Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何科学上网使用chatgpt

Answer

以下是关于科学上网使用 ChatGPT 的相关内容:

对于使用 ChatGPT 4,建议注册的账号如下:

  1. 苹果用户:ChatGPT 账号、美区 AppleID、谷歌账号。
  2. 安卓用户:ChatGPT 账号、下载 GooglePlay、谷歌账号。

国外很多软件支持谷歌账号一键登录,ChatGPT 也可以用谷歌账号登录,目前注册谷歌账号支持国内手机号码和国内邮箱验证,过程简单。

注册谷歌账号的详细流程:

  1. 访问注册页面:打开浏览器,输入https://accounts.google.com/signup进入谷歌账号注册页面。
  2. 填写个人信息:按照提示填写姓名、用户名、密码,年龄最好大于 18 岁。
  3. 填写邮箱账号:可以选择推荐前缀或者创新的邮箱地址。
  4. 设置密码:采用大小写字母+数字的组合。
  5. 验证电话号码:有一定概率跳到接收短信验证,可填写国内号码。有时不用验证手机号码。
  6. 填写辅助邮箱:可用国内邮箱。
  7. 确认账户信息,同意服务条款和隐私政策:阅读谷歌的服务条款和隐私政策,点击“我同意”完成账号注册。
  8. 完成注册:可在“Personal info”里设置语言、头像等信息。

另外,还有一种不用魔法上网的方式,即 3 分钟极速、免费搭建自己的 ChatGPT 网站。推荐使用云原生服务[https://laf.dev/],注意只有这个 dev 域名才能调用 ChatGPT 的服务。步骤如下: 后端接口部分:

  1. 添加环境变量,输入您的 api keys,apikeys 的获取地址:https://platform.openai.com/ 。注意是否有免费流量,注意流量是否过期,否则无法调用。
  2. 开始写代码。 前端上传资源部分:
  3. 上传打包后的前端静态资料代码。 上传后直接访问右侧的域名即可。

请注意,在中国,未经电信主管部门批准,不得自行建立或租用专线(含虚拟专用网络 VPN)等其他信道开展跨境活动。请您在合法合规的前提下使用相关服务。

Content generated by AI large model, please carefully verify (powered by aily)

References

亲测有效:一文教你注册、安装、订阅使用ChatGPT 4o

1、苹果用户:ChatGPT账号、美区AppleID、谷歌账号;2、安卓用户:ChatGPT账号、下载GooglePlay、谷歌账号;国外很多软件是支持谷歌账号一键登录,ChatGPT也可以用谷歌账号登录,非常方便。目前注册谷歌账号支持国内手机号码和国内邮箱验证,过程也非常简单。注:使用以上软件需要会科学上网,不会的可以私信我。以下是详细注册流程:[heading2]一、注册谷歌账号[heading3]1.访问注册页面[content]打开浏览器,输入[https://accounts.google.com/signup](https://accounts.google.com/signup)进入谷歌账号注册页面。[heading3]2.填写个人信息[content]在注册页面,按照提示填写个人信息,包括:姓名、用户名、密码注:年龄最好大于18岁[heading3]3.填写邮箱账号[content]可以选择推荐前缀或者创新的邮箱地址。[heading3]4.设置密码(大小写字母+数字)[heading3]5.验证电话号码[content]有一定概率跳到接收短信验证,这里填我们国内的号码就可以。有时不用验证手机号码,我5.14下午注册的没强制验证手机号码。[heading3]6.填写辅助邮箱(可用国内邮箱)[heading3]7.确认账户信息,同意服务条款和隐私政策[content]阅读谷歌的服务条款和隐私政策,点击“我同意”完成账号注册。[heading3]8.完成注册![content]可在“Personal info”里设置语言、头像等信息。

