Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

gpt写论文推送的prompt

Answer

以下是为您整合的关于 GPT 写论文相关的内容:

  1. GPTs 源 prompt:这段文字是关于 GPT 作为聊天机器人的功能和限制说明,包括通过 ChatGPT iOS 应用程序对话、处理图像输入、使用工具执行任务等,还提到了小互 bots 的制作过程,如引入外部知识库、聚合自有功能、提供第三方能力、通过 action set 设定 API 能力以及通过 Prompt 的 CoT 思维链处理数据链路等。相关导航网站:https://waytoagi.feishu.cn/record/Yq8DrMybyekB89csQREcZTkQnpd 、https://gptlet.app/gpts 。
  2. DALL·E 3 论文公布、上线 ChatGPT,作者一半是华人:论文的最后一章讨论了限制与风险,如在空间感知方面表现不佳,不能很好理解方位词,构建文本描述生成器时存在问题,生成的文本会让图片在重要细节上产生幻觉,对下游任务有影响,未来希望探索字符级语言模型改进。
  3. 教育方面:一个历史老师用 GPT 给学生讲课,历史专业学生已训练识别 ChatGPT 等服务的常见陷阱,语言模型对历史学家和历史专业学生是好事,但短期内对历史老师和其他教育工作者有重大问题,教授需重新思考作业,LLMs 注重迭代反馈,不同提示会产生不同结果。
Content generated by AI large model, please carefully verify (powered by aily)

References

GPTs源prompt

GPTbot目前可以引入外部知识库。聚合了web搜索,dalle-3作图,代码解释器三个自有功能。除此之外,还可以为bot提供第三方能力通过action set可以设定不同的API能力,比如让它通过这些API去增删改查将结果返回给GPT,通过Prompt的CoT思维链来处理不同的数据链路,做出不同的反应机制现在的bot更近乎一个全能Agent了,对于Prompt的使用要求也提高了一个维度。GPTs导航网站:https://waytoagi.feishu.cn/record/Yq8DrMybyekB89csQREcZTkQnpdhttps://gptlet.app/gpts

DALL·E 3论文公布、上线ChatGPT,作者一半是华人

[title]DALL·E 3论文公布、上线ChatGPT,作者一半是华人限制与风险本文的最后一章是大家比较关心的关于限制与风险的问题。虽然DALL-E 3在prompt跟随方面表现出色,但它仍然在空间感知等方面表现不佳。例如,DALL-E 3不能很好的理解左边、下面、后面等表示方位的词语。此外,在构建文本描述生成器时,本文着重考虑了一些突出的引导词(prominent words),这些引导词存在于原本图像以及生成的描述中。因此,DALL-E 3可以在出现prompt时生成文本。在测试过程中,本文注意到此功能并不可靠。本文怀疑这可能与使用T5文本编码器有关:当模型遇到prompt中的文本时,它实际上会看到代表整个单词的token,并且将它们映射到图像中出现的文本。在未来的工作中,本文希望进一步探索字符级语言模型,以帮助改善DALL-E 3面临的这种限制。最后,本文还观察到,合成的文本还会让生成的图片在重要细节上产生幻觉。这对下游任务产生了一定的影响,本文也表示,DALL-E 3在为特定术语生成图像方面并不可靠。不过,该研究相信,对图像文本描述的完善能进一步改进DALL-E 3的生成结果。

教育:一个历史老师用GPT给学生讲课

[title]教育:一个历史老师用GPT给学生讲课[heading3]Teaching will get weirder — and that’s probably aWhen history majors encounter LLMs,then,they are already trained to recognize some of the by-now-familiar pitfalls of services like ChatGPT — such as factual inaccuracies — and to address them via skills like fact-checking,analyzing genre and audience,or reading “around” a topic by searching in related sources.Importantly,too,because so many sources are out of copyright and available in multilingual editions on Wikipedia and Wikisource,language models are abundantly trained on historical primary sources in hundreds of different languages.[(1)](https://resobscura.substack.com/p/simulating-history-with-chatgpt#footnote-1-136683347)For these reasons,I agree with Tyler Cowen that language models are[specifically a good thing for historians](https://marginalrevolution.com/marginalrevolution/2023/01/chatgpt-and-the-revenge-of-history.html)— but I would go further and say that they are also specifically a good thing for history majors.On the other hand,I foresee major problems for history teachers and other educators in the short-term.[Ted Underwood is right](https://tedunderwood.com/2023/07/31/we-can-save-what-matters-about-writing-at-a-price/):we professors are going to have to fundamentally rethink many of our assignments.I’ve seen many people dismiss ChatGPT as an essay writing tool because simply plugging in a prompt from an assignment results in a weak piece of writing.But LLMs are all about iterative feedback,and experimenting with well-known prompting methods dramatically improves results.Here’s an example from one of my own past classes.When given a question from my “Early Modern Europe” survey about how Benvenuto Cellini’s Autobiography illustrates new ways of thinking about identity during the early modern period,GPT-4 can produce dramatically different results depending on the prompt.

