Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

可以应用在前端提效场景

Answer

以下是关于在前端提效场景的相关内容:

AI 在生成测试用例方面具有显著优势,能够自动化和智能化生成高覆盖率的测试用例,减少人工编写的时间和成本。前端开发工程师合理应用 AI 工具,可提高测试效率、增强测试覆盖率并发现潜在问题,提升软件质量和用户体验。

LangChain 和 RAG 的结合具有以下优势:

  1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。
  2. 可扩展性:能使用 LangChain 的云服务部署和运行应用,无需担心资源和性能限制,还能利用分布式计算功能加速应用,发挥多个节点的并行处理能力。
  3. 可视化:可使用 LangSmith 可视化 RAG 应用的工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。

LangChain 和 RAG 的结合可应用于多种场景,如:

  1. 专业问答:构建医疗、法律或金融等专业领域的问答应用,从专业数据源检索信息帮助大模型回答问题,如从医学文献中检索疾病诊断和治疗方案回答医疗问题。
  2. 文本摘要:构建新闻摘要或论文摘要等应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。
  3. 文本生成:构建诗歌生成或故事生成等应用,从不同数据源检索灵感帮助大模型生成更有趣和有创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:AI 做测试用例

AI在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用AI工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。内容由AI大模型生成,请仔细甄别

开发:LangChain应用开发指南-大模型的知识外挂RAG

LangChain和RAG的结合可以带来以下的优势:灵活性:你可以根据你的需求和数据源选择不同的组件和参数,定制你的RAG应用。你也可以使用自定义的组件,只要它们遵循LangChain的接口规范。可扩展性:你可以使用LangChain的云服务来部署和运行你的RAG应用,无需担心资源和性能的限制。你也可以使用LangChain的分布式计算功能来加速你的RAG应用,利用多个节点的并行处理能力。可视化:你可以使用LangSmith()来可视化你的RAG应用的工作流程,查看每个步骤的输入和输出,以及每个组件的性能和状态。你也可以使用LangSmith来调试和优化你的RAG应用,发现和解决潜在的问题和瓶颈。LangChain和RAG的结合可以应用于多种场景,例如:专业问答(Professional Question Answering):你可以使用LangChain和RAG来构建一个专业领域的问答应用,例如医疗、法律或金融。你可以从专业领域的数据源中检索相关的信息,帮助大模型回答用户的问题。例如,你可以从医学文献中检索疾病的诊断和治疗方案,帮助大模型回答医疗相关的问题。文本摘要(Text Summarization):你可以使用LangChain和RAG来构建一个文本摘要应用,例如新闻摘要或论文摘要。你可以从多个数据源中检索相关的文本,帮助大模型生成一个综合的摘要。例如,你可以从多个新闻网站中检索关于同一事件的报道,帮助大模型生成一个全面的摘要。文本生成(Text Generation):你可以使用LangChain和RAG来构建一个文本生成应用,例如诗歌生成或故事生成。你可以从不同的数据源中检索灵感,帮助大模型生成更有趣和更有创意的文本。例如,你可以从诗歌、歌词或小说中检索相关的文本,帮助大模型生成一首诗、一首歌或一个故事。

开发:LangChain应用开发指南-大模型的知识外挂RAG

LangChain和RAG的结合可以带来以下的优势:灵活性:你可以根据你的需求和数据源选择不同的组件和参数,定制你的RAG应用。你也可以使用自定义的组件,只要它们遵循LangChain的接口规范。可扩展性:你可以使用LangChain的云服务来部署和运行你的RAG应用,无需担心资源和性能的限制。你也可以使用LangChain的分布式计算功能来加速你的RAG应用,利用多个节点的并行处理能力。可视化:你可以使用LangSmith来可视化你的RAG应用的工作流程,查看每个步骤的输入和输出,以及每个组件的性能和状态。你也可以使用LangSmith来调试和优化你的RAG应用,发现和解决潜在的问题和瓶颈。LangChain和RAG的结合可以应用于多种场景,例如:专业问答(Professional Question Answering):你可以使用LangChain和RAG来构建一个专业领域的问答应用,例如医疗、法律或金融。你可以从专业领域的数据源中检索相关的信息,帮助大模型回答用户的问题。例如,你可以从医学文献中检索疾病的诊断和治疗方案,帮助大模型回答医疗相关的问题。文本摘要(Text Summarization):你可以使用LangChain和RAG来构建一个文本摘要应用,例如新闻摘要或论文摘要。你可以从多个数据源中检索相关的文本,帮助大模型生成一个综合的摘要。例如,你可以从多个新闻网站中检索关于同一事件的报道,帮助大模型生成一个全面的摘要。文本生成(Text Generation):你可以使用LangChain和RAG来构建一个文本生成应用,例如诗歌生成或故事生成。你可以从不同的数据源中检索灵感,帮助大模型生成更有趣和更有创意的文本。例如,你可以从诗歌、歌词或小说中检索相关的文本,帮助大模型生成一首诗、一首歌或一个故事。