亲测有效:一文教你注册、安装、订阅使用ChatGPT 4o

1、苹果用户:ChatGPT账号、美区AppleID、谷歌账号;2、安卓用户:ChatGPT账号、下载GooglePlay、谷歌账号;国外很多软件是支持谷歌账号一键登录,ChatGPT也可以用谷歌账号登录,非常方便。目前注册谷歌账号支持国内手机号码和国内邮箱验证,过程也非常简单。注:使用以上软件需要会科学上网,不会的可以私信我。以下是详细注册流程:[heading2]一、注册谷歌账号[heading3]1.访问注册页面[content]打开浏览器,输入[https://accounts.google.com/signup](https://accounts.google.com/signup)进入谷歌账号注册页面。[heading3]2.填写个人信息[content]在注册页面,按照提示填写个人信息,包括:姓名、用户名、密码注:年龄最好大于18岁[heading3]3.填写邮箱账号[content]可以选择推荐前缀或者创新的邮箱地址。[heading3]4.设置密码(大小写字母+数字)[heading3]5.验证电话号码[content]有一定概率跳到接收短信验证,这里填我们国内的号码就可以。有时不用验证手机号码,我5.14下午注册的没强制验证手机号码。[heading3]6.填写辅助邮箱(可用国内邮箱)[heading3]7.确认账户信息,同意服务条款和隐私政策[content]阅读谷歌的服务条款和隐私政策,点击“我同意”完成账号注册。[heading3]8.完成注册![content]可在“Personal info”里设置语言、头像等信息。

开发:ChatGPT+程序员10倍提效

[title]开发:ChatGPT+程序员10倍提效[heading2]3分钟极速、免费搭建自己的ChatGPT网站,再也不用魔法上网了有没有可以白嫖、简单的方案的方案呢?推荐使用云原生服务;[laf](https://laf.dev/)。注意:这里使用的域名是:https://laf.dev/。只有这个dev域名才能调用ChatGPT的服务。猜测可能是风控方面的考虑。Laf是一个Serverless框架,提供开箱即用的云函数,云数据库,对象存储等能力,是一个干净清爽的开发平台,像写博客一样写代码!步骤:后端接口部分:1.添加环境变量。输入你的apikeys。apikeys的获取地址:https://platform.openai.com/注意事项:注意是否有免费流量,注意流量是否过期,否则无法调用。1.开始写代码喽node版本的后端代码前端上传资源部分1.上传打包后的前端静态资料代码上传后直接访问右侧的域名即可最后来看看生成效果(加底部微信群免费获取地址)[扩展阅读:laf的其他资料点击查看](https://icloudnative.io/posts/build-chatgpt-web-using-laf/)