Others are asking
deepseek深度思考的机制和ChatGPT的深度思考有什么不一样
DeepSeek R1 与 ChatGPT 的深度思考机制存在以下不同: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,同属于基于强化学习 RL 的推理模型。而 ChatGPT4 采用预训练+监督微调(SFT)。 2. 思考方式:在回答用户问题前,DeepSeek R1 会先进行“自问自答”式的推理思考,从用户初始问题出发,唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。而 ChatGPT 在此方面的表现有所不同。 3. 应用场景:DeepSeek R1 适用于高难度数学和编程问题,但计算成本更高。日常查询中,ChatGPT 更快、更适合简单咨询。 4. 优势特点:DeepSeek R1 更加透明,研究细节可复现,权重可下载。
2025-02-17
DB gpt具备商用化能力了吗?
目前 DB GPT 尚未具备成熟的商用化能力。其在技术、性能、安全性、稳定性等方面可能还存在一些需要进一步完善和优化的地方。商用化需要满足一系列严格的标准和要求,包括但不限于高效的处理能力、准确的结果输出、可靠的安全性保障以及良好的用户体验等。
2025-02-17
chat gpt
ChatGPT 是通过从网络、书籍等来源获取大量人类创作的文本样本,训练神经网络来生成类似的文本。其基本概念简单,由大量简单元素组成的神经网络,基本操作是为每个新单词生成输入并通过元素处理。 ChatGPT 能够从提示开始生成连贯的人类语言文本,遵循提示并利用所读内容,但不总是具有全局意义或对应正确计算,只是根据训练材料中的相似内容生成听起来正确的东西。 ChatGPT 在生成文本方面表现出色,结果接近人类所产生的。其基本人工神经网络结构基于大脑的理想化模型,人类生成语言的许多方面与之相似。 然而,在训练和硬件方面,ChatGPT 与大脑存在不同,需要使用可能不同且效率低于大脑的策略,内部没有循环或重新计算数据,限制了计算能力。 ChatGPT 基于 OpenAI 最先进的语言模型 gpt3.5turbo,使用 OpenAI 的 API 可以构建应用来做很多事情,如起草邮件、写代码、回答文档问题、创建会话代理、提供自然语言接口、辅导学科、语言翻译、假扮角色等。还可以体验 OpenAI 在线编辑器的聊天格式。
2025-02-17
如何高效使用chatgpt
以下是关于高效使用 ChatGPT 的一些方法和建议: 1. 对于产品经理: 步骤 1:进行原 SQL 输入,让 ChatGPT 对需求有初步理解。 步骤 2:将真实的业务需求场景及现存问题输入给 ChatGPT,通过多轮输入输出的讨论,强化其对真实需求的认知,以获取针对性的优化建议,并输出更符合需求的代码。 步骤 3:根据 ChatGPT 给出的结果不断调试和优化,直至生成满足需求的新代码。例如,按照原 SQL 思路更新数据时存在耗时长、资源浪费严重的问题,可参考 ChatGPT 提出的优化建议,如每次更新 1 天而非 30 天的数据、创建中间结果表存储非二次计算的数据等。 2. 对于开发人员: 痛点:在 IDE 和 ChatGPT 两个软件中不断切换、拷贝代码较为麻烦。 解决方案:将 ChatGPT 装进 WebStorm 中,通过右键选中代码,让 ChatGPT 进行优化、找 BUG 等操作,并可在窗口中随时提问。具体操作如下: 第一步:获取 API Keys,可参考文章 第二步:在 WebStorm 中下载 ChatGPT 插件,并将从 OpenAI 开发平台获取到的 API keys 设置进插件的配置中。安装后可实现选中代码找 bug、优化代码、自定义指令等功能,插件底部还有对话框可实时提问,让其解释、重新生成代码等。 此外,ChatGPT 的诞生经历了一系列的研究和改进。OpenAI 团队曾侧重浏览功能,但后来减少了这方面的侧重,将指令型数据和聊天数据混合,创造出既可以处理具体任务又能流畅聊天的模型。GPT4 完成训练后,特别强调指令遵循能力,但仍存在可靠性问题。指令型模型中的某些任务描述不够清晰,增加了模型执行和数据标注的难度,而 ChatGPT 这类聊天模型则更加直观,能更好地理解和处理潜在局限性,展现出更连贯的特征和更稳定的行为。
