适应AI时代趋势为导向
以下是一些关于以适应 AI 时代趋势为导向学习 Python 的建议: 1. 学习资源: 微信机器人教程,其中介绍了在 Linux 环境安装 Python 以及 Python 虚拟环境的相关知识。 吴恩达的 AI Python 初学者课程,这是一系列四门短期课程,适合任何技术水平的人。 2. 基础知识: 掌握 Python 的安装和编程基础,包括变量、数据类型、控制结构、函数等。 了解 Python 虚拟环境,它是一个独立的 Python 运行空间,用于隔离不同项目的依赖库,避免与系统的 Python 版本形成冲突。 3. 数学和理论基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 了解人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的发展历程和重要里程碑。 4. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 神经网络基础:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN),以及常用的激活函数,如 ReLU、Sigmoid、Tanh。 5. 实践和应用: 学会向 AI 提供线索,这对于快速修复问题非常重要。 可以使用 Cursor 的菜单 Open in intergrated Terminal 直接切换到对应目录,也可以使用 cd 命令。 参考 Cursor 提示词网站:https://cursor.directory/,学习和参考其中大量网友实践后上传的提示词。 通过构建 AI 应用程序进行学习,例如编写与大型语言模型交互的代码,以快速创建有趣的应用程序来定制诗歌、编写食谱和管理待办事项列表。 总之,强烈推荐在 AI 时代掌握 Python 这门编程语言,不断学习和实践,以适应时代的发展趋势。
2025-02-17
python
以下是关于 Python 安装相关 AI 编程助手的信息: 安装 FittenAI 编程助手: 这两年 AI 发展迅猛,改变了很多人的工作方式,编程领域也不例外,AI 作为编程助手能提供实时建议和解决方案,提升工作效率。 配置 AI 插件前需先安装 Python 运行环境,可参考:。 安装步骤:点击左上角的 File Settings Plugins Marketplace。安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用。 功能包括智能补全(按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议)、AI 问答(通过点击左上角工具栏中的 Fitten Code 开始新对话打开对话窗口进行对话)、自动生成代码(Fitten Code 工具栏中选择“Fitten Code 生成代码”,然后在输入框中输入指令即可生成代码)、代码转换(选中需要进行翻译的代码段,右键选择“Fitten Code 编辑代码”,然后在输入框中输入需求即可完成转换)、自动生成注释(Fitten Code 能够根据代码自动生成相关注释)。 安装灵码 AI 编程助手: 同样在 AI 快速发展的背景下,其能为编程带来高效帮助。 配置前也需先安装 Python 运行环境,可参考:。 安装步骤:点击左上角的 File Settings Plugins Marketplace。安装完成插件会提示登录,按要求注册登录即可。使用上和 Fitten 差不多。 安装 FaceFusion 时的 Python 环境配置: FaceFusion 是开源换脸工具,安装较繁琐。 其所需环境包括 Python(需是 3.10 版本,不能高于 3.7 到 3.10,因为 onnxruntime==1.16.3 需要 Python 版本在 3.7 到 3.10 之间,推荐使用安装包下载安装:python 下载地址 https://www.python.org/downloads/,下载对应版本后点击安装,注意添加到系统环境变量中,也可使用命令行安装方式)、PIP、GIT、FFmpeg(安装后需重新启动系统以使 FFmpeg 正常运行)、Microsoft Visual C++2015 可再发行组件包、微软 Visual Studio 2022 构建工具(安装过程中确保选择桌面开发与 C++包)。
2025-02-13
python现在能和ai软件怎么结合应用
