Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

可以写出一个两数之和的Python实现代码吗

Answer

以下是一个用 Python 实现求两数之和的代码示例:

def sum_two_numbers(num1, num2):
    return num1 + num2

# 示例用法
num1 = 5
num2 = 10
result = sum_two_numbers(num1, num2)
print("两数之和为:", result)
Content generated by AI large model, please carefully verify (powered by aily)

References

OpenAI:GPT_最佳实践中文大白话版本_未来力场编译.pdf

4.3最后问它一句:哎,你有没有漏掉啥?Tactic:Ask themodel if it missed anything on previous5.2需要做精确计算的时候:⽤代码、或调API真的需要算,最好是让它写代码去算。运⾏代码输出结果后,再丢回给模型继续处理。写Python代码求实数根的⽤例SYSTEMYou canwrite and execute Python code by enclosing it in triple backticks,e.g.```code goes here```.Usethis to perform calculations.你可以编写并执⾏一段Python代码,代码放在三引号⾥⾯,⽐如:``代码放在这⾥```。请⽤这种⽅式来执⾏计算。USER找出以下多项式的所有实数根:3x**5 - 5x4 - 3*x3 - 7*x - 10。另外,模型也能帮忙写代码调⽤ API,这个过程也⽐较简单。最后要提请注意:模型写的代码不⻅得都是对的,都安全。跑代码之前要确保环境安全,最好在沙盒⾥。输出结果:import numpy as np# Define the coe cients of the polynomialcoe cients =[3,-5,-3,0,-7,-10]

Others are asking
我想学习使用python
Python 是一种高级编程语言,具有以下特点和优势: 特点:简单易学、功能强大、库丰富。可以想象成一个拥有多种工具的工具箱,能帮助完成画画、计算、整理东西等各种任务。 起源:1989 年由 Guido van Rossum 在荷兰的 Centrum Wiskunde&Informatica(CWI)开始开发,1991 年发布第一个公开发行版 Python 0.9.0,之后不断发展,2020 年 1 月 1 日 Python 2 正式停止支持。 为什么使用:环境部署简单,下载两个软件并点击安装即可;语法简单且可读性强,适合小白;应用广泛,可用于做网站、开发游戏、分析数据、自动化任务等。 如果您想深入学习 Python,至少需要熟悉以下内容: Python 基础:包括基本语法(如变量命名、缩进)、数据类型(如字符串、整数、浮点数、列表、元组、字典)、控制流(如条件语句、循环语句)。 函数:定义和调用函数,理解参数和返回值,以及作用域和命名空间。 模块和包:学会导入模块和使用包来扩展程序功能。 面向对象编程(OOP):了解类和对象、属性和方法、继承和多态。 异常处理:理解异常以及如何使用 try 和 except 语句处理错误。 文件操作:掌握文件读写和文件与路径操作。 在学习 Python 的课程中,比如“和 Cursor AI 一起学 Python 编程”的第一节,会介绍 Python 是什么、Cursor 使用、notebook 远程编程。包括 Python 的简介、发展历史和特点,在数据分析和人工智能等领域的优势及应用案例,还会介绍 Cursor 编程环境,它是结合了 AI 功能的编程编辑器,具有 AI 辅助代码补全和生成、实时语法和错误检查等功能和优势,以及 Bohrium 在线编程平台,它是 AI for Science 的科研学习平台,利用其 Jupyter Notebook 进行远程编程具有无需本地环境配置、内置丰富功能、适合团队协作和教学场景等优势。
2025-01-13
如何检查Python程序的对错