2025-02-14
豆包、DeepSeek、ChatGPT分别有些什么功能用于解决用户整理对话的需求
以下是豆包、DeepSeek、ChatGPT 在解决用户整理对话需求方面的功能: ChatGPT: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 2. 聊天机器人:作为聊天机器人的后端,提供自然的对话体验。 3. 问答系统:为用户提供准确的答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:在这方面有不错的表现。 6. 群聊总结:能够对群聊内容进行总结。 7. 代码生成:生成代码片段,帮助开发者解决编程问题。 8. 教育:帮助学生解答问题或提供学习材料。 9. 浏览器插件:如 webpilot 。 10. PDF 对话:通过相关网站实现与 PDF 的对话。 11. PPT 生成:协助高效制作 PPT 。 12. 音视频提取总结:通过特定网站进行总结。 13. 播客总结:通过特定网站完成总结。 14. 生成脑图:通过相关网站生成。 关于豆包和 DeepSeek 在解决用户整理对话需求方面的功能,上述内容中未提及。
2025-02-13
chatgpt公司原研发讲chatgpt的文章网页链接
以下是关于 ChatGPT 公司原研发讲 ChatGPT 的文章网页链接: 1. 育儿相关项目:https://chat.openai.com/share/40f1e3da187a4bef9150f93ca34046f4 ,该项目中使用 ChatGPT 进行了多种操作,如翻译、整理远古动物列表等。 2. AIGC 常见名词解释:https://mp.weixin.qq.com/s/ycDWZ8W46DrsyeNShC1wA ,其中对 ChatGPT 有相关解释。 3. AIGC Weekly01:https://openai.com/blog/chatgpt/ ,介绍了 ChatGPT 的发布情况。
2025-02-13
口播文案 Prompt
以下是关于口播文案 Prompt 的相关内容: 一、景淮:漫画趣味高中大学时期对比图 GPTs 实战 在这个示例中,先将相关示例喂给 GPT,观察其生成文案的效果。提示词为上述高中和大学区别的口播搞笑视频,重点突出不同时期的生活状态和鲜明反差。输入关键词“下雨了”后,生成了以下口播文案: 1. 高中:下雨了,天哪,怎么办,我的数学书会湿!大学:下雨了,哦,正好,再睡一会儿。 2. 高中:下雨了,得快跑,别迟到了!大学:下雨了,那今天就不去了,网课见。 3. 高中:下雨了,我的鞋子!得小心踩!大学:下雨了,穿拖鞋去了,方便。 4. 高中:下雨了,雨衣雨伞全副武装!大学:下雨了,抓个文件夹顶顶就行。 5. 高中:下雨了,课间不能出去玩了。大学:下雨了,正好和室友打个牌。 6. 高中:下雨了,哦不,体育课怎么办?大学:下雨了,哈,今天体育课取消了! 7. 高中:下雨了,我的作业别淋湿了!大学:下雨了,电脑在宿舍,作业得推迟了。 8. 高中:下雨了,赶紧找地方躲雨。大学:下雨了,雨中漫步也挺浪漫的。 9. 高中:下雨了,不会影响放学吧?大学:下雨了,嘿,这是不是个不去自习的理由? 10. 高中:下雨了,我的头发!大学:下雨了,谁还没个糟糕的头发日呢。 二、歌词提示词 1. 柔和的原声乐器引子:指在歌曲开头使用柔和的原声乐器(如原声吉他或钢琴)演奏的部分。作用是设置温暖、亲密的氛围,引导听众进入歌曲。适用于民谣、流行音乐、乡村音乐等风格,编曲技巧是使用原声吉他或钢琴演奏柔和的旋律或和声,创造出温暖和亲密的开场效果。 2. 富有灵魂感的:充满情感和灵魂的表现,通常具有深情的旋律和强烈的情感表达。作用是增强音乐的情感深度和感染力,适用于灵魂乐、R&B、流行音乐等风格,编曲技巧是使用深情的旋律、柔和的和声和强烈的情感表达。 3. 富有灵魂感的桥段:在歌曲中间部分或过渡部分,充满情感和灵魂的旋律或和声。