Python 与 AI 软件可以通过以下方式结合应用: 1. 安装编程助手插件,如 FittenAI 编程助手或灵码 AI 编程助手: 安装 Python 的运行环境,可参考 。 对于 FittenAI 编程助手,安装步骤为点击左上角的 FileSettingsPluginsMarketplace,安装完成后左侧会出现插件图标,注册登录后即可开始使用。使用时,按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议;通过点击左上角工具栏中的 Fitten Code–开始新对话打开对话窗口进行 AI 问答;在 Fitten Code 工具栏中选择“Fitten Code生成代码”,然后在输入框中输入指令即可自动生成代码;选中需要进行翻译的代码段,右键选择“Fitten Code–编辑代码”,然后在输入框中输入需求即可完成代码转换;Fitten Code 能够根据代码自动生成相关注释。 对于灵码 AI 编程助手,安装步骤为点击左上角的 FileSettingsPluginsMarketplace,安装完成插件会提示登录,按要求注册登录即可,使用上和 Fitten 差不多。 2. 如果希望更深入地结合应用,最好体系化地了解编程以及 AI 知识,至少熟悉以下内容: Python 基础:包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。
2025-01-25
你觉得作为一个普通不懂得程序的人来说,在面对未来的AI时代,需要学习编程的基础知识吗?系统性的学习Python或者你觉得学习Python哪些主要知识注音对了。
对于普通不懂得程序的人来说,在面对未来的 AI 时代,学习编程的基础知识是有一定必要的。如果想系统性地学习 Python,以下是一些需要重点关注的主要知识: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)来控制程序执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数以及调用现有的函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态的方法。 5. 异常处理: 理解异常:了解异常的概念及在 Python 中的工作原理。 异常处理:学会使用 try 和 except 语句处理程序中可能出现的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何使用 Python 处理文件路径及列举目录下的文件。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索如百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
Python机器学习基础教程
很抱歉,目前知识库中没有关于“Python 机器学习基础教程”的具体内容。但我可以为您提供一个大致的指导方向。 首先,学习 Python 机器学习需要掌握 Python 编程语言的基础知识,包括数据类型、控制结构、函数等。 其次,了解常见的机器学习概念和算法,如线性回归、逻辑回归、决策树、聚类等。 然后,学习使用相关的 Python 库,如 Scikitlearn,它提供了丰富的机器学习工具和函数。 您可以通过在线课程、书籍、官方文档等多种资源来深入学习 Python 机器学习。
2025-01-23
我想学习使用python
Python 是一种高级编程语言,具有以下特点和优势: 特点:简单易学、功能强大、库丰富。可以想象成一个拥有多种工具的工具箱,能帮助完成画画、计算、整理东西等各种任务。 起源:1989 年由 Guido van Rossum 在荷兰的 Centrum Wiskunde&Informatica(CWI)开始开发,1991 年发布第一个公开发行版 Python 0.9.0,之后不断发展,2020 年 1 月 1 日 Python 2 正式停止支持。 为什么使用:环境部署简单,下载两个软件并点击安装即可;语法简单且可读性强,适合小白;应用广泛,可用于做网站、开发游戏、分析数据、自动化任务等。 如果您想深入学习 Python,至少需要熟悉以下内容: Python 基础:包括基本语法(如变量命名、缩进)、数据类型(如字符串、整数、浮点数、列表、元组、字典)、控制流(如条件语句、循环语句)。 函数:定义和调用函数,理解参数和返回值,以及作用域和命名空间。 模块和包:学会导入模块和使用包来扩展程序功能。 面向对象编程(OOP):了解类和对象、属性和方法、继承和多态。 异常处理:理解异常以及如何使用 try 和 except 语句处理错误。 文件操作:掌握文件读写和文件与路径操作。 在学习 Python 的课程中,比如“和 Cursor AI 一起学 Python 编程”的第一节,会介绍 Python 是什么、Cursor 使用、notebook 远程编程。包括 Python 的简介、发展历史和特点,在数据分析和人工智能等领域的优势及应用案例,还会介绍 Cursor 编程环境,它是结合了 AI 功能的编程编辑器,具有 AI 辅助代码补全和生成、实时语法和错误检查等功能和优势,以及 Bohrium 在线编程平台,它是 AI for Science 的科研学习平台,利用其 Jupyter Notebook 进行远程编程具有无需本地环境配置、内置丰富功能、适合团队协作和教学场景等优势。
2025-01-13
如何用AI写出比人更好的文字?