以下是一些检查 Python 程序对错的方法: 1. 使用 Fitten Code 编程助手: 解释代码:选中代码段然后右键选择“Fitten Code–解释代码”。 自动生成测试:选中代码段后右键选择“Fitten Code–生成单元测试”。 检查 BUG:选中对应代码段,然后右键选择“Fitten Code 查找 Bug”。 编辑代码:选中代码段右键选择“Fitten Code–编辑代码”。 2. 基础报错副本处理: 遇到报错可尝试使用 ZHO 的 ChatGPT 的机器人,网址:https://chatgpt.com/g/gB3qi2zKGBcomfyuiassistant 。 紫色框报错:模型错误(没有下载到模型)。 红色框报错:节点错误(没有正确安装好节点)节点丢失。 安装完成后启动报错: 问题排查一:检查环境,是否为 python 3.10.9,安装,选个目录,勾选上 path。然后安装 git 再装环境,拉代码,干净的 comfyui。 问题排查二:检查魔法是否开启,pip install torch torchvision torchaudio extraindexurlxformers,这一步,里面有一个 2.xg 的文件下载和安装,魔法不好,中途断了,很可能导致安装不成功,需要多试。 问题排查三:在 comfyUI 的文件夹里 shift+右键启动 powershall 。 Error occurred when executing TranslateTextNode:问题原因是魔法节点不稳定,翻译用的是谷歌翻译,解决办法是更改魔法或者更换翻译。 输入 Python main.py 命令行的时候出问题:运行 python.exe m pip install upgrade pip 然后再重新按手记安装依赖环境。 3. 对于特定的 main.py 脚本: 运行诗歌相机脚本:$python main.py 。 设置一个 cron 作业以在启动时运行 python 脚本: 首先,crontab 使用默认编辑器打开文件:$crontab e 。 然后将以下行添加到您的 crontab,以在启动计算机时运行该脚本:@reboot python /home/pi/poetrycamerarpi/main.py >> /home/pi/poetrycamerarpi/errors.txt 2>&1 。 将 {...}errors.txt 2>&1 任何错误消息写入以 errors.txt 进行调试。常见的故障模式是找不到文件。确保所有文件路径都是绝对文件路径并且具有正确的用户名和目录名。 重新启动系统以使此生效:sudo reboot 。 尝试单击快门和电源按钮以确保它们在重新启动后正常工作。如果它们不起作用,请检查您的 errors.txt 文件。
2025-01-04
python实现网页爬虫
以下是使用 Python 实现网页爬虫的详细步骤: 首先,在 Colab 中抓取网页的正文内容,需要使用 Python 的 requests 库来获取网页的 HTML 源代码,然后使用 BeautifulSoup 库来解析 HTML 并提取所需的正文部分。 在开始之前,要确保已经在 Colab 环境中安装了 beautifulsoup4 和 requests 库。如果没有安装,可以使用以下命令安装: ``` !pip install beautifulsoup4 requests ``` 然后,使用以下代码抓取并解析指定的网页内容: ```python import requests from bs4 import BeautifulSoup def get_webpage_content: response = requests.get soup = BeautifulSoup 这里根据实际网页结构调整提取正文的部分 例如:content = soup.find return content url = 'https://mp.weixin.qq.com/s/KUnXlDlgRs_6D5RFpQbnQ' print ``` 请注意,由于网页的结构随时可能发生变化,所以提取正文内容的部分(即 soup.find 那一行)可能需要根据实际的 HTML 结构进行调整。如果文章有反爬虫机制,可能还需要进一步的处理,比如设置请求头模拟浏览器访问等。 在和 AI 配合写代码的过程中,如果遇到了 Bug,可以直接将问题报给 ChatGPT,然后再把 ChatGPT 给出的结果粘贴回去(如果还不行,就反复调试)。 另外,Python 在自动化方面应用广泛,例如办公软件自动化(pythondocx 用于 Word 文档、openpyxl 或 xlsxwriter 用于 Excel 文件、pythonpptx 用于 PPT、PyPDF2 用于 PDF)、爬虫(requests 用于发送 HTTP 请求、selenium 用于模拟浏览器交互、BeautifulSoup 和 lxml 用于解析 HTML 和 XML 文档)、测试自动化(unittest 和 pytest)、容器与虚拟化自动化(dockerpy 用于 Docker 容器管理)等。
2025-01-02
怎么学习python数据分析