作用是增强音乐的情感深度和结构变化,适用于灵魂乐、R&B、流行音乐等风格,编曲技巧是在歌曲的过渡部分设计一个深情且富有灵魂感的桥段。 4. 口语:在歌曲或音乐中使用普通说话的方式进行表演,而不是唱歌。作用是增加音乐的叙述性和亲密感,强调歌词的内容和表达,适用于说唱、独立音乐、实验音乐等风格,编曲技巧是在适当的段落使用口语表演。 三、Prompt 的专场教程 基础篇 1. Prompt 是一段指令,用于指挥 AI 生成所需内容,每个单独的提示词叫 tag(关键词)。 2. 支持的语言为英语(不用担心英语不好的问题,),另外 emoji 也可以用。 3. 语法规则: 用英文半角符号逗号,来分隔 tag,逗号前后有空格或者换行都不影响效果。 改变 tag 权重:tag 顺序越靠前对于 SD 来说权重越大,可通过“括号,权重就重 1.1 倍,每加一层括号就反向减弱 1.1 倍)两种方式设置。 进行 tag 的步数控制(高级玩法):“”,数字大于 1 理解为第 X 步前为 tag1,第 X 步后变成 tag2,数字小于 1 理解为总步数的百分之 X 前为 tag1,之后变成 tag2。
2025-02-18
有什么提升 RAG 知识库问答的好的 prompt
以下是一些提升 RAG 知识库问答的好的 prompt 相关内容: RAG 在 Natural Questions、WebQuestions 和 CuratedTrec 等基准测试中表现出色,在使用 MSMARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体且多样,FEVER 事实验证使用 RAG 后也有更好结果,说明 RAG 是可行方案,能增强知识密集型任务中语言模型的输出,基于检索器的方法常与 ChatGPT 等流行 LLM 结合提高能力和事实一致性,可在 LangChain 文档中找到相关例子。 RAG 能显著提高大模型在处理私域知识或垂直领域问答时的效果。其流程包括:上传文档(支持多种格式,会转换为 Markdown 格式)、文本切割、文本向量化(存入向量数据库)、问句向量化、语义检索匹配(匹配出与问句向量最相似的 top k 个)、提交 Prompt 至 LLM、生成回答返回给用户。RAG 研究范式分为基础 RAG、高级 RAG 和模块化 RAG。 高级 RAG 特点:支持多模态数据处理,增强对话性,具备自适应检索策略,能进行知识融合,扩展了基础 RAG 功能,解决复杂任务局限,在广泛应用中表现出色,推动自然语言处理和人工智能发展。 模块化 RAG 侧重于提供更高定制性和灵活性,将系统拆分成多个独立模块或组件,每个组件负责特定功能,便于根据不同需求灵活组合和定制。
2025-02-18
prompt的应用
以下是关于 prompt 应用的全面介绍: 一、什么是 prompt 1. 提示是您给模型(如 Claude)的文本,用于引发相关输出。它通常以问题或指示的形式出现。例如:“为什么天空是蓝色的?” 2. 在 AI 视频生成中,prompt 是直接描述或引导视频生成的文本或指令。类似给 AI 的提示,包含主体、运动、风格等信息,用户借此控制和指导生成内容。它在 AI 视频生成中作用十分重要,是表达需求的方式,影响视频内容和质量。如果上述过于抽象,您可以理解 Prompt 为:将您输入的文字变成对应的画面和运动形式。 3. 简单来说,prompt 是一套您和大模型交互的语言模板。通过这个模板,您可以输出对于大模型响应的指令,用于指定大模型应该具体做什么、完成什么任务、如何处理具体的任务,并最终输出您期望的结果。大模型的本质是一个基于语言的概率模型,若直接问大模型而不提供 prompt,相当于大模型随机给出答案。有了 prompt,相当于给了一个模板,包括对于模型的要求、输入和输出的限制,大模型在这个限制之下,去得到概率最大的答案。 二、prompt 在不同场景的应用 在即梦 AI 视频生成中,要想获得最佳的视频质量,需要写好 prompt。在图片生视频和文本生视频中,都有 prompt 的输入位置。
2025-02-18
12个精选prompt框架