要使用 AI 写出比人更好的文字,需要注意以下几点: 1. 选择合适的模型:模型的能力差异很大,不适合任务的模型调优费力,应选择更适合的模型。 2. 评估模型能力:写作任务没有标准答案,需自己想办法评估模型在文风、语言能力等方面的表现。 3. 去除“AI 味”:所谓的“AI 味”实际是“GPT 味”,可能与数据标注有关,但去除“AI 味”并非易事。 4. 引发共鸣:好的文字能引起人的生理共鸣和情绪,AI 预训练数据量大,应能学会引发人类共鸣。 5. 关注实际操作:如鲁迅所说,现实中存在各种问题,AI 目前能力未达临界点,期望其能有更实在的发展,如做出重大科学发现、治愈疾病等,改变人们的生活。
2025-02-09
我需要你给我生成一些提示词,我会给你我想的想法。《》以内的是想法。《我想写一篇影视解说的文案,写作的视角以我,第一人称的视角来写。想要风格偏幽默风趣一点,就像跟朋友在讲述一样,可以模仿鲁迅先生的手法。而且还想把影片的剧情内容写出来,从开篇到电影的结尾,如果有需要保留原片的地方,请把原片的画面场景以及时间段描述出来。要求这篇文案要附上我自己的内心独白,以此引人深思!请你深度思考后,在做答复!要求字数不少于5000字。》请问我该如何写提示词?请你整理好提示词后发给我
以下是为您生成的一些提示词,希望对您有所帮助: 影视解说文案提示词 1. 以第一人称幽默风趣的口吻,像与朋友讲述般,描绘影片从开篇到结尾的精彩剧情,融入自己的内心独白,模仿鲁迅先生的手法,展现独特的视角和深刻的思考。 2. 用轻松幽默的语言,以我的视角详述影片情节,穿插搞笑的评论和内心想法,借鉴鲁迅先生的讽刺技巧,使解说引人入胜。 3. 以亲切自然的叙述方式,如同与好友聊天,讲述影片故事,从开头至结束,结合鲁迅先生的文风,加入个人的情感起伏和独特见解。 DALL·E 相关提示词 1. 绘画:提及颜料种类、画布纹理和笔触形状/纹理(列表)。 2. 数字:注明使用的软件、阴影技术和多媒体方法(列表)。 3. 基于详细提示使用 DALL·E 3 生成图像,让创意鲜活起来,为提示的每个元素做出大胆有趣的选择。 4. 遵循提示指南,提出四个全新的简单概念,而非完整提示,从上次给出的建议中获取灵感。 请注意,默认方面比率为正方形(1:1),默认风格为摄影,包括相机设置、摄影类型和设备。同时,避免违反服务条款的词汇或概念,不侵犯版权,不使用暗示性或露骨的图像,强调符合 G 级评级的元素。
2025-02-06
我想学习ai提示词,但是我看到最新的deepseek好像不用提示词也可以写出很好的文案,那我还需要学习提示词吗
学习 AI 提示词是有必要的。提示词是给大语言模型的输入文本,用于指定模型应执行的任务和生成的输出,能“提示”模型做什么。设计高质量提示词需根据目标任务和模型能力精心设计,良好的提示词可让模型正确理解需求并给出符合预期的结果。 了解大模型的特性以及具备清晰表述自己需求和任务的能力,才能用好这个工具。 不过也有人持反对观点,认为像打字和写作一样,方法论不是关键,不断尝试和大模型交互就是最佳方法。但在与大模型交互时,用 Markdown 格式清晰表达问题有助于模型更好地理解用户意图,其具有结构清晰、格式化强调、适用性广等优点。 像 DeepSeek 这样的推理型大模型,更懂人话,不需要用户提供详细的步骤指令或特定的提示词模板,用自然语言描述真实场景和具体需求即可。还可以通过一些方式让 DeepSeek 的回答更符合需求,如让其“说人话”、激发深度思考、进行文风转换等。 总之,尽管有些模型可能不太依赖提示词,但学习提示词仍有助于您更好地与各类模型进行交互,并更有效地获得满意的结果。
2025-01-28
如何用ai写出爆款小说
以下是关于如何用 AI 写出爆款小说以及将小说做成视频的相关内容: 用 AI 写出爆款小说 工作流效果: 以起点 Top1 的《夜无疆》为题,使用特定的 coze 工作流创作小说,能达到至少高中生中写得不错的水平。虽然未达到起点小说家的水平,但相比通常用 AI 写出的小说已有质的飞跃,其中的思路值得学习。 工作流: 1. 用 Bing 搜索标题相关的内容。 2. 用程序将搜索结果结构化(不熟悉程序的可忽略或直接复制文中代码)。 3. 用大模型草拟大纲,包括标题、主旨、世界观、主要角色、小说背景、情节概要。 4. 再用大模型来写文章。 5. 输出文章内容。 核心提示词: 用大模型草拟大纲是关键差别,如标题、主旨、世界观、主要角色、小说背景、情节概要等。写小说的提示词相对简单,搜索是很值得学习的思路,将搜索结果结构化方便大模型理解。 用 AI 将小说做成视频 制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-01-23
怎么描述能让gpt写出可靠的代码
要让 GPT 写出可靠的代码,可以参考以下方法: 1. 当需要进行复杂计算时,不要完全依赖 GPT 模型自身,而是指导模型编写并运行代码。 2. 特别地,指示模型将要运行的代码放入指定格式,例如使用三个反引号(backticks)。 3. 对于程序开发人员,可利用 GPT 生成代码,例如在求 1000 以内的所有质数时,先让 GPT 编写代码,然后开启新对话输入代码,再让模型充当代码执行器运行代码。 4. 编写代码时,GPT4 写复杂代码的能力更强。 5. 代码执行的另一个好用例是调用外部 API,可通过向模型提供说明如何使用 API 的文档和/或代码示例来指导模型。 6. 但需注意,执行模型生成的代码本身并不安全,任何试图执行此操作的应用程序都应采取预防措施,特别是需要一个沙盒代码执行环境来限制不受信任的代码可能造成的危害。
2025-01-22
哪个ai 可以写出公众号爆款文章?