以下是关于学习 Python 数据分析的一些建议: 从工具和规模以及方法的角度来看,数据分析是一门独立完整的学科。 工具方面: 1. Excel:是最熟悉和简单的工具,会写公式算进阶用法,还能写 Excel 宏,ChatGPT 能根据需求写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如用于数据处理和分析的 Pandas、用于数值计算的 NumPy,画图的 Seaborn、plotly、matplotlib 等,机器学习相关的更多。一般数据分析代码可用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 在 Python 中,以下是一些关键的库和技术: 1. 数据处理与清洗: Pandas:提供高效的数据结构如 DataFrame,用于处理和分析结构化数据。 NumPy:用于数值计算,提供多维数组对象和相关操作函数。 2. 数据可视化: Matplotlib:用于生成静态、交互式和动画可视化的绘图库。 Seaborn:基于 Matplotlib 的高级数据可视化库,提供更美观易用的图表绘制方法。 Plotly:交互式图表库,支持多种图表类型,适合生成动态和交互式图表。 3. 统计分析: SciPy:提供广泛的数学算法和函数,包括线性代数、统计学、优化等。 Statsmodels:用于统计建模和数据分析,适合进行统计测试和回归分析。 4. 大数据技术: PySpark:Apache Spark 的 Python API,用于大规模数据处理。 学习路径方面,可以参考以下课程内容: 1. 学习 Python 基础语法与文本处理,包括数据类型(字符串、数字、列表、字典)、控制结构(条件判断、循环语句)、文本处理基础(字符串操作方法、文件读写操作),通过实践实验如中文文本的基本处理,掌握 Python 的基本语法和结构,能够进行简单的文本数据处理。 2. 学习利用 Python 进行自然语言处理(NLP),了解 NLP 的概念和在人文研究中的重要性,掌握 Python 中的 NLP 库,如结巴分词(Jieba)等工具,通过实践实验如中文分词与词频分析,掌握基本的 NLP 操作,理解其在语言研究和教学中的应用。
2025-01-01
python数据分析
以下是关于 Python 数据分析的相关内容: 数据分析的概念和范围: 从工具和规模上来说,写一两行 Excel 公式是数据分析,用 Hadoop、写 Spark 算大数据也是数据分析。从方法上来说,算平均数是数据分析,用各种各样的机器学习方法做回归、分类也可以叫数据分析。数据分析前有时候还要进行数据清洗、数据预处理等。这是一门独立完整的学科。 用 ChatGPT 做数据分析可利用的工具: 1. Excel:是最熟悉和简单的工具,写点公式算进阶用法,还可以写 Excel 宏,ChatGPT 能轻松根据需求和描述写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如用于数据分析的 Pandas、Numpy 等,画图的 Seaborn、Plotly、Matplotlib 等,机器学习相关的更多。一般数据分析的代码可以用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 Python 在数据科学中的应用: 数据处理与清洗:Pandas 提供高效的数据结构如 DataFrame 处理结构化数据,NumPy 提供多维数组对象和相关函数。 数据可视化:Matplotlib 用于生成静态、交互式和动画可视化,Seaborn 是基于 Matplotlib 的高级库,提供更美观易用的图表绘制方法,Plotly 支持多种图表类型,适合生成动态和交互式图表。 统计分析:SciPy 提供广泛的数学算法和函数,Statsmodels 适合进行统计测试和回归分析。 大数据技术:PySpark 是 Apache Spark 的 Python API,用于大规模数据处理。
2025-01-01
以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图
以下是为您整合的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。 3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 基于 COW 框架的 ChatBot 实现步骤: 1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 2. 基于张梦飞同学的教程: 。 3. 实现内容: 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。 常用开源插件的安装应用。 4. 正式开始前需知: ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因非常规使用,有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。 禁止用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 8. 多部署方法:本地运行、服务器运行、Docker 的方式。
2024-12-29
哪个ai 可以写出公众号爆款文章?