Others are asking
如何高效使用chatgpt
以下是关于高效使用 ChatGPT 的一些方法和建议: 1. 对于产品经理: 步骤 1:进行原 SQL 输入,让 ChatGPT 对需求有初步理解。 步骤 2:将真实的业务需求场景及现存问题输入给 ChatGPT,通过多轮输入输出的讨论,强化其对真实需求的认知,以获取针对性的优化建议,并输出更符合需求的代码。 步骤 3:根据 ChatGPT 给出的结果不断调试和优化,直至生成满足需求的新代码。例如,按照原 SQL 思路更新数据时存在耗时长、资源浪费严重的问题,可参考 ChatGPT 提出的优化建议,如每次更新 1 天而非 30 天的数据、创建中间结果表存储非二次计算的数据等。 2. 对于开发人员: 痛点:在 IDE 和 ChatGPT 两个软件中不断切换、拷贝代码较为麻烦。 解决方案:将 ChatGPT 装进 WebStorm 中,通过右键选中代码,让 ChatGPT 进行优化、找 BUG 等操作,并可在窗口中随时提问。具体操作如下: 第一步:获取 API Keys,可参考文章 第二步:在 WebStorm 中下载 ChatGPT 插件,并将从 OpenAI 开发平台获取到的 API keys 设置进插件的配置中。安装后可实现选中代码找 bug、优化代码、自定义指令等功能,插件底部还有对话框可实时提问,让其解释、重新生成代码等。 此外,ChatGPT 的诞生经历了一系列的研究和改进。OpenAI 团队曾侧重浏览功能,但后来减少了这方面的侧重,将指令型数据和聊天数据混合,创造出既可以处理具体任务又能流畅聊天的模型。GPT4 完成训练后,特别强调指令遵循能力,但仍存在可靠性问题。指令型模型中的某些任务描述不够清晰,增加了模型执行和数据标注的难度,而 ChatGPT 这类聊天模型则更加直观,能更好地理解和处理潜在局限性,展现出更连贯的特征和更稳定的行为。
2025-02-14
豆包、DeepSeek、ChatGPT分别有些什么功能用于解决用户整理对话的需求
以下是豆包、DeepSeek、ChatGPT 在解决用户整理对话需求方面的功能: ChatGPT: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 2. 聊天机器人:作为聊天机器人的后端,提供自然的对话体验。 3. 问答系统:为用户提供准确的答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:在这方面有不错的表现。 6. 群聊总结:能够对群聊内容进行总结。 7. 代码生成:生成代码片段,帮助开发者解决编程问题。 8. 教育:帮助学生解答问题或提供学习材料。 9. 浏览器插件:如 webpilot 。 10. PDF 对话:通过相关网站实现与 PDF 的对话。 11. PPT 生成:协助高效制作 PPT 。 12. 音视频提取总结:通过特定网站进行总结。 13. 播客总结:通过特定网站完成总结。 14. 生成脑图:通过相关网站生成。 关于豆包和 DeepSeek 在解决用户整理对话需求方面的功能,上述内容中未提及。
2025-02-13
chatgpt公司原研发讲chatgpt的文章网页链接
以下是关于 ChatGPT 公司原研发讲 ChatGPT 的文章网页链接: 1. 育儿相关项目:https://chat.openai.com/share/40f1e3da187a4bef9150f93ca34046f4 ,该项目中使用 ChatGPT 进行了多种操作,如翻译、整理远古动物列表等。 2. AIGC 常见名词解释:https://mp.weixin.qq.com/s/ycDWZ8W46DrsyeNShC1wA ,其中对 ChatGPT 有相关解释。 3. AIGC Weekly01:https://openai.com/blog/chatgpt/ ,介绍了 ChatGPT 的发布情况。
2025-02-13
chatgpt5最新消息
以下是关于 ChatGPT 的最新消息: 有一位狂热的书友在 Reddit 的 ChatGPT 子区分享了借助 ChatGPT 在 5 分钟内阅读并理解任何书籍的方法,并给出了详细的 Prompt,包括“Please summarize ”。评论区的几百条回帖也是干货满满,书友们积极留言分享尝试用 ChatGPT 辅助阅读的经验。 评论区有人指出这种方式可能因 ChatGPT 的“幻觉”而得到错误信息,对于“幻觉”有处理经验的人提出在提问时注意三点:明确告诉它想要准确答案且无幻觉;改变 temperature 参数(如改到 0)或控制创造力水平;得到答案后,要求它为每个引用产生精确的引用和页面以便交叉检查。
2025-02-13