利用 AI 30 分钟不到打造爆款公众号文章的关键在于以下几点: 1. 撰写文章: 提供清晰且具有指导性的提示词(prompt),好的提示词能帮助 AI 更准确理解需求并生成符合预期的内容。 若已有基本提示词,AI 可生成基础文章;若想提升质量,可提供更详细、具创意的提示词,以更好地捕捉文章的语气、风格和重点。 例如,“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”这样的提示词能为 AI 提供明确指导并设定文章结构和内容要求,AI 会据此生成结构完整、内容丰富、观点鲜明的文章,但最终产出的内容可能需要微调以符合预期和公众号风格。 2. 添加多媒体元素: 为文章增添视觉魅力,精心挑选相关的图片、视频或图表,丰富内容并提升吸引力和专业度。 利用 Perplexity.AI 的 Search Images 功能寻找合适素材,注意避免使用带水印、画质不清晰或分辨率低的图片。 图片出处主要在 twitter 和官方网站,若遇英文内容难以理解,可借助谷歌浏览器一键翻译功能或其他浏览器插件。
2025-01-07
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
哪个ai工具可以根据现有的网站或截图生成源代码
以下是一些可以根据现有的网站或截图生成源代码的 AI 工具: :借助 GPT4 Vision 的能力,能直接将屏幕截图转换为 HTML/Tailwind CSS,并利用 DALLE 3 的图像生成能力生成相似图像。 此外,还有一些与网站制作相关的 AI 工具: Wix ADI 。基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 Bookmark:网址为 。通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 Firedrop:网址为 。其 AI 设计助手 Sacha 可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 The Grid:网址为 。其 AI 设计助手 Molly 可以自动调整网站的设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 在 AI 代码生成和开发工具方面: :由 Wingware 开发的专为 Python 编程设计的开发环境,集成了多种功能,年度许可证起价 179 美元/月。 :开源的 AI 开发助手,能根据产品需求生成完整的代码库,遵循 MIT 许可证。 :Sourcegraph 的 AI 工具,作为全面的编程助手能理解整个代码库,个人使用免费。
2025-02-18
写微信小程序,用哪个 ai 代码助手最好
以下是一些适用于写微信小程序的 AI 代码助手推荐: 1. DIN: 搭建 OneAPI 以汇聚整合多种大模型接口。 搭建 FastGpt 作为知识库问答系统。 搭建 chatgptonwechat 接入微信,并配置 FastGpt 把知识库问答系统接入到微信。 2. Cursor: 可通过任意 AI 工具获得代码,专业代码模型表现更优。 网址:https://www.cursor.com/ 3. Deepseek(新手推荐): 网址:https://www.deepseek.com/zh 方便获取游戏代码,国内能访问,网页登录方便,目前完全免费。 4. 通义灵码: 在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“通义灵码”进行安装(目前免费)。 5. JetBrains 自身的助手插件: 在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“Jetbrains AI assistant”进行安装(收费,目前有 7 天免费试用)。 6. Marscode 及 Tencent cloud AI code Assistant 等。 7. 无影的晓颖 AI 助手: 内置在云电脑里,使用流畅,但需要在无影的云电脑中。 需要注意的是,不同的 AI 代码助手在生成特定代码时可能有不同的表现,您可以根据自己的需求和实际使用体验进行选择。
2025-02-17
我怎样用低代码工具去构建我的AI智能体?LLM应用?