Others are asking
我是一个前端开发人员,在工作中,我可以使用哪些ai工具提效
以下是一些适合前端开发人员在工作中提效的 AI 工具: 1. 辅助编程工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出的代码编写助手,借助强大的代码语义索引和分析能力。 CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手。 Codeium:通过提供代码建议等帮助提高编程效率和准确性。 更多辅助编程 AI 产品,可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 测试用例生成:AI 在生成测试用例方面具有显著优势,能自动化和智能化生成高覆盖率的测试用例,减少人工编写时间和成本。通过合理应用 AI 工具,可提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 3. 网页原型图生成工具: 即时设计:https://js.design/ ,可在线使用的「专业 UI 设计工具」,注重云端文件管理和团队协作。 V0.dev:https://v0.dev/ ,Vercel Labs 推出的 AI 生成式用户界面系统,能通过文本或图像生成代码化的用户界面。 Wix: ,用户友好,无需编码知识即可创建和自定义网站,提供广泛模板和设计选择,以及多种功能。 Dora:https://www.dora.run/ ,通过一个 prompt,借助 AI 3D 动画生成强大网站。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-14
如何使用AI给测试进行提效
以下是关于如何使用 AI 给测试提效的详细内容: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 总结:AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-08
在HR行业有哪些提效应用
目前在 HR 行业中,AI 可以在以下方面提高效率: 1. 人才招聘与筛选:利用自然语言处理和机器学习算法,快速筛选简历,评估候选人与职位的匹配度。 2. 员工培训与发展:通过分析员工的技能和绩效数据,为个性化的培训计划提供建议。 3. 绩效管理:自动收集和分析绩效数据,提供更客观准确的评估。 4. 员工关系管理:预测员工离职风险,及时采取措施改善员工满意度。 5. 人力资源规划:基于数据分析预测人力需求,优化人力资源配置。
2025-03-17
有哪些辅助财务工作提效的AI智能体或落地应用?
以下是一些辅助财务工作提效的 AI 智能体或落地应用: 新兴的 AI 智能体公司,如 Sierra、Decagon、Maven AGI、DevRev、Gradient Labs 等,在客户服务和支持等领域发挥作用,其中 Sema4 可用于财务后勤。 RPA(流程自动化机器人)产品,如杭州分叉智能公司的 RPA 产品,可控制桌面软件,实现办公流程自动化,在财务领域可用于开票、网银流水下载等。它能够替代电脑办公中的重复有逻辑工作,为企业降本增效。 利用引刀 AP 创建网页实现智能解答税务问题,结合飞书避免信息泄露和实现自动回复等。 生成式 AI 可以帮助金融服务团队改进内部流程,简化财务团队的日常工作流程。例如,帮助编写 Excel、SQL 和 BI 工具中的公式和查询以实现分析自动化,自动创建文本、图表、图形等报告内容,为会计和税务团队综合、总结并提供税法和潜在扣除项的可能答案,以及帮助自动生成和调整采购和应付账款相关的合同、订单和发票等。
2025-03-11
deepseek如何赋能职场应用实现工作提效?
DeepSeek 可以通过以下方式赋能职场应用实现工作提效: 1. 作为多场景 AI 工具,支持从创意到实现的全流程智能化服务,能快速将创意转化为高质量视频,具备角色一致性技术与分镜自动成片功能,并且支持美学意象风格短片创作。 2. 提供基础模型和深度思考模型两种模式,分别适用于高效便捷任务和复杂推理分析任务。 3. 可用于制作可视化图表、PPT 大纲及设计海报等,通过智能体框架实现人机高效协作。 4. 直接使用 DeepSeek 有多种方法,并且有诸多提示词技巧,在专业场景提效、教育学术赋能、商业创新与生活服务等领域用途广泛,像辅助办公、教学设计、电商运营等。 5. 可以与飞书多维表格结合,实现批量处理信息,提升工作效率,如批量转换文风、快速回复消息、利用 AI 生成文案等,让普通人无需编程知识也能轻松使用 AI。
2025-03-10
deepseek如何赋能职场应用实现工作提效?