请简单解释或者举例DeepSeek与ChatGPT的区别,原理
DeepSeek 与 ChatGPT 的区别主要体现在以下方面: 1. 在 App Store 排名上,DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 口碑与技术实力方面,DeepSeek 没有市场部和市场投放,完全依靠技术实力和口碑获得用户认可。 3. 性能与成本方面,DeepSeek R1 的效果比肩顶尖闭源模型 o1,但价格仅为 o1 的 27 分之一。 4. 开源与创新方面,DeepSeek R1 开源让行业认知整体拉齐,得到全世界尊重和喜爱。 5. 训练方式上,DeepSeek R1 的创新模型 R1 Zero 跳过了监督微调(SFT)阶段,直接采用强化学习(RL)进行训练。 6. 在回答用户问题时,DeepSeek R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,以提升最终回答的质量,而 ChatGPT 可能没有这种特定的机制。 原理方面:DeepSeek R1 与 ChatGPT 同属于基于强化学习 RL 的推理模型,但在具体的训练和推理过程中可能存在差异。例如,DeepSeek R1 在训练时可能有独特的方法和策略,使其在性能和表现上与 ChatGPT 有所不同。
2025-02-11
DeepSeek与ChatGPT的区别
DeepSeek 与 ChatGPT 存在以下区别: 1. App Store 排名:DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 口碑与推广:DeepSeek 没有市场部,也未做市场投放,完全依靠技术实力和口碑赢得用户认可。 3. 技术特点: 性能与成本:DeepSeek R1 效果比肩顶尖闭源模型 o1,价格仅为 o1 的 27 分之一。 开源与创新:DeepSeek R1 开源让行业认知整体拉齐,得到全世界尊重和喜爱。 4. 创新模型 R1 Zero:跳过监督微调(SFT)阶段,直接采用强化学习(RL)进行训练,且发现模型的思考能力可以自我涌现,具有革命性。 5. 影响: 行业影响:DeepSeek R1 的发布引发美国科技界恐慌,Meta 内部对其出色表现感到震惊。 市场影响:DeepSeek R1 的低成本和高性能使英伟达市场地位受挑战,其股价短期内大跌。 6. 未来展望:开源模型进步将超越闭源模型,顶级模型推理价格下降,技术更普惠平权;AI 编程效率提升、门槛降低,创作能力不断提升,催生更多创作形式。 此外,DeepSeek R1 属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升回答质量,模拟人类深度思考。而 ChatGPT 未具备这些特点。
2025-02-11
不用科学上网,功能最接近chatgpt的AI工具
以下为不用科学上网且功能接近 ChatGPT 的 AI 工具介绍: 1. Kimi 智能助手: 是 ChatGPT 的国产平替,实际上手体验好,适合新手入门学习和体验 AI。 无需梯子、无需付费、支持实时联网。 是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做得最好的 AI 产品。 能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. Fly AI: 官网:https://letsflyai.com/ 是一个方便的 AI 工具,可直接从 Mac 操作系统访问 OpenAI 的 ChatGPT。由 macOS 用户专用开发,提供无与伦比的 OpenAI ChatGPT 功能,无缝集成到 macOS 环境中,提供增强的效率和即时访问。
2024-09-03
如何用AI回答我的科学问题的提问
沃尔夫勒姆在探讨人工智能能否解决科学问题时提到了以下观点: 1. 在多重计算过程中,存在许多可能的结果,目标是找到通向某些最终结果的路径。例如从 A 到 BABA 的最短路径,在简单例子中可显式生成整个多路图,但实际中多数情况图会太大,挑战在于不追踪整个可能性图的情况下弄清楚行动。常见方法是为不同状态或结果分配分数,追求分数最高的路径,在自动定理证明中,“从初始命题向下”和“从最终定理向上”工作也常见,还可建立“引理”,将 X→Y 添加为新规则。 2. 人工智能可以提供帮助的一种方法是训练语言模型人工智能生成代表路径的标记序列,向其提供有效序列,呈现新序列的开头和结尾,要求其填充中间部分。 3. 从历史上看,成功科学的一个决定性特征是能预测将会发生什么。在最简单的情况中,用人工智能做归纳推理,输入一系列测量结果,让其预测尚未完成的测量结果。将人工智能视为黑匣子,虽希望其不做假设只遵循数据,但不可避免会存在底层结构使其最终假设某种数据模型。