以下是 12 个精选的 prompt 框架: 1. ICIO 框架: 指令:执行的具体任务。 背景信息:提供执行任务的背景信息、上下文内容,让大模型更好地回答。 输入信息:大模型需要用到的一些信息。 输出信息:明确输出的具体信息的要求,比如字数、风格、格式。 2. BROKE 框架:通过 GPT 的设计提示,来提升整体反馈的效率。 背景:提供足够背景信息,让大模型可以理解问题的上下文。 角色设定:特定的角色,让 GPT 根据特定的角色能力的特点来形成响应。 目标:明确任务的目标,让大模型知道您想让它做什么。 结果定义:明确可以衡量的结果,让大模型清楚自己做的情况。 调整:根据具体的情况,来调整具体的结果。 3. CRISPIE 框架: 能力和角色:您期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文。 声明:简洁明了地说明希望完成的任务。 个性:回应的风格、个性或者方式。 实验:提供多个回答的示例。 4. 课件中的 Prompt 之术“三板斧”: 分配角色。 给出示例(fewshots)。 思维链(ChainofThought)。
2025-02-17
prompt
以下是关于 prompt 的相关知识: 1. 提示简介: 提示是您给 Claude 的文本,用于引发相关输出,通常以问题或指示的形式出现。例如,“User:Why is the sky blue? 为什么天空是蓝色的?”,Claude 回答的文本被称为“响应”,有时也被称为“输出”或“完成”。 2. 改变区域+混音: 选择的大小会影响结果。更大的选择为中途机器人提供更多上下文信息,能改善新添加内容的扩展和上下文,但选择太多可能导致新生成的元素混合或替换原始图像的部分。 提示应集中于您希望在所选区域中发生的事情,较短且聚焦的提示通常更有效,不应是对话式的。 分步进行,如果要更改图像的多个部分,一次只处理一个部分。 技术细节:使用 Vary+Remix 模式生成的作业遵循 chaos、fast、iw、no、stylize、relax、style、version、video、weird 等参数。 3. 提示的类型: 基本提示:可以是简单的单词、短语或表情符号。中途机器人最适合用简单、简短的句子来描述您想看到的内容,避免长长的请求列表。 高级提示:可以包括一个或多个图像 URL、多个文本短语以及一个或多个参数。图像 URL 始终出现在提示的前面,精心编写的提示有助于生成令人惊叹的图像。
2025-02-17
给我提供一份标准的 DeepSeek R1大模型的 prompt 提示词模板
以下是一份关于 DeepSeek R1 大模型的 prompt 提示词模板: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 4K tokens 上下文窗口,换算成汉字是 8000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 2. 系统响应机制 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 此外,还有关于创建 DeepSeek 联网版工作流的相关内容: 1. 创建工作流 创建一个对话流,命名为 r1_with_net 开始节点,直接使用默认的 大模型分析关键词设置 模型:豆包通用模型lite 输入:直接使用开始节点的 USER_INPUT 作为大模型的输入 系统提示词:你是关键词提炼专家 用户提示词:根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索 bingWebSearch搜索 插件:BingWebSearch 参数:使用上一个节点,大模型分析输出的关键词作为 query 的参数 结果:data 下的 webPages 是网页搜索结果,将在下一个节点使用 大模型R1 参考搜索结果回答 这里需要在输入区域开启“对话历史” 模型:韦恩 AI 专用 DeepSeek 输入:搜索结果,选择搜索节点 data 下的 webPages;选择开始节点的 USER_INPUT;开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮 系统提示词:这里不需要输入 用户提示词: 结束节点设置 输出变量选择大模型R1 参考搜索结果回答的输出 回答内容里直接输出:{{output}} 测试并发布工作流 输入你的测试问题,测试完成后,直接发布工作流 关于 HiDeepSeek 的相关内容: 1. 