DeepSeek 可以通过以下方式赋能职场应用实现工作提效: 1. 作为多场景 AI 工具,支持从创意到实现的全流程智能化服务,能快速将创意转化为高质量视频,具备角色一致性技术与分镜自动成片功能,并且支持美学意象风格短片创作。 2. 提供基础模型和深度思考模型两种模式,分别适用于高效便捷任务和复杂推理分析任务。 3. 用于制作可视化图表、PPT 大纲及设计海报等,通过智能体框架实现人机高效协作。 4. 直接使用 DeepSeek 有多种方法,并且有诸多提示词技巧,在专业场景提效、教育学术赋能、商业创新与生活服务等领域用途广泛,像辅助办公、教学设计、电商运营等。 5. 可以与飞书多维表格结合,实现批量处理信息,提升工作效率,如批量转换文风、快速回复消息、利用 AI 生成文案等。
2025-03-10
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
帮我写一段cursor的user rules,符合前端开发
以下是关于 Cursor 的 User Rules 相关内容,适用于前端开发: Cursor Rules 简单来说是为 Cursor 做角色定位,使其以更专业的角色服务。它允许开发者为 AI 助手设置特定指导原则和行为模式,让 AI 在生成代码、提供建议和响应查询时能更好适应开发者的编码风格和项目需求。 设置通用规则的步骤如下: 1. 点击界面右上角的小齿轮图标。 2. 在 cursor settings 中找到 Rules。 3. 将相关文本拷贝到 User Rules 后,关掉页面即可。 当您从新手阶段进阶,希望进行更专业的 APP 开发、前后端项目时,可以通过以下方式获取更专业的 Cursor Rules: 1. 访问下方的 github 项目:https://github.com/PatrickJS/awesomecursorrules 。 2. 使用 https://cursor.directory/generate ,根据项目重点直接生成。 设置好 Cursor Rules 后,就可以开始创作第一个小作品,比如一个打砖块的小游戏。首先在右侧对话框中输入本次项目的内容(可以非常口语化),使用 claude3.7 模型等待代码生成完毕。可以看到左侧文件夹生成多个文件,中间显示 AI 生成的不少代码,右边是 AI 告知的互动生成内容。点击右下方的 Accept all 使代码生效。若想查看项目效果,直接跟 AI 说“运行项目”,点击 AI 提示的 Run command 会跳转到预览页面。如果玩起来有问题(如操控感不好、不美观),可以让 AI 进一步帮助美化。 另外,在某些情况下,比如导入 cursor 时,需要上传到 github 并下载到本地,在设置里把 user rules 改成“always respond in 中文”,在 terminal 里输入“npm i”“npm run dev”等操作。
2025-03-31
如何运用Trae设计实现前端代码并转化为原型图
以下是运用 Trae 设计实现前端代码并转化为原型图的相关内容: 1. 控制按钮(开始、暂停、重新开始)和游戏说明。 2. 生成任务清单应用:在输入框中输入“使用 Web 技术开发一个任务清单应用”,可得到一个朴素但功能俱全的任务清单应用。 3. 根据 UI 设计图自动生成项目代码:从站酷上找设计图,输入提示如“使用 html 技术实现如图大屏页面”,页面虽不完美但可调整,如“调整一下,给图表设置合适的宽高比例,自适应页面大小”,能使图表大小正常。 总结: Trae 表现可圈可点,具有高效代码生成能力,能在几分钟内生成完整框架,代码结构清晰且功能齐全,能自动处理依赖项和运行命令。 支持多技术栈,从 HTML5、响应式 CSS 布局到 Echarts 图表实现,对 Web 技术掌握良好,生成的代码可直接运行且无明显语法错误。 具有动态调整潜力,虽未完美复现设计图,但能根据用户反馈快速调整样式,自适应布局的实现展现了迭代能力。 现在的 AI 越来越强大,小白不需要懂代码也能用 AI 编程工具进行程序开发,这让程序员感到深深的危机感。
2025-03-21
有没有根据描述自动生成前端代码的工具?
以下是一些根据描述自动生成前端代码的工具: 1. Vercel v0:已向所有人开放,能通过文本或图像生成代码化的用户界面。例如群友“嘴替笔记苏谨深”试用效果不错,可生成标准安卓的天气预报截图,还能输出 react 和 html 两种格式的代码。 2. ChatGPT 结合相关操作:可将后端定义的接口文档转换为前端项目中的 Mock 数据,提升效率。 3. AIGC 工具 V0:现在支持从外部 API 获取数据,v0 Premium 用户可将生成的页面发布到自定义的子域名。 您可以根据具体需求选择适合的工具。
2025-03-12
CRM,开发(网站前端和后端开发,低代码RPA开发,Mendix开发) 这些角色在使用AI的时候会涉及哪些AI工具,帮我分别具体列举出来