2025-01-04
科学家现在完全了解gpt是怎么工作的吗
目前科学家尚未完全了解 GPT 的工作原理。以下是一些关于 GPT 工作原理的相关知识: Openai 的科学家认为,GPT 产生智能是因为神经网络将知识进行了复杂的压缩,在询问问题时将其中的知识解码(解压缩)。大语言模型的数据压缩能力越强,意味着其 AGI 智能越强。遵循最小描述长度原理和奥卡姆剃刀原则,最佳解释应是对数据进行尽可能短而准确描述的模型,模型描述长度越短,泛化性越好,也就越智能。 GPT 中的知识存在方式包括:LLM 中有两类神经元,单语义神经元只对输入里某个特殊的知识点产生响应,多语义神经元则相反。在模型学习过程中,为了增加模型参数的利用效率,“单语义神经元”会被分配给重要特征,“多语义神经元”会分配给不太重要的特征,而对更加不重要的特征,模型完全不进行编码。此外,存在知识回路,某个任务的 Prompt 输入 Transformer 后,在网络中存在一些完成这个任务的关键路径,信息主要沿着这条路径向上传播,在传播过程中不断进行信息传递或知识加工,最终完成任务,这与人脑的某些信息处理回路相似。 GPT3 的训练是将模型暴露于大量文本的过程,包含 3000 亿个文本标记的数据集用于生成模型的训练示例。训练时,我们只向模型展示特征并要求它预测下一个单词,模型的预测会有错误,计算其预测中的误差并更新模型,以便下次做出更好的预测,重复数百万次。GPT3 实际上一次生成一个 token 的输出。 GPT 全称是生成式预训练转换器模型(Generative Pretrained Transformer)。生成式指的是大模型根据已有的输入为基础,不断计算生成下一个字词(token),从而逐字完成回答的过程。例如,一开始给大模型一些提示词 Prompt,大模型会结合自身“大脑中存储的知识”进行计算推理,算出下一个单词的概率最大并输出,新的输出会和过去的输入一并成为新的输入,用来计算下一个词,直到计算出下一个词是的概率最大,于是结束输出。
2024-12-31
用AI写科学论文用哪什么软件
在论文写作领域,以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 AI 文章排版工具方面: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. LaTeX:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助的编辑器和插件简化排版。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适用于商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 对于医学课题需要 AI 给出修改意见,您可以考虑以下工具: 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 2. Scholarcy:从文档提取结构化数据,生成文章概要,包含关键概念等板块内容。 3. ChatGPT:强大的自然语言处理模型,可提供修改意见和帮助。 选择工具时应根据具体需求,如文档类型、出版标准和个人偏好。对于学术论文,LaTeX 和 Overleaf 受欢迎;一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-12-28
AI辅助科学教学的方法
以下是关于 AI 辅助科学教学的一些方法: 1. 利用语言模型人工智能生成代表科学学习路径的标记序列或证明,例如向其提供有效的序列并让其填充新序列的中间部分。 2. 根据不同的科学课程特点和学习目标,有针对性地运用 AI 工具。比如在编程课程中严格控制学生使用生成型人工智能创建代码,先让学生学会手写编码;在健康课程中,对学生使用生成型人工智能开发应用程序的限制可能较少。 3. 在科学课上,使用人工智能生成的跳跃切割进行视频编辑可以节省时间,让学生将重心放在科学内容上。 此外,AI 还可以在以下方面辅助科学教学: 1. 智能辅助工具:利用类似 Grammarly 的工具进行科学写作和语法纠错,改进表达能力。 2. 自适应学习系统:如使用 Khan Academy 这样结合 AI 技术的平台,为学生提供个性化的学习路径和练习题。 3. 智能题库和作业辅助:利用像 Photomath 这样通过图像识别和数学推理技术提供科学问题解答和解题步骤的工具。 4. 虚拟教学助手:例如使用 Socratic 为学生解答科学问题、提供教学视频和答疑服务。 需要注意的是,在使用 AI 辅助教学时,应结合传统学习方法,仔细甄别 AI 生成的内容。