效果对比 用 Coze 做了个小测试,大家可以对比看看 2. 如何使用? Step1:搜索 www.deepseek.com,点击“开始对话” Step2:将装有提示词的代码发给 Deepseek Step3:认真阅读开场白之后,正式开始对话 3. 设计思路 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 4. 完整提示词 v 1.3 5. 特别鸣谢 李继刚:【思考的七把武器】在前期为我提供了很多思考方向 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源 Claude 3.5 Sonnet:最得力的助手
2025-02-16
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?
以下是一些您可以从以下角度开发产品来赋能兼职督学岗位的工作效率,并锻炼您的 AI 能力,以争取上司或老板为产品支付报酬: 1. 利用 Coze 的多语言模型支持,为解答高中生学习方法等疑问提供更准确和全面的回答。 2. 借助插件系统,集成与学习相关的插件,如学习资料查询、学习工具推荐等,丰富服务内容。 3. 运用知识库功能,上传各类学科知识点、优秀学习案例等,方便在服务中快速调用和推送。 4. 利用数据库和记忆能力,记住每个高中生的学习情况和需求,提供个性化服务。 5. 设计工作流,例如自动发送测试卷、自动通知后端制作学习计划、自动推送学习计划链接等流程,提高工作效率。 6. 采用多代理模式,针对不同学科或学习阶段设置专门的代理,提供更精准的服务。 7. 利用 Coze 易于发布和分享的特点,将服务产品推广给更多需要的高中生和督学人员。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?又该如何将它推销给上司?
以下是关于您利用 Coze 和 DeepSeek 等 AI 接入飞书来赋能兼职督学岗位工作效率的一些建议: 开发产品的角度: 1. 智能答疑系统:利用 AI 技术,对高中生常见的学习方法疑问进行自动分析和回答,提高答疑效率和准确性。 2. 个性化测试卷生成:根据学生的学习情况和需求,通过 AI 生成个性化的测试卷。 3. 学习计划优化:基于学生提交的测试卷结果,利用 AI 更精准地制定学习计划。 4. 知识点精准推送:运用 AI 分析学生的学习进度和薄弱环节,定期推送更具针对性的知识点。 5. 打卡提醒优化:通过 AI 实现更灵活、个性化的打卡提醒方式。 推销给上司的方法: 1. 展示效率提升:详细说明产品如何大幅提高兼职督学的工作效率,节省人力和时间成本。 2. 个性化服务优势:强调产品能够为高中生提供更个性化、精准的服务,提升学习效果。 3. 数据支持:提供相关的数据和案例,证明 AI 赋能后的积极效果。 4. 成本效益分析:说明开发和使用该产品的成本相对较低,而带来的收益显著。 5. 未来发展潜力:阐述产品在不断优化和拓展功能方面的潜力,适应更多的教育需求。 另外,Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。它具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式、免费使用、易于发布和分享等特点。这些特点可以为您的产品开发提供有力支持。
2025-02-18
我想要学习prompt,请你推送10篇知识库相关文章给我
以下是 10 篇与 prompt 相关的知识库文章: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
2024-12-26
coze如何实现触发自动推送内容到飞书聊天框?