利用 AI 30 分钟不到打造爆款公众号文章的关键在于以下几点: 1. 撰写文章: 提供清晰且具有指导性的提示词(prompt),好的提示词能帮助 AI 更准确理解需求并生成符合预期的内容。 若已有基本提示词,AI 可生成基础文章;若想提升质量,可提供更详细、具创意的提示词,以更好地捕捉文章的语气、风格和重点。 例如,“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”这样的提示词能为 AI 提供明确指导并设定文章结构和内容要求,AI 会据此生成结构完整、内容丰富、观点鲜明的文章,但最终产出的内容可能需要微调以符合预期和公众号风格。 2. 添加多媒体元素: 为文章增添视觉魅力,精心挑选相关的图片、视频或图表,丰富内容并提升吸引力和专业度。 利用 Perplexity.AI 的 Search Images 功能寻找合适素材,注意避免使用带水印、画质不清晰或分辨率低的图片。 图片出处主要在 twitter 和官方网站,若遇英文内容难以理解,可借助谷歌浏览器一键翻译功能或其他浏览器插件。
2025-01-07
如何写出高效提示词 prompt
以下是关于如何写出高效提示词 prompt 的一些建议: 1. 明确任务:清晰地定义任务,例如写故事时包含故事背景、角色和主要情节。 2. 提供上下文:若任务需要特定背景知识,在 prompt 中提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在 prompt 中明确指出。 5. 使用示例:若有特定期望结果,提供示例帮助 AI 理解需求。 6. 保持简洁:尽量使 prompt 简洁明了,避免过多信息导致困惑。 7. 使用关键词和标签:有助于 AI 理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整 prompt,可能需要多次迭代。 此外,还需注意以下几点: 对于星流一站式 AI 设计工具: 输入语言方面,不同基础模型对输入语言有不同要求,有的使用自然语言,有的使用单个词组,且支持中英文输入。 写好提示词可参考:利用预设词组、保证内容准确(包含人物主体、风格等要素)、调整负面提示词、利用“加权重”功能突出重点内容,还可使用辅助功能如翻译、删除所有提示词、会员加速等。 Prompt 的专场教程 基础篇: Prompt 是用于指挥 AI 生成所需内容的一段指令,每个单独的提示词叫 tag(关键词)。 支持英语和 emoji,可参考提示词字典。 语法规则包括用英文半角符号逗号分隔 tag,改变 tag 权重有两种写法,还可进行 tag 步数控制。
2025-01-06
我如何利用AI软件写出好 的小说
以下是利用 AI 软件写好小说的一些方法: 1. 显式归纳与列出想要的文本特征:比如明确小说需要优秀的文风、细腻的文笔,具体描述如“几句话一换行”“以短句和对话为主,结构紧凑”“用词直白犀利”等,在调试过程中逐步增减描述,直至达到理想效果。 2. 通过 prompt 中的描述与词语映射到预训练数据中的特定类型的文本:直接指出想要的文本类型,如“充满张力的女性复仇文,可能会出现在晋江文学城或者起点中文网的古代言情分类中”。对于新的创作领域,可从熟悉的相关元素入手,如让模型写特殊格式的网络小说,并显式描述特征。 3. 往 prompt 里面塞例子:这是一种暴力但管用且流行的办法。 此外,要用 AI 创作出好的作品,首先要有足够的审美,知道“什么是好的,好在哪里”。同时,固定的故事结构写在 prompt 里可能不好使,因为会丧失多样性和惊喜。
2024-12-24
我已经写出了一段提示词,在向AI工具提问时,如何向其发问
以下是关于向 AI 工具发问的一些方法和要点: 1. 逻辑思维推理能力比提示词更重要。 2. 提问时需要包含固定要素,如思考问题所需的前置信息、主要解决的主客体及关系、对回答的要求、有无类似问题的参考样例,并编辑问题模板,如相似问题的问题与答案(不一定需要)+问题主体+前置条件+回答要求。 3. 学会使用追问技巧,如 StepBack Prompting,提问者应知道如何追问,例如对“巴以冲突的原因,要求从地理、历史和参与方几个方面进行分析和回答”,然后根据回答进一步追问。 4. 可以运用举例法,举个例子让 AI 模仿写,并变更主题。 5. 一个好的问题往往比一个好的答案更有价值,写好提示词很关键,比如可以采用提问的几要素、举例法、思维链法、守规矩法、左右手互博法、激情碰撞法、剥削 AI 法等技巧。
2024-11-13
我是一名研究生,我想利用python实现机器学习,对碳排放进行预测,需要你帮我写出代码,我应该问你哪些问题或者给你哪些前提条件
在您希望利用 Python 实现机器学习对碳排放进行预测并让我为您编写代码时,您需要向我提供以下关键信息和问题: 1. 您所拥有的碳排放相关数据的格式和特征,例如数据的类型(数值型、分类型等)、数据的字段(如时间、能源消耗、生产活动等)。 2. 您对预测模型的性能要求,比如预测的精度、召回率等指标的期望。 3. 您是否有特定的机器学习算法倾向,或者是否希望我根据数据特点为您推荐合适的算法。 4. 数据的规模和分布情况,这会影响模型的训练时间和复杂度。 5. 您是否有可用的预处理步骤,例如数据清洗、特征工程的想法或已经完成的部分。 6. 对于模型的可解释性是否有要求。 7. 您的计算资源情况,例如内存、CPU 核心数等,以便选择适合的模型和训练策略。