以下是关于如何用低代码工具构建 AI 智能体和 LLM 应用的一些建议: 在构建基于 LLM 的应用时,Anthropic 建议先寻找最简单的解决方案,只在必要时增加复杂度。智能系统通常会以延迟和成本为代价来换取更好的任务表现,开发者需要考虑这种权衡是否合理。当需要更复杂的解决方案时,工作流适合需要可预测性和一致性的明确任务,而智能体则更适合需要灵活性和模型驱动决策的大规模场景。不过,对于许多应用来说,优化单个 LLM 调用(配合检索和上下文示例)通常就足够了。 目前有许多框架可以简化智能系统的实现,例如: 1. LangChain 的 LangGraph。 2. 亚马逊 Bedrock 的 AI Agent 框架。 3. Rivet(一个拖放式 GUI 的 LLM 工作流构建器)。 4. Vellum(另一个用于构建和测试复杂工作流的 GUI 工具)。 这些框架通过简化标准的底层任务(如调用 LLM、定义和解析工具、链接调用等)使入门变得容易,但它们往往会创建额外的抽象层,可能会使底层提示词和响应变得难以调试,也可能诱使开发者在简单设置就足够的情况下增加不必要的复杂性。建议开发者先直接使用 LLM API,许多模式只需要几行代码就能实现。如果确实要使用框架,请确保理解底层代码。 此外,还有以下相关工具和应用: 1. VectorShift:能在几分钟内构建和部署生成式人工智能应用程序,利用大型语言模型(例如 ChatGPT)构建聊天机器人、文档搜索引擎和文档创建工作流程,无需编码。 2. Unriddle:帮助更快阅读、写作和学习的工具,能简化复杂的主题,找到信息,提问并立即获得答案。 工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加了一个新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLM 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。Omni 的计算 AI 功能体现了这种方法,它利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。 详细示例请参考:https://github.com/anthropics/anthropiccookbook/tree/main/patterns/agents
2025-02-17
我需要以无代码的形式搭建一个数据大屏,有哪些工具可以满足我的需求
目前市面上有一些无代码工具可以帮助您搭建数据大屏,例如: 1. 阿里云 DataV:提供丰富的可视化组件和模板,操作相对简单。 2. 腾讯云图:支持多种数据源接入,具备强大的可视化编辑能力。 3. 帆软 FineReport:功能较为全面,能满足多样化的大屏搭建需求。 您可以根据自己的具体需求和使用习惯选择适合的工具。
2025-02-17
AI 在生成单元测试代码方面有什么新的进展与方向?
AI 在生成单元测试代码方面有以下新的进展与方向: 1. 基于规则的测试生成: 测试用例生成工具:如 Randoop 可基于代码路径和规则为 Java 应用程序生成测试用例,Pex 是微软开发的能为.NET 应用自动生成高覆盖率单元测试的工具。 模式识别:Clang Static Analyzer 利用静态分析技术识别代码模式和潜在缺陷来生成测试用例,Infer 是 Facebook 开发的能自动生成测试用例以帮助发现和修复潜在错误的工具。 2. 基于机器学习的测试生成: 深度学习模型:DeepTest 利用深度学习模型为自动驾驶系统生成测试用例以模拟不同驾驶场景并评估系统性能,DiffTest 基于对抗生成网络(GAN)生成测试用例来检测系统的脆弱性。 强化学习:RLTest 利用强化学习生成测试用例,通过与环境交互学习最优测试策略以提高测试效率和覆盖率,A3C 是基于强化学习通过策略梯度方法生成高质量测试用例的工具。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:Testim 是 AI 驱动的测试平台,能通过分析文档和用户故事自动生成测试用例以减少人工编写时间,Test.ai 利用 NLP 技术从需求文档中提取测试用例以确保测试覆盖业务需求。 自动化测试脚本生成:Selenium IDE 结合 NLP 技术可从自然语言描述中生成自动化测试脚本,Cucumber 使用 Gherkin 语言编写的行为驱动开发(BDD)框架能通过解析自然语言描述生成测试用例。 此外,峰瑞资本投资的 AI Coding 创业公司 Babel 专注于 AI Agent 的研发,其核心产品 Test Gru 已在美国上线,能为客户自动生成单元测试,客户侧 PR 接受率约为 70%。还有如 Cursor 等工具,可借助其生成测试代码提升代码可靠性,但使用时也需注意方法,如使用 Git 管理代码版本、对 AI 代码进行 Review 等。
2025-02-14