目前在 CRM 以及网站前端和后端开发、低代码 RPA 开发、Mendix 开发等角色中,常用的 AI 工具包括但不限于以下几种: 对于 CRM 角色: 智能客服工具,如基于自然语言处理的聊天机器人,能够自动回答客户常见问题,提高服务效率。 对于网站前端开发角色: 代码自动生成工具,能够根据设计稿或需求描述生成前端代码框架。 智能设计辅助工具,帮助生成页面布局和设计元素的建议。 对于网站后端开发角色: 代码漏洞检测工具,利用 AI 算法检测代码中的潜在安全漏洞。 智能代码优化工具,对后端代码进行性能优化建议。 对于低代码 RPA 开发角色: 流程自动化智能推荐工具,根据业务流程提供自动化的建议和方案。 对于 Mendix 开发角色: 智能组件推荐工具,根据开发需求推荐合适的组件。 需要注意的是,具体使用哪些 AI 工具还会因个人需求、项目特点和技术环境等因素而有所不同。
2025-03-07
多模态应用
以下是一些多模态应用的案例: 1. 电商领域: 拍立淘:由淘宝推出,用户拍照即可识别商品并直接进入购物页面,简化购物搜索步骤。 探一下:支付宝推出的图像搜索引擎,拍照后 AI 能识别并搜索相关商品或信息。 2. 创意领域: 诗歌相机:拍照能生成一首诗,还能打印,将诗意与现代技术结合,并做成硬件形式。 3. 技术平台: 阿里云百炼大模型平台为企业侧提供各种原子级别能力,包括多模态能力。 4. 其他应用场景: 融图:如把图二中的机器人合成到图一的环境中,保持比例、细节、光影和氛围感统一。 小红书风格卡片:使用特定风格生成关于特定内容的卡片。 Logo 转 3D 效果:将图标改成 3D 立体、毛玻璃、毛绒等效果。 示意图转卡通漫画:把示意图转成幼儿园小朋友能看懂的漫画并配中文说明。 遥感理解(图像数据):识别图中的建筑物并用色块标注。 包装图直出效果:生成图片对应的包装侧面效果图。 参考生成海报图:参考小红书封面生成 PPT 设计相关封面图。 三维建模模拟:将图片转化为 3D max 建模渲染界面并加入 UI 界面。 手办三视图:保留人物样貌、神态,制作成特定要求的 3D 手办三视图。
2025-04-18
结构化思维在AI办公里的应用
结构化思维在 AI 办公中有以下应用: 在 Model Context Protocol 托管平台中: 特色功能方面,Sequential Thinking 提供动态和反思性问题解决的结构化思维过程,适用于复杂问题分析和决策。 核心功能分类包括笔记管理工具(如 Simple Notes MCP Server、Bear MCP Server、Notion 集成)、AI 对话工具(如 Autonomous Coder Agent、OpenAI 兼容 API 集成)、Google Workspace 集成(如 Gmail 和 Google Calendar 集成、多账户管理、邮件搜索和撰写、日历事件管理)、学术研究工具(如 Semantic Scholar 集成、PubMed 搜索、arXiv 论文访问、IACR 密码学文献库访问)、AI 数据库管理(如 MySQL Server 集成、知识图谱记忆服务、DuckDB 集成、Airtable 集成)。 面对 AI 幻觉问题时,可使用结构化思考工具辅助判断,如决策矩阵用于面对多个选择时做出更理性的决策,检查清单用于执行复杂任务时确保每个步骤按计划完成,风险评估模型用于做重要决策时分析不同方案的风险并制定应对措施。 在让 AI 像人类一样思考方面,构建逻辑体感轮子,包括逻辑推理功能和内容抽象功能。内容抽象功能能够高效地组织内容,体现结构化思维,通过心智单元的抽象思维高效地组织复杂任务。
2025-04-14
飞书+AI的应用案例
以下是飞书+AI的应用案例: 在企业运营方面,包括日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源简历筛选、预招聘、员工培训等。 在教育领域,协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 在零售/电商领域,包括舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,以及客户购物趋势分析及洞察。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞。 线下活动方面: 活动宣传:用飞书文档制作活动宣传页面,用 AI 快速制作海报,用 GPTs 写人员分配和主持人台词,活动从策划到开始仅用 2 天时间。 活动报名:使用飞书的多维表格完成报名表及数据统计。 活动过程:大家在线协同,一起编辑文档,演示时共同展示一个文档。 活动记录:有相关的记录页面。 办活动的初衷是宣扬 AI 不只是降本增效的工具,还有很多乐趣等待挖掘,例如大理户外圆桌讨论、清迈的 AI 逛古城、杭州的 AI 玄学小组。
2025-04-13