2024-10-10
可以辅助我写出一步100万字左右的小说吗
目前利用 AI 辅助创作小说是可行的,但要直接生成一部 100 万字左右的完整小说还存在一定困难。例如,有人在小说大赛中让 GPT4 做修改,一开始有模有样,但很快暴露出记性不好的缺点。求助 Claude 时,关键情节还被改没了。 另外,在利用 Prompt 逆向工程让 ChatGPT 模仿作家风格时,有一些写作技巧,如描述特定氛围或情境作为开头引入主题,使用长句和复合句构建叙述,适当使用比喻和排比等修辞手法,描述具体事例和细节支持观点或论点,尽量用主动语态,适度使用连接词,每个段落具有逻辑性并为后续情节或转折做铺垫,语气正式客观并根据主题定情感色彩,使用合适标点符号强调节奏和情感,结尾在高潮或转折点留给读者深思。 但总体来说,完全依靠 AI 生成一部 100 万字的小说还不太现实,可能需要您与 AI 工具的多次交互和修改完善。
2024-09-07
现在国内国外与cursor和windsurf自动补全代码的ai比肩的产品有哪些,而且可以免费使用
以下是一些与 Cursor 和 Windsurf 自动补全代码功能比肩的产品,且部分可以免费使用: 1. Deepseek:网址为 https://www.deepseek.com/zh ,国内能访问,网页登录方便,目前完全免费。 2. 通义灵码:在 Pytharm 中通过“文件”“设置”“插件”搜索安装(目前免费)。 3. JetBrains 自身的助手插件:在 Pytharm 中通过“文件”“设置”“插件”搜索安装(收费,目前有 7 天免费试用)。 4. Wing Python IDE Pro:https://wingware.com/ ,是一款专为 Python 编程设计的开发环境,年度许可证起价 179 美元/月。 5. Smol Developer:https://github.com/smolai/de ,是一个开源的 AI 开发助手,遵循 MIT 许可证。 6. Cody:https://about.sourcegraph ,个人使用免费。
2025-01-16
可以读取excel数据并且编写小波分析代码的ai
以下是为您整合的相关内容: 应用开发方面: 自制微博指数爬虫工具:通过分析微博话题页面,找到真实数据地址,明确规则后让 AI 帮忙写代码,可在 colab 上运行,爬取数据后存储到 excel 并自动下载到本地。 Markdown 分页策略: LangChain 提供多种文本分页策略,包括按 Headers 或“章”划分、合并相邻较小部分、对大的“章”按“节”继续拆分、对大的“节”按“段”“句”“词”逐步拆分,直到满足长度要求。 处理结构化数组对象数据: 让 AI 更好地处理结构化数组对象数据的建议包括提供数据结构描述、用必要的示例数据、明确说明分析需求、让 AI 编写代码完成分析。Claude 和 ChatGPT 支持直接运行代码,处理结构化数据更高效。 金融服务业与生成式 AI: 生成式 AI 可帮助金融服务团队改进内部流程,简化日常工作流程。 预测方面:帮助编写 Excel、SQL 和 BI 工具中的公式和查询,发现模式,为预测建议输入并适应模型。 报告方面:自动创建文本、图表、图形等内容,并根据不同示例调整报告。 会计和税务方面:帮助综合、总结税法和潜在扣除项。 采购和应付账款方面:帮助自动生成和调整合同、采购订单和发票以及提醒。
2025-01-16
写变成代码的ai
以下是一些写代码或辅助编程的 AI 产品: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,助其更高效、更轻松地编写代码。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,具备行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,能快速生成代码,提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助 Sourcegraph 的强大代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调。 7. Codeium:一个由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释帮助软件开发人员提高编程效率和准确性。 更多辅助编程 AI 产品,可查看:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可根据自身需求选择最适合的工具。 另外,关于将资本转化为劳动力的相关内容,您可参考原文地址:https://a16z.com/aiturnscapitaltolabor/ ,该文发表于 2024 年 8 月 22 日。