2024-12-16
想成为数据科学家,学习和训练过程是什么
成为数据科学家的学习和训练过程通常包括以下步骤: 1. 收集数据:这是基础步骤,为后续的分析和模型训练做准备。 2. 分析数据:需要迭代多次以获得正确的见解。 3. 提出假设与行动:不断调整,并分析新的阶段数据。 在数据科学项目中,还需注意以下方面: 1. 每个工作职能都要学习如何使用数据,数据科学家和人工智能在多个领域均有重要作用,前者通过数据做决策,后者通过数据完成训练并形成输入输出的程序。 2. 选择人工智能项目时,要找到 AI 可以完成且在商业领域能运用的项目,召集由人工智能专业与业务领域专家组成的团队。具体包括: 思考可以自动化的任务而非岗位,细化可自动化任务。 思考驱动商业价值的核心。 思考商业领域的主要痛点。 破除数据迷信,认识到更多数据基本没坏处,数据能让某些商业模式具有护城河,但少量数据集也可能取得进展。 对项目进行尽职调查,包括技术方面(确定 AI 系统可达到理想表现、所需数据量及可获得量、开发时间表和所需人员)和商业方面(降低成本、提升效率、增加收入、推出新业务或产品,使用电子财务模型定量估算价值),还要考虑购买还是建造的问题,现实中人工智能项目可外包,数据科学一般内部成立。 4. 与人工智能团队合作时,为项目提供验收标准,如检测废品成功率 95%,需另准备测试数据集,标准尽量以数据衡量,由于数据太少、技术不成熟、数据标注错误、模糊标签等原因,验收标准基本不可能 100%正确。
2024-12-10
如何利用AGI进行社会科学研究、
利用 AGI 进行社会科学研究可以从以下几个方面考虑: 1. 借鉴相关研究成果:例如 DeepMind 在 3D 模拟环境中使用神经网络和强化学习,展示了 AI 智能体如何在没有直接从人类获取数据的情况下通过观察学习和模仿人类行为,这被视为向 AGI 迈进的重要一步。 2. 关注 AGI 的等级划分:OpenAI 提出 AGI 的五个发展等级,包括聊天机器人、推理者、智能体、创新者和组织。不同等级的 AGI 能力不同,可根据研究需求选择合适的等级进行应用。 3. 理解 AGI 的定义原则:Deepmind 的研究团队提出 AGI 定义的六个原则,其中重要的是关注能力而非过程,同时 AGI 的定义应包括多个级别,每个级别有明确的度量标准和基准。 4. 从经济价值角度思考:如 Andrej Karpathy 以自动化的交通服务类比 AGI 及其经济价值,可从类似的经济角度探讨 AGI 在社会科学研究中的应用。
2024-12-10
如何在coze已经建好的智能体上搭建一个用户登陆的模块,让用户在使用前输入姓名,序号
要在已建好的 Coze 智能体上搭建用户登陆模块,让用户在使用前输入姓名和序号,您可以参考以下步骤: 1. 服务器设置: 购买云服务器,推荐使用腾讯云服务器。新用户专享 28 元/年一台云服务器,若售罄可购买 82 元/年的,并选择宝塔 Linux 面板 8.1.0 腾讯云专享。 云服务器设置密码,选择暂不需要教学场景,通过远程登录的密码/密钥登录的重置密码来初始化密码,并妥善保存。 获取宝塔 Linux 地址,点击控制面板中的应用信息的管理应用,有两种获取方法。 设置宝塔的密码,登录宝塔 Linux 面板,输入相关操作并保存用户名和密码。 2. 变现模板配置: 超级管理员和普通用户的定义:超级管理员拥有管理整个系统的最高权限,普通用户没有项目配置权限和进入管理后台页的权限。 成为超级管理员:点击【成为超级管理员】按钮,进入用户注册登录页面,完成注册后获得超级管理员账户。 选择智能体配置模式,包括 Zion 默认智能体模式和您的 Coze 智能体模式。 3. API 接入微信群 Bot: 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。 在“Docker”中的“项目模板”中添加,将编译好的内容复制进来,创建容器并确定。 查看运行服务,扫码接入微信,手动刷新日志,若看到 WeChat login success 则接入成功。
2025-02-14
大模型如何使用应用系统数据