要实现触发自动推送内容到飞书聊天框,可以参考以下步骤: 1. 创意构思:创建 Bot 的初衷是让用户拥有专属的资讯助手,通过 Coze 这样的 AI agent 流程,以多模态形式获取最新资讯,并自动推送到不同平台。该 Bot 项目以扣子为中心平台,通过自研插件、工作流和 Coze API 链接微信群、企业微信群、飞书云文档多维表格等,实现不同平台的信息传递与流通。可根据用户定制化检索需求,自动化抓取热点资讯,进行分析处理,整合成资讯文档,返回 Bot 对话界面,并同步自动发送到不同平台。 2. 效果呈现:Coze Bot 可通过不同提问触发不同检索功能,企业微信群能自动同步获得资讯检索结果,实现多平台联动,还能获取资讯文档具体内容,以及 Coze 与企业微信群的信息同步联动,Coze API 可接入微信进行对话交互检索。 3. 搭建工作流: 在 Bot 中绑定工作流,设置定时任务,发布到飞书渠道。 人设和回复逻辑:设置提示词,直接调用工作流。 工作流:添加创建的工作流。 设置触发器:选择“定时触发”,设定触发时间,如每天 18 点。任务执行时选择工作流,输入 key 和 rss_list 等参数。可同时设置多个触发器,最多 10 个。 发布到飞书:点击右上角“发布”,选择飞书渠道,因为目前 Coze 平台触发器只对飞书渠道生效。 4. 实现定时推送社区日报功能: 写一个爬虫的自定义插件抓取社区日报内容,以普通文本或 markdown 方式输出。 创建工作流,流程为开始>获取前一天日期>调用插件抓取日报内容>输出内容并结束。 在 Bot 设计界面添加触发器,设定定时触发时间,如每天早上 9 点,测试触发成功后发布到飞书,即可定时收到推送。
2024-11-28
AI定时推送
在开源 AI 社区中,通过以下步骤实现了定时推送功能: 1. 编写爬虫的自定义插件抓取社区日报内容,以普通文本或 markdown 方式输出。但由于是社区资源,需经允许后放出。 2. 创建工作流,流程为:开始 获取当前时间前一天的日期 调用自定义插件抓取日报内容 输出内容并结束。 3. 在 Bot 设计界面添加触发器,设置触发时间(如每天早上 9 点),触发工作流。经测试,在飞书上可定时收到推送。 此外,使用社群运营机器人进行知识库问答,将社区长期积累的文章和资料喂给机器人学习,它能通过 RAG 机制匹配用户问题给出准确稳定答案。不仅提高了回答问题的效率,保证答案的准确性和一致性,还会基于问题给出相关延伸阅读链接,鼓励用户主动学习,提升自学能力。对于重要的社区活动信息和动态,机器人能定时准时推送给用户,避免用户错过。
2024-10-30
如何利用coze实现公众号更新后自动推送并总结内容
利用 Coze 实现公众号更新后自动推送并总结内容的步骤如下: 1. 抓取公众号内容: 先在平台搜索现成的插件,如 Coze 平台的读取公众号内容插件,但可能已荒废无法使用。 可考虑自己写爬虫抓取,或寻找可通过 API 方式直接调用的现成服务,如“瓦斯阅读”,但可能存在公众号不全的问题。还可尝试 GitHub 上的“WeWe RSS”工具。 2. 公众号内容总结: 主要依靠大模型的能力,如字节的豆包大模型。涉及批量化操作时,可使用“批处理”功能。 3. 定时推送到微信: 定时可通过 Coze 平台的触发器实现。 推送到微信需找第三方 API 的方案解决,如“server 酱”,通过服务号的模板消息将自定义内容推送到微信。 4. 搭建工作流: 循环查询文章是否推送过: 循环体内部的数据库节点用于在数据库中查询是否已推送过该文章,输入项为文章 url 和开始节点的 key(重命名为 suid)。 循环体内容的选择器判断数据库查询内容是否为空,为空则拼接文章完整信息。 设置 Bot: 人设和回复逻辑:设置提示词直接调用工作流,将“sum_weixin_2_2”替换为工作流名称。 工作流:添加创建的工作流。 设置触发器:选择“定时触发”,设定触发时间,如每天 18 点,输入工作流开始节点的参数。可设置多个触发器。 发布到飞书:点击右上角“发布”,选择飞书渠道,因 Coze 平台触发器目前只对飞书渠道生效。
2024-10-03
deepseek的论文里面讲的混合专家模型怎么理解