文中提到几个世纪以来科学的长期目标之一是实现炼金术的梦想,如今得益于人工智能,软件正在转变为劳动力等观点,并列举了一系列软件数字化的例子。 对于不会代码的您,若想 20 分钟上手 Python + AI ,可参考以下内容:为满足需求,需重写代码,首先抓取文章内容,然后使用假设的 OpenAI API key(实际操作中需替换为真实的 API key)生成文章的缩略信息。首先安装必要的库,然后使用相应代码。运行时先复制第一段试试,然后是第二段,记得修改 Key 。同时,API Key 是扣费凭证,请妥善保管,不要泄漏。OpenAI 各家 AI 最细致的教程几乎都在其官网上,综合文档:https://platform.openai.com/docs/overview ,API 使用:https://platform.openai.com/docs/apireference ,API Playground:https://platform.openai.com/playground ,API 案例与答疑:https://cookbook.openai.com/
2025-01-16
pyhon代码阅读解析
很抱歉,目前没有关于“pyhon 代码阅读解析”的相关内容。但一般来说,阅读和解析 Python 代码可以从以下几个方面入手: 1. 理解代码的整体结构,包括函数、类、模块的组织方式。 2. 关注变量和数据类型的使用,明确其作用和范围。 3. 分析控制流结构,如条件语句、循环等,以了解程序的执行逻辑。 4. 研究函数和方法的定义及调用,理解其功能和输入输出。 5. 注意代码中的注释,它们能提供重要的解释和说明。 如果您能提供具体的 Python 代码示例,我可以为您提供更详细和针对性的解析。
2025-01-15
有什么AI代码工具,能直接在浏览器端运行
以下是一些能在浏览器端运行的 AI 代码工具: 1. Bolt․new:这是一款终极写代码工具,AI 能帮您自动写代码、自动运行并自动部署,全部在浏览器中完成。您只需撰写简单提示,它就能自动编写代码,并支持一键编辑、运行和自动部署复杂的全栈应用。它依托于 WebContainers 技术,支持现代开发工具链,如 npm、Vite 和 Next.js。但需注意,该功能处于 alpha 测试阶段,可能会有问题,目前仅支持小到中型仓库,且不支持分叉或提交。您可以通过在 GitHub URL 前添加 2. 对于处理文档和数据: 对于数据(以及您对代码的任何奇思妙想):代码解释器。 对于大型文档或同时处理多个文档:Claude 2。 对于较小的文档和网页:Bing 侧边栏(Edge 浏览器的一部分,可以“查看”浏览器中的内容,让 Bing 处理该信息,尽管上下文窗口的大小有限)。
2025-01-13
如何通过程序代码调用coze的api?
要通过程序代码调用 Coze 的 API,大致步骤如下: 1. 创建一个插件: 填入插件名和插件描述。 选择云侧插件作为创建方式。 选择 Python 作为 IDE 运行时。 点击【在 IDE 中创建工具】。 在创建工具面板里: 填入工具名称。 填入工具介绍。 2. API 接入相关操作: Glif 允许通过 API 调用平台上的应用,API 接入:https://docs.glif.app/api/gettingstarted 。 去创建一个新的 Token 并复制备用。 将自己发布的 glif 链接上的 id 复制备用。 3. 在 Coze 的 IDE 中: 引入依赖和编写 handler 方法。 代码中对应的数据字段在元数据 Tab 中设置: 填写入参字段和描述,对完整链接要写清楚。 填写出参字段。 左侧的依赖包添加【requests】。 填入测试数据运行,测试通过后即可发布。 4. 创建一个 Bot,挂载新创建的插件,在 Prompt 中做一些对入参的校验和约束。 5. 测试从 Coze 调用 Glif 功能跑通,发布 Coze。 另外,获取 Coze 的 accessToken 和 botid 时,需要了解以下内容: 1. OAuth 授权的范围控制: 个人空间:访问个人创建的 bot。 团队空间:可以跨账号授权,比如让其他团队成员访问你创建的 bot。 2. 跨账号授权流程: 用户 A 在用户 B 的团队空间创建了 bot。 用户 A 要使用这个 bot,需要: 先让空间所有者安装这个 OAuth 应用。 然后用户 A 才能获取授权码访问其在该团队空间创建的 bot。 3. OAuth 和 PAT的主要区别: OAuth token 有效期更短,安全性更高。 OAuth 可以实现跨账号的授权。 PAT 只能访问个人的资源。 在 Coze 中用现有服务创建自己的 plugin 时: 1. 进入 Coze,在个人空间中选择插件,新建一个插件,起名并填写描述。 2. 在插件的 URL 部分,填入 Ngrok 随机生成的 https 的链接地址。 3. 配置输出参数。 4. 测试后发布插件。 5. 创建 Bot 并接入创建的插件,在 prompt 中设置调用插件的相关要求。
2025-01-12