大模型使用应用系统数据可以通过检索增强生成(Retrieval Augmented Generation,RAG)技术来实现。 RAG 是一种结合检索和生成的技术,能够让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。其基本流程为:首先,当用户给出输入,如问题或话题,RAG 会从数据源(如网页、文档或数据库记录)中检索出相关的文本片段,这些片段称为上下文。然后,RAG 将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望的输出,如答案或摘要。最后,RAG 从大模型的输出中提取或格式化所需信息返回给用户。 从大模型的整体架构来看,其分为以下几层: 1. 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 2. 数据层:包括静态的知识库和动态的三方数据集。这里的数据层指的是企业根据自身特性维护的垂域数据。 3. 模型层:包含 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)或多模态模型(如文生图、图生图等模型,训练所用数据为图文或声音等多模态数据集)。 4. 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用之间的组成部分。 5. 表现层:即应用层,是用户实际看到的地方。
2025-02-14
ai魔术橡皮擦在线使用
以下是关于 AI 魔术橡皮擦的相关信息: Magic Brush 按键功能详解: 1. 笔刷:不同的笔刷区分不同区域和运动轨迹,目前支持 6 种不同的笔刷,通过颜色区分。每种笔刷必须要绘制相应的运动轨迹才可生效,即每个颜色必须要有“1 个笔刷覆盖的区域+1 个运动轨迹”才可生效。 2. 调节笔刷大小。 3. 擦除选定区域。 4. 自动识别:上传图片后,PixVerse 会自动识别图中元素(例如天空、树、人、狗、猫等)。当勾选相应元素,例如天空,PixVerse 会帮您自动对该元素添加运动区域。如果列表中没有出现某些画面中的元素,则说明该元素未能被自动识别,请手动通过笔刷选择该区域。 5. 返回上一步/下一步,重置操作。 6. 删除运动轨迹:单击鼠标左键。 FAQ: 1. Magic Brush 只支持 PC 端,如果是在手机或者 iPad 登录,请换成电脑。 2. 浏览器广告拦截插件会导致笔刷失效,请检查自己的浏览器并关闭插件。 3. 如问题仍未解决,请联系:support@pixverse.ai 另外,Canva 也推出了 Magic Eraser 相关的 AI 功能,包括 Magic Design、Draw your Ideas、Translate Designs、Magic Eraser and Magic Edit、Beat Sync、Magic Presentations、More Magic Write、We’ve evolved Text to Image、Animations、Brand Hub 等。
2025-02-14
如何使用deepseek
使用 DeepSeek 的步骤如下: 1. 搜索 www.deepseek.com,点击“开始对话”。 2. 将装有提示词的代码发给 DeepSeek。 3. 认真阅读开场白之后,正式开始对话。 DeepSeek 的设计思路包括: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定)。 关于 DeepSeek 的相关活动和分享: 1. 2025 年 2 月 6 日的分享中提到了关于 DP 模型的使用,包括其功能、优势、问题、审核方法、使用建议、使用场景和案例展示等。 2. 2 月 23 日的 AI 切磋大会是 DeepSeek 专场,包括深度聚焦、实战导向、全网联动等亮点,活动流程包括签到、全国联动、全国联动使用方法分享、分城市各自案例分享和自由探讨等环节。
2025-02-14
ai为何使用GPU而不是CPU
AI 使用 GPU 而不是 CPU 主要有以下原因: 1. 强大的计算能力:GPU 在并行处理大量数据方面具有显著优势。例如,同年《Largescale Deep Unsupervised Learning using Graphics Processors》这篇论文指出,利用 GPU 比 CPU 快 70 倍,能将数周的工作压缩到几天甚至一天完成。 2. 适应深度学习需求:大型神经网络、输入的多个变量以及有效的反向传播 GPU 实现等方面,GPU 表现出色。如 MNIST 数据库能达到令人惊叹的 0.35%错误率。 3. 处理图形相关运算:GPU 原本就是为处理图像和图形相关运算工作而设计,其采用的核心技术如硬件 T&L 等,适合 AI 中的图形处理任务。 4. 分担 CPU 工作:GPU 的诞生源自对 CPU 的减负,使显卡减少对 CPU 的依赖,并进行部分原本 CPU 的工作。 5. 算力优势:算力可以直接转化为 GPU,一张显卡中的 GPU 是计算能力的关键。 6. 适应 AI 模型需求:当今所有 AI 模型都在使用大量专用芯片的 GPU 卡上运行。例如 NVIDIA A100 GPU 有 512 个“张量核心”,能大幅提高计算效率。但实际应用中,也存在一些限制,如数据传输、内存容量和优化方法等问题。
2025-02-14