混合专家(MoE)模型是一种在深度学习中提升计算效率的架构。以 DeepSeek 为例,其最新模型 V3 与 R1 采用了这种架构。 在 DeepSeek 的 V3 模型中,引入了多头潜注意力(MLA),将 KV 缓存压缩至新低,从而提升了计算性能。R1 模型则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。 DeepSeek 的 2360 亿参数的 DeepSeekV2 是 60 位专家混合开源模型,在数学、编码和推理方面表现出色,具有 236B 参数,21B 在生成过程中被激活,在 MTBench 上表现优异,中文能力强且性价比高。 您可以通过以下链接获取更详细的介绍:https://xiaohu.ai/p/7468 、https://zhuanlan.zhihu.com/p/21208287743 。
2025-02-19
deepseek论文
以下是关于 deepseek 论文的相关信息: 1. GPT1 到 DeepSeek R1 所有公开论文: DeepSeek 领先的(相对)开源模型实验室。 2. DeepSeek 的秘方是硅谷味儿的: 将 DeepSeek 比喻成“AI 界的拼多多”是偏颇的,认为其秘方是多快好省也不全面。 早在 2024 年 5 月 DeepSeekV2 发布时,因其多头潜在注意力机制(MLA)架构的创新在硅谷引发小范围轰动,V2 的论文引发了 AI 研究界的广泛分享和讨论。 3. deepseek 论文解读: 直播视频回放及相关论文下载: 技巧分享:万能提示词,可用此提示词来 DeepSeek R1。 官网的搜索不能用,一直崩溃的解决办法:可以用火山的满血版,在视频的最后 10 分钟左右有手把手教程。
2025-02-19
deepseek论文
以下是关于 deepseek 论文的相关信息: 1. GPT1 到 DeepSeek R1 所有公开论文: DeepSeek 2. DeepSeek 不是“中国式创新”的产物:将 DeepSeek 比喻成“AI 界的拼多多”是偏颇的,认为 DeepSeek 的秘方就是多快好省也是不全面的。早在 2024 年 5 月 DeepSeekV2 发布时,它就以多头潜在注意力机制(MLA)架构的创新,在硅谷引发了一场小范围的轰动。 3. deepseek 论文解读: 直播视频回放及相关论文下载: 技巧分享:包括万能提示词的使用,以及提示词优化的步骤和方法。 官网的搜索不能用,一直崩溃的解决办法:可以用火山的满血版,在视频的最后 10 分钟左右有手把手教程。
2025-02-18
deepseek论文
以下是关于 deepseek 论文的相关信息: 1. GPT1 到 DeepSeek R1 所有公开论文: DeepSeek 领先的(相对)开源模型实验室。 2. DeepSeek 的秘方是硅谷味儿的: 将 DeepSeek 比喻成“AI 界的拼多多”是偏颇的,认为其秘方是多快好省也不全面。 早在 2024 年 5 月 DeepSeekV2 发布时,因其多头潜在注意力机制(MLA)架构的创新在硅谷引发小范围轰动,V2 论文引发 AI 研究界广泛分享和讨论。 当时 DeepSeek 在国内外舆论场的形象有所不同。 3. deepseek 论文解读: 直播视频回放及相关论文下载: 技巧分享:万能提示词,可用此提示词来 DeepSeek R1,基本算万能。 官网的搜索不能用,一直崩溃的解决办法:可以用火山的满血版,在视频的最后 10 分钟左右有手把手教程。
2025-02-18
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
我想了解diffusion技术相关的重要论文
以下是一些与 diffusion 技术相关的重要论文: 《HighResolution Image Synthesis with Latent Diffusion Models》:https://arxiv.org/abs/2112.10752 《Denoising Diffusion Probabilistic Models》:作者为 Ho、Jain、Abbeel,出自 Berkeley (2020)